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ABSTRACT
Enabling early detection of Denial of service (DoS) attacks in
network traffic is an important and challenging task because
DoS attacks have become one of the most serious threats to
the Internet. In this paper, we develop an IP packet size
entropy (IPSE)-based DoS detection scheme in which the
entropy is markedly changed when traffic is affected by an
attack. Through our analysis, we find that the IPSE-based
scheme is capable of detecting not only long-term attacks
but also short-term attacks that are beyond the volume-
based schemes’ ability to detect.
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1. INTRODUCTION
In recent years, denial of service (DoS) [1] attacks have

caused significant financial loss and have become one of the
most serious security threats to the Internet. In a DoS
attack, a malicious user often cripples a victim by simply
flooding the target with many legitimate-looking requests.
Launching a DoS attack is very easy by using some attack
tools, but detection is still an open issue because of the com-
plex nature of network traffic.

Many DoS detection schemes have been proposed and ba-
sically they can be divided into two types: volume-based
and feature-based. In a volume-based detection scheme, at-
tacks are detected by identifying abrupt changes in traffic
volume. Although volume-based detection schemes [2, 4,
6] have been successful in isolating large traffic changes, a
large class of short-term DoS attacks do not cause detectable
disruptions in traffic volume because they have only minor
effects on the traffic volume. On the other hand, a feature-
based detection scheme [3, 5] detects attacks by inspecting
changes in the distributional aspects of packet header fields.
Although feature-based detection schemes can detect even
small-volume attack traffic, inspecting the header fields of
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every packet to collect and analyze the features is too ex-
hausting a method to detect attacks in real time.

In this paper, considering that different application traffic
has different packet size distributions and that this distribu-
tion changes during DoS attacks, we propose an IP packet
size entropy (IPSE)-based scheme in which the attacks are
detected by observing time series of packet size entropy. A
spike in the time series indicates that a possible DoS attack is
under way. We distinguish DoS traffic from legitimate traffic
at the detected possible attack points. Different from exist-
ing volume-based and feature-based methods, our research
studies DoS traffic characteristics from the perspective of
the IP packet size distribution, which has not been used in
attack detection yet.

The rest of the paper is organized as follows. Section 2
elaborates on the utility of the IPSE-based scheme for de-
tecting DoS attacks and introduces a method for distinguish-
ing attack traffic from legitimate traffic. Section 3 discusses
the performance of our proposed IPSE-based attack detec-
tion scheme in experiments using real DARPA traffic-trace
data sets. Section 4 concludes our proposal and outlines our
future work.

2. PACKET SIZE ENTROPY-BASED DETEC-
TION SCHEME

This section describes the IP packet size entropy (IPSE)-
based detection scheme. We first show how IP packet size
entropy can be used to detect a potential DoS attack.

2.1 Using entropy to detect traffic anomalies
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Figure 1: Illustration of packet size distribution for
different applications

As shown in Fig.1, many applications have typical packet
sizes with respect to requests and responses or data and ac-
knowledgments. For long-term TCP sessions such as FTP
applications, traffic mostly consists of simple acknowledg-
ment packets with 40 bytes and full data packets with 1500
bytes. For short-term TCP sessions such as MSN&TELNET,
each data packet only contains simple text messages with



small sizes. In an HTTP application, each object on a
web page corresponds to a short-term TCP session. Hence,
HTTP packets have a wide range of byte sizes because of
the different object sizes.

On the other hand, attacks usually produce packets inde-
pendent of the response from the victim. Moreover, flooding-
based attack traffic often consists of packets with identical
sizes. For example, a SYN flooding attack traffic consists
of SYN packets with 40 bytes and an ICMP flooding attack
traffic consists of ICMP packets with 1500 bytes. Hence, we
believe that the distribution of packet size is changed under
attacks and that analysis of the packet size distribution can
identify attacks on some degree especially when some special
IP packet size distribution appears.

How to effectively describe the packet size distribution in
a manner that provides necessary information for attack de-
tection is the key question. After conducting observations,
we find that entropy, which describes the degree of dispersal
or concentration of a distribution, is an effective metric for
extracting the properties of the packet size distribution in
a manner that is appropriate for attack detection. By ob-
serving the time series of the entropy of packet size, we can
expose the changes in packet size distribution and detect
attack points.

Suppose an observation window contains S packets at time
t; the entropy of the packet size at time t is defined as

H(t) = −
∑

l

(
nl

S
)log(

nl

S
), (1)

where nl is the number of times packets with size l in the
observation window. The time series of entropy consists of
the entropies calculated within a sliding observation window
of specified size S. The length of this sliding observation
window should depend on the duration of the attack traffic
that we wish to capture. If we denote the duration of the
attack traffic by S0 packets, we need, in the ideal situation,
to have q = S0/S ≈ 1. If the quotient q is too small, the
anomaly may be blurred and lost. If the quotient is too large,
we may be overwhelmed by “attacks” that are of very little
interest to the network operator. Our current experiment
focuses on anomalies with durations of at least 200 packets.
The entropy takes on a small value when size distribution
of observed packets are concentrated (i.e, all packets are
of the same size) and takes on a large value when the size
distribution is dispersed.

We observed the time series of packet size entropy for the
traffic from the DARPA/MIT Lincoln Laboratory off-line
intrusion detection evaluation data set [7], which has been
widely used for testing intrusion detection systems [8]. As
indicated in Fig.2, a short-term ICMP flooding attack and
a long-term SYN flooding attack happened at 09:18:15 and
11:20:15 on 03/11/1999, respectively. The ICMP flooding
attack lasted for 0.3s and the SYN flooding attack lasted for
120s. The top plot of Fig.2 shows that not only the long-
term SYN flooding attack causes a spike in the graph of
the time series of packet size entropy; the short-term ICMP
flooding attack does as well. On the other hand, as shown in
the bottom plot of Fig.2, the ICMP flooding attack does not
cause a detectable change in traffic volume. These analysis
results show that the entropy of the IP packet size is a more
suitable metric than volume because it successfully captures
both long-term and short-term attacks.

The threshold of entropy Hth for reporting an alarm can
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Figure 2: Example of DoS attacks viewed in terms
of entropy (top plot) and volume (bottom plot)

be gotten by self-learning of legitimate traffic data for a cer-
tain period. After checking clean legitimate DARPA data
sets for two weeks, we found that then entropies are mostly
distributed in [0.6, 3.5] and events with entropies of less than
0.5 only happened two or three times per day. This is a very
low false alarm rate. (As described in [7], a system with 10
false alarms per day is preferred.) Here, two consecutive
alarms are calculated as one alarm when their interval is
less than one second since the network operator has already
been alerted by the first alarm and too many alarms are not
meaningful. Hence, we set 0.5 as the default threshold of en-
tropy Hth for studying the DARPA traffic data. When the
entropy is less than Hth, it indicates that a possible denial
of service is under way.

2.2 Discrepancy between DoS attack and le-
gitimate traffic

As introduced above, one potential problem for the IPSE-
based detection scheme is false alarms when many legitimate
packets arrive simultaneously. Here, we will try to solve the
problem by analyzing the different packet arrival processes
of legitimate applications and attacks. Here, we would like
to make the same assumption as in [1]; an attacker will do his
best to cripple the victim by sending data with the maximum
rate possible and will consistently make requests for higher
rates than legitimate clients. Because any computer and
network interface has a maximum possible transmission rate
due to hardware or operating system limits, the attacker’s
sending rate will be usually at a constant rate.

As shown in Fig.2, besides the ICMP flooding attack that
happened on 09:18:15 which causes a small spike on the
time series of packet size entropy, there is another spike at
09:28:06 which is caused by an FTP DATA session. We
compare the packet arrival processes in Fig.3 by counting
the number of arrival packets in each of 10ms. The packets
of the ICMP flooding attack traffic arrive at a constant rate,
whereas the packet arrival process of the FTP DATA session
is burstier.

Figure 4 shows the packet arrival process of the SYN flood-
ing attack traffic of one observation window in which its
packet size entropy is less than 0.5. In the figure, the num-
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Figure 3: Packet arrival processes for FTP DATA
session (top plot) and ICMP flooding attack traffic
(bottom plot)

ber of arriving packets is counted in 100ms. The results show
that the packet arrival rate also approximates constant.
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Figure 4: Packet arrival process for SYN flooding
attack traffic

While Figs.3 and 4 provide some intuition to judge whether
the packets arrive at a constant rate by visual inspection, it
is difficult to automate and quantify this idea in an imple-
mentation. Whether the packet arrival rate is constant or
not can also be judged by calculating the variance of the
number of arrival packets in a time unit. Suppose Xn is the
number of packets in the nth time interval and

∑
n Xn = S.

We assume {Xn} to be a wide-sense stationary discrete
stochastic process, with mean µ = E[Xn]. The variance
is defined as V ar[Xn] = E[(Xn − µ)2]. Without loss of gen-
erality, we can use a new parameter, deviation D, which
is defined as D = V ar[Xn

µ
] = E[(Xn

µ
− 1)2], to represent

the variance of the packet arrival process. The calculation
results for the packet arrival processes in Figs.3 and 4 are
shown as Table 1.

According to the calculation results, we can see that D
is a very suitable metric to judge whether the packets ar-
rive at a constant rate or not. The D of legitimate traffic
Dlegitimate À 0.01, whereas the D of DoS attack traffic
DDoS ¿ 0.01. Therefore, we can distinguish the DoS at-
tack traffic from legitimate traffic by calculating D. When
D < 0.01, the traffic can be judged to be DoS attack traffic.

Table 1: Statistical comparison of different types of
traffic

Traffic Type Mean Variance Deviation
(µ) (V ar[Xn]) (D = V ar[Xn]/µ2)

FTP DATA 6.36 4.7 0.12
ICMP flooding 8.1 0.093 0.0014
SYN flooding 5.18 0.148 0.0055

legitimate traffic

attack traffic

observed traffic

Aggregation

detection
scheme

Figure 5: The environment of DoS attack detection
experiments

3. EXPERIMENTAL EVALUATION
In this section, we investigate the performance of the IPSE-

based algorithm presented in the previous section. The per-
formance metrics are considered as follows: (1) detection
probability: DP = number of successful detections

number of attacks
; and (2) de-

tection time: the detection delay after the detection starts.
The environment of DoS/DDoS experiments is shown in

Fig.5, in which we inject the attack traffic of different rates
and durations into the real traffic data sets and apply IPSE-
based detection scheme to diagnose these known attacks.
We perform this repeatedly for each kind of attacks so as
to check how does the attack traffic rate and duration affect
the method’s performance.

Our experiments use real network traffic taken from the
MIT Lincoln Laboratory. The data set taken on 03/08/2000
contains 11 hours of collected packets (08:00-19:00) and has
a mean rate of about 13 packets/s measured in 10 second
intervals.

3.1 Detection of short-term high-rate attacks
Our first step is to detect short-term attacks with a high

rate, as in the ICMP flooding attack in Fig.2. In each ex-
periment, we generate multiple attacks and inject them into
the DARPA traffic for detection. The inter-arrival time be-
tween consecutive attacks is exponentially distributed with
mean value 10 minutes. The attacks in the same experiment
are modelled with the same duration and constant rate. For
different experiments, one attack traffic consists of 200, 400,
and 600 packets respectively and the attack traffic rate varies
from 100 packets/s to 1000 packets/s. Without loss of gen-
erality, all packets are of 1500 bytes, which is the same as
that of ICMP flooding attack traffic. Table 2 shows that
the IPSE-based detection scheme has excellent performance
against high rate attacks, since it yields very high detection
probabilities.

3.2 Detection of long-term low-rate attacks
An important issue in detecting attack traffic is when it

is aggregated with a large amount of additional traffic. In-
tuition would say that the attacks with higher rates can be



Table 2: Detection of short-term high-rate attacks
Attack Rate 200 400 600
(packets/s) packets packets packets

100 90% 100% 100%
200 90% 100% 100%
300 95% 100% 100%
400 100% 100% 100%
500 100% 100% 100%
600 100% 100% 100%

Figure 6: Detection probability for different attack
durations

detected with higher certainty. Our experiments consider
the effect of the packet rate of attacks on detection perfor-
mance. For different experiments, the duration of one attack
is set from 5 seconds to 60 seconds and the attack rate varies
from 10 packets/s to 70 packets/s. The packet size is set to
40 bytes, which is the same as that of SYN flooding attack
traffic.

Figure 6 shows the impact of attack rate and attack du-
ration on the detection probability. In the figure, the curve
“αs” denotes the detection probability when the attack traf-
fic duration is set to α seconds. These results indicate that
the detection probability increases as attack rate and attack
duration increase.

Figure 7 shows the tradeoff between the detection time
and detection probability for different attack packet rates.
Note that a curve “βpps” corresponds to the attack traffic
with a rate of β packets/s. The analysis shows that it takes
a long time to ensure a high detection probability.

4. CONCLUSION AND FUTURE WORK
In this paper, we described an IP packet size entropy

(IPSE)-based DoS detection scheme, which was capable of
detect not only long-term attacks but also short-term at-
tacks which did not cause abrupt changes in traffic volume
by observing the time series of the entropy of packet size.

Although our proposal can not detect all attacks com-
pletely (actually no scheme can), it is a novel approach with
a simple implementation for DoS detection. If a wily at-
tacker knows our detection scheme and modifies his strategy,

Figure 7: Tradeoff between detection time and de-
tection probability for different attack packet rates

there is still a possibility to find new differences between the
packet size distributions of the human-participating legiti-
mate traffic and the machine-automating attack traffic. For
example, when the attacker generate packets with random-
ized sizes, the packet size entropy of the attack traffic will
be expected much larger than that of legitimate traffic. Our
future work is to detect more stealthy attacks.
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