
Virus spread in complete bi­partite graphs

J.S. Omic1, R. E. Kooij1;2 and P. Van Mieghem1 �

1Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology, P.O. Box 5031, 2600 GA Delft

2TNO Information and Communication Technology,
P.O. Box 5050, 2600 GB Delft, The Netherlands

ABSTRACT
In this paper we study the spread of viruses on the com-
plete bi-partite graph KM;N . Using mean �eld theory we
�rst show that the epidemic threshold for this type of graph
sati�es � c = 1p

MN
, hence, con�rming previous results from

literature. Next, we �nd an expression for the average num-
ber of infected nodes in the steady state. In addition, our
model is improved by the introduction of infection delay.
We validate our models by means of simulations. Inspired
by simulation results, we analyze the probability distribu-
tion of the number of infected nodes in the steady state for
the case without infection delay. The mathematical model
we obtain is able to predict the probability distribution very
well, in particular, for large values of the e¤ective spreading
rate. It is also shown that the probabilistic analysis and
the mean �eld theory predict the same average number of
infected nodes in the steady state. Finally, we present a
heuristic for the prediction of the extinction probability in
the �rst phase of the infection. Simulations show that, for
the case without infection delay, this time dependent heuris-
tic is quite accurate.
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1. INTRODUCTION
The theory of the spectra of graphs contains many beau-

tiful results, that relate physical properties of a network,
such as for instance robustness, diameter and connectivity,
to eigenvalues of matrices associated with the graph, see e.g.
[2], [11]. Recently it has been shown, see [8], [4], that the
spectral radius of a graph (i.e. the largest eigenvalue of its
corresponding adjacency matrix) plays an important role
in modeling virus propagation in networks. In fact, in [8]

�Email: j.s.omic@ewi.tudelft.nl, robert.kooij@tno.nl and
p.vanmieghem@ewi.tudelft.nl

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for pro�t or commercial advan­
tage and that copies bear this notice and the full citation on the
�rst page. To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior speci�c permission and/or a fee.
Bionetics'07, December 10­13, 2007, Budapest, Hungary
Copyright 2007 ICST 978­963­9799­11­0 .

and [4] the Susceptible-Infected-Susceptible (SIS) infection
model is considered. The SIS model assumes that a node
in the network is in one of two states: infected and there-
fore infectious, or healthy and therefore susceptible to infec-
tion. The SIS model usually assumes instantaneous state
transitions. Thus, as soon as a node becomes infected, it
becomes infectious and likewise, as soon as a node is cured
it is susceptible to re-infection. There are many models that
consider more aspects like incubation periods, variable in-
fection rate, a curing process that takes a certain amount of
time and so on [3], [6], [9]. In epidemiological theory, many
authors refer to an epidemic threshold � c, see for instance
[3], [1], [6] and [10]. If it is assumed that the infection rate
along each link is � while the cure rate for each node is
� then the e¤ective spreading rate of the virus can be de-
�ned as � = �=�. The epidemic threshold can be de�ned
as follows: for e¤ective spreading rates below � c the virus
contamination in the network dies out - the mean epidemic
lifetime is of order logn, while for e¤ective spreading rates
above � c the virus is prevalent, i.e. a persisting fraction of
nodes remains infected with the mean epidemic lifetime of
the order en

�

. In the case of persistence we will refer to
the prevailing state as a metastable state or steady state.
It was shown in [8] and [4] that � c = 1=�(A) where �(A)
denotes the spectral radius of the adjacency matrix A of the
graph. Recently, the epidemic threshold formula has also
been veri�ed by using the N -intertwined model, which con-
sists of a pair of interacting continuous Markov chains, see
[12]. Although this main result of [8] is very nice, we ought
to mention that it was derived under a number of simplifying
conditions. For instance it was assumed that for a �xed time
step the probability that a nodes gets cured after infection
from neighbors is 1=2. In addition, [8] does not provide an
explicit expression for the fraction of infected nodes in the
epidemic steady state. In this paper we circumvent these
drawbacks by using an alternative approach to derive an ex-
pression for the epidemic threshold and the epidemic steady
state for complete bi-partite graphs. In addition, we show
that the N -intertwined model, introduced in [12], is analyt-
ically solvable for the complete bi-partite graph. Moreover,
we show, in more detail than in [12], deviations from the
N -interwined model for the complete bi-partite graph.

The rest of the paper is organized as follows. In Section 2
we discuss the classical model by Kephart and White which
describes the spread of a virus on regular graphs. In Section
3 we derive and analyze the spread of viruses on complete
bi-partite graphs. In Section 4 we take the e¤ect of infec-
tion delay on virus spread on complete bi-partite graphs into



account. In Section 5 we validate our results through sim-
ulation analysis. The model is reinforced with probabilistic
analysis in Section 6. We summarize our results in Section
7.

2. VIRUSSPREADONREGULARGRAPHS
In order to explain our model for virus spread on complete

bi-partite graphs, it is useful to �rst discuss the spread of
viruses over a simpler network, i.e. the connected regular
graph. This model is based on a classical result by Kephart
and White [6] for SIS models.
We consider a connected graph on N nodes where every

node has degree k. We denote the number of infected nodes
in the population at time t by I(t). If the population N
is su¢ ciently large, we can convert I(t) to i(t) � I(t)=N ,
a continuous quantity representing the fraction of infected
nodes. Now the rate at which the fraction of infected nodes
changes is due to two processes: susceptible nodes becoming
infected and infected nodes being cured. Obviously, the cure
rate for a fraction i of infected nodes is �i. The rate at
which the fraction i grows is proportional the fraction of
susceptible nodes, i.e. 1� i. For every susceptible node the
rate of infection is the product of the infection rate per node
(�), the degree of the node (k) and the probability that on a
given link the susceptible node connects to an infected node
(i).
Therefore we obtain the following di¤erential equation de-

scribing the time evolution of i(t):

di

dt
= �ki(1� i)� �i: (1)

The solution to Eq. (1) is

i(t) =
i0(1� �)

i0 + (1� �� i0)e�(�k��)t
; (2)

with a steady state solution

i1 = 1� �; (3)

where � = �
�k
, and i0 is the initial fraction of infected

nodes.
Obviously an epidemic steady state only exists if i1 > 0.

Because we can rewrite Eq. (3) as

i1 =
�k � �
�k

(4)

we can conclude that the epidemic threshold satis�es

� =
1

k
: (5)

Because for k-regular graphs the spectral radius of the
adjacency matrix is equal to k, see [2], Eq. (5) is in line
with the result by [8].

3. VIRUSSPREADONCOMPLETEBIPAR­

TITE GRAPHS
In this section we will consider complete bi-partite graphs.

A complete bi-partite graph KM;N consists of two disjoint

sets S1 and S2 containing respectivelyM and N nodes, such
that all nodes in S1 are connected to all nodes in S2, while
within each set no connections occur. Figure 1 gives an
example of a complete bi-partite graph on 6 nodes.
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Figure 1: Complete bi-partite graph K2;4

Notice that (core) telecommunication networks often can
be modeled as a complete bi-partite topology. For instance,
the so-called double-star topology (i.e. KM;N with M = 2)
is quite commonly used because it o¤ers a high level of ro-
bustness against link failures. For example, the Amsterdam
Internet Exchange (see www.ams-ix.net), one of the largest
public Internet exchanges in the world, uses this topology to
connect its four locations in Amsterdam to two high-density
Ethernet switches. Sensor networks are also often designed
as complete bi-partite graphs.

We will now derive a model for virus spreading on the
complete bi-partite graph KM;N . Without loss of generality
we can assume M � N . We denote the number of infected
nodes belonging to S2 at time t by I(t). Again, we use
the argument that for N su¢ ciently large the continuous
fraction i(t) � I(t)=N represents the fraction of infected
nodes in S2. The cure rate for the fraction i of infected
nodes in S2 is �i. The rate at which the fraction i grows is
proportional the fraction of susceptible nodes 1�i. For every
susceptible node in S2 the rate of infection is the product of
the infection rate per node (�), the degree of the node (M)
and the fraction of nodes in S1 that is infected at time t.
This latter fraction will be denoted by j(t).
Therefore we obtain the following di¤erential equation de-

scribing the time evolution of i(t):

di

dt
= �Mj(1� i)� �i: (6)

To derive the steady state of j(t), which will be denoted as
j1, we treat the dynamics in each node of S1 as a two-state
Markov process, with a susceptible and an infectious state.
Let us denote the steady state of Eq. (6) as i1. Then,
because each node in S1 is connected to N nodes of which
a fraction i1 is infectious, the rate at which a node in S1
goes from susceptible to infectious is �Ni1. The rate at
which a node in S1 changes from infectious to susceptible is
�. Therefore the steady state probability that a node in S1
is infected satis�es:

j1 =
�Ni1

�Ni1 + �
: (7)

If we substitute Eq. (7) and i = i1 into Eq. (6) and solve
the right hand side with respect to i1 then we obtain the
steady state solution for the fraction of infected nodes in S2:



i1 =
MN�2 � �2
�N(�M + �)

(8)

Because an epidemic steady state only exists if i1 > 0,
Eq. (8) yields the epidemic threshold:

� =
1p
MN

: (9)

This complies with [8] because according to [2] the spectral
radius of the adjacency matrix of the graph KM;N is equal
to
p
MN . Notice that for the caseM = N the graph KM;N

is in fact regular and Eq. (9) reduces to Eq. (5) with k = N .

For e¤ective spreading rates above the epidemic threshold
the epidemic steady state �1 for the complete bi-partite
graph KM;N satis�es

�1 =
Mj1 +Ni1
M +N

: (10)

Substitution of Eq. (8) and Eq. (7) into Eq. (10) yields

�1 =
(MN�2 � �2)(�N + �M + 2�)

�(M +N)(�M + �)(�N + �)
: (11)

It is easy to verify that for the case M = N , Eq. (11)
reduces to Eq. (4), with k = N .

4. THE IMPACT OF INFECTION DELAY

So far we have assumed that once a node is infected, it
instantaneously becomes infectious. In reality, there may be
a time lag between the arrival of a virus at a node and the
time this node itself starts to spread the virus. A virus could
lie dormant on a host due to user inactivity or because the
virus was designed in this manner for stealth reasons.

In [9] Wang and Wang have studied the impact of infection
delay on the epidemic threshold and the epidemic steady
state for regular graphs. In [9] the infection delay � is de�ned
as the length of time between the virus arrival at a node and
the instant the node becomes infectious.

It is shown in [9] that the steady state for the fraction of
infectious nodes satis�es

i1 =
�k � �e��

�k
; (12)

which yields for the epidemic threshold:

� =
e��

k
: (13)

Thus, the infection delay increases the epidemic threshold,
which means that infection delay makes an epidemic die out
more easily.

In this section we will study the impact of infection delay
on virus spread on complete bi-partite graphs.
Analogous to Eq. (6) we can derive the following delay-

di¤erential equation for the evolution of i(t), which as be-
fore, denotes the fraction of infected nodes in S2 at time
t:

di(t)

dt
= �Mj(t� �)e���(1� i(t))� �i(t); (14)

where j(t� �) = 0 for t < � and j(t) denotes the fractions
of nodes in S1 that is infectious at time t. For t � �, the
probability that a node in S1 is infectious is the probability
that the node was already infected at time t � �, since all
nodes infected between t � � and t are still being delayed.
Curing a node during the infection delay period � results in
the e��� factor.

Let us denote the steady state of Eq. (14) as i1. We
solve for i1 by setting the right hand side of Eq. (14) equal
to zero and j(t� �) = j1. Analogous to Eq. (7) we �nd for
j1

j1 =
�Ni1e

���

�Ni1e��� + �
; (15)

where the e��� factor corresponds with the probability
that a node is cured during the infection delay period �.

Plugging Eq. (15) and i = i1 into Eq. (14) and solving
the right hand side with respect to i1 we obtain the steady
state solution for the fraction of infected nodes in S2:

i1 =
MN�2 � �2e2��
�N(�M + �e��)

; (16)

which yields for the epidemic threshold:

� =
e��p
MN

: (17)

Analogous to the previous section it can be shown that
for e¤ective spreading rates above the epidemic threshold
the epidemic steady state �1 for the complete bi-partite
graph BM;N with infection delay � satis�es

�1 =
(MN�2 � �2e2��)(�N + �M + 2�e��)

�(M +N)(�M + �e��)(�N + �e��)
: (18)

Notice that for � = 0 the results obtained in this section
(Eqs. (16-18)) reduce to the corresponding results in Section
3.

5. SIMULATION ANALYSIS



5.1 Virus spread without infection delay
In this section, we present a set of simulation results that

will validate the mean �eld models proposed in the previ-
ous sections. We have conducted 500 simulations for various
values of the e¤ective spreading rate � = �

�
on complete bi-

partite graphs KM;N with fM = 10; N = 990g; fM = 500,
N = 500g. Note that for K10;990 and K500;500 the epidemic
threshold satis�es � c = 0:0101 and � c = 0:002, respectively.
The number of observed time units is 10000. Each simu-
lation starts with 5 randomly chosen infected nodes. The
virus spread is a stochastic process, and it can be expected
that during evolution some of the infections die out before
reaching the steady state even though the e¤ective spreading
rate is above the threshold. These evolutions have been ex-
cluded from calculations of the expected number of infected
nodes in the steady state.

Figure 2: Average number of infected nodes for
K10;990, excluding virus epidemics that died out.

Figure 3: Average number of infected nodes for
K500;500, excluding virus epidemics that died out.

Figures 2 and 3 show the average number of infected nodes
for 500 system evolutions for di¤erent values of � . The
dashed lines are simulation results while full lines denote
theoretical predictions. As shown, our model predicts the

mean number of infected nodes in the steady state very well.

Figure 4: Number of infected nodes in the steady
state for K10;990

Figure 5: Number of infected nodes in the steady
state for K500;500

Figures 4 and 5 show theoretical and simulated values for
the mean number of infected nodes in steady state. Again,
realizations of the system in which the virus died out during
evolution are excluded in calculating the average. Simula-
tion results also showed that below the threshold the virus
dies out.
Figures 6 and 7 show 500 evolutions of the number of in-

fected nodes during 10000 time units. We can observe that
the number of infected nodes �uctuate around the average
steady state predicted by our model. We will quantify the
spread around the average steady state by means of the stan-
dard deviation �. Figure 8 shows the the spread around the
average steady state, in terms of �, as a function of the e¤ec-
tive spreading rate � . Note that our model, which is based



upon mean �eld theory, fails to explain the �uctations ob-
served in Figures 6 and 7. Also it cannot explain extinction
of the virus before the steady state is reached for e¤ective
spreading rates above the threshold. We will deal with these
issues in subsequent sections.

Figure 6: 500 simulations of the virus spread for
K10;990; � = 0:15:

Figure 7: 500 simulations of the virus spread for
K10;990; � = 0:45:

5.2 The impact of infection delay
We have conducted 500 simulations for each value of the

e¤ective spreading rate � = �
�
on a complete bipartite graph

KM;N with fM = 250, N = 750g and for two values of the
infection delay " 2 f10; 50g. The number of observed time
units is 10000. Each simulation is started with 5 randomly
chosen infected nodes. Again the evolutions that died out
are excluded in calculating the average number of infected
nodes. Figures 9 and 10, where dashed lines represent sim-
ulation results while full lines represent theoretical predic-
tions, show that our approximation Eq. (18) predicts the
steady state well for the virus spread with infecton delay.

6. PROBABILISTIC ANALYSIS

Figure 8: Spread around the steady state for K10;990

Figure 9: Average number of infected nodes for
K250;750 with infection delay " = 10, excluding virus
epidemics that died out.

In the previous section it was shown that the mean �eld
model has some limitations. In this section we will model the
steady state of the number of infected nodes on a complete
bi-partite graph KM;N as a statistical process using a pair
of interacting continuous Markov chains. The resulting N -
intertwined model, was introduced in [12], where it is applied
to networks with any given topology.
The number of infected nodes belonging to S2 at time t is

denoted by I(t) and the number of infected nodes belonging
to S1 at time t by J(t). The probability of a S2 node being
infected is i(t) = I(t)

N
and similarly for S1 this probability

equals j(t) = J(t)
M
. The arrival of infectious packets on a

link and the curing process are considered to be independent
Poisson processes with rates � and � respectively.
We will now use the interactive continuous Markov chain

with two states for the nodes from S1 and S2, as depicted
in Figure 11.
Similar work has been done on discrete time-Markov chains

by Garetto et al. [5].
Every node is modeled by a continuous Markov chain with

two states XS1 = f0; 1g (XS2 = f0; 1g). We can now write



Figure 10: Average number of infected nodes for
K250;750 with infection delay " = 50, excluding virus
epidemics that died out.
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Figure 11: Markov chains for nodes of S1 and S2:

the in�nitesimal generator Q, for the nodes of S1 and S2
respectively:

QS1(t) =

�
��I(t) �I(t)
� ��

�
QS2(t) =

�
��J(t) �J(t)
� ��

�
The steady state solution satis�es, see [11]:

QS1�S1 = 0

QS2�S2 = 0

where the vectors �S1 and �S2 denote the steady state
probabilities of a node in S1 or S2 being in one of two states:

�S1 = [ Pr[XS1 = 0] Pr[XS1 = 1] ]

�S2 = [ Pr[XS2 = 0] Pr[XS2 = 1] ]

Solving this system of equations, under the condition
Pr[XS1 = 0] + Pr[XS1 = 1] = 1, we �nd:

j1 = Pr[XS1 = 1] =
�2MN � 1
�M(�N + 1)

; (19)

i1 = Pr[XS2 = 1] =
�2MN � 1
�N(�M + 1)

;

We can now �nd the mean epidemic steady state �1 as:

�1 =
Mj1 +Ni1
M +N

(20)

Substituting Eq. (19) in Eq. (20) yields:

�1 =
(MN�2 � 1)((M +N)� + 2)

(M +N)�(M� + 1)(N� + 1)
(21)

This complies with Eq. ( 11).
The epidemic spreading is a stochastic process, and in the

steady state, the system is taking a set of values around
the mean epidemic steady state �1, see also Figures 3-2.
Because the steady state probability of a node being infected
does not depend on other nodes the steady state probability
Pr[I; J ] satis�es:

Pr[I = x; J = y] =

 
N

x

!
ix1(1�i1)N�x

 
M

y

!
jy1(1�j1)M�y

(22)

6.1 Simulation results for steady state proba­
bility distribution

We conducted simulations for the complete bi-partite graph
KM;N with M = 10; N = 990 with the e¤ective spreading
rate � satisfying � 2 f0:045; 0:15; 0:5g. Note that the epi-
demic threshold for this case satis�es � c = 0:0101. We have
assumed that the system is in steady state from t = 6000
onwards, see Figure 2. We will now compare the probabil-
ity distribution for the number of infected nodes in steady
state with the probability distribution given by Eq. (22).
In Figure 12 dashed lines represent simulation results, full
lines represent theoretical predictions. Figure 12 also con-
tains the probabilities that the virus dies out during system
evolution.

Figure 12: Probability distribution of the number of
infected nodes in the steady state for K10;990

We conclude from the simulation that Eq. (22) predicts
the probability distribution of the number of infected nodes
in steady state very well for large values of the e¤ective
spreading rate � . For values of � just over the threshold our
model is less accurate in predicting the probability distrib-
ution. This con�rms the statement made in [12] that the
N -intertwined model exhibits the largest deviation around
� = � c.



6.2 Extinction probability

In this section we estimate the probability pext that the
virus dies out before it reaches the steady state. Note that,
eventually, every epidemic on a �nite population will die out.
However, for e¤ective spreading rates above the epidemic
threshold, this will take an extremly long time in general,
see also [4].
We approximate pext by the probability that all initially

infected nodes are cured before they infect any other node.
We initially infect N0 nodes in the larger group of nodes S2
(consisting of N nodes). Then pext equals the probability
that all N0 nodes are cured before they infect any of the sus-
ceptible M nodes to which they are attached, see Figure 13,
where full and open circles denote infected and susceptible
nodes, respectively.
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Figure 13: Complete bi-partite graph KM;N0 , with
N0 infected nodes

Let us �rst determine the probability pM that one speci�c
node will be cured before it has infected any of the suscepti-
bleM nodes, before time T . It is assumed that the infection
process (over a link) and the node curing process are inde-
pendent Poisson processes with rates � and �, respectively.
Furthermore, let T� be a stochast that denotes the time it
takes for a susceptible node to become infected over a link
and T� denotes the time it takes for a node to cure. For the
latter stochast, let fT� (x) denote its corresponding proba-
bility density function. Suppose the infected node is cured
at time x, with 0 � x � T . This implies, that for all M
susceptible nodes attached to the infected node, we require
T� > x. Applying the law of total probability we obtain:

pM =
TR
0

[Pr[T� > xjT� = x]]MfT� (x)dx

=
TR
0

(e��x)M�e��xdx

=
�

� +M�
(1� e�(�+M�)T ):

Because the curing processes of the N0 infected nodes are
independent, in order to obtain pext, we have to multiply the
probabilities of each of them being cured before they infect
other nodes, which leads to:

pext =

�
�

� +M�
(1� e�(�+M�)T )

�N0
(23)

In order to estimate how well Eq. (23) predicts extinction
of a virus spread in the �rst phase, we have conducted 500
simulations on the complete bi-partite graph KM;N with
parameters fM = 10; N = 990; � = 0:045g. Figure 14 shows
the probability of extinction evolving in time for the case of
three initially infected nodes (N0 = 3). We conclude that
the simulations match the theoretical predictions quite well.

Figure 14: Extinction of the virus as a function of
time for K10;990 with � = 0:045 for 3 initially infected
nodes.

Figure 15 depicts pext for T = 6000 units, where the num-
ber of initially infected nodes varies between 1 and 8.

Figure 15: Extinction of the virus after T = 6000 as
a function of number of initially infected nodes, for
K10;990 with � = 0:045.

7. CONCLUSION
In this paper we have studied the spread of viruses on the

complete bi-partite graph KM;N . Using elements of mean
�eld theory and Markov chains we have calculated the aver-
age number of infected nodes in the steady state (Eq. (11))
and con�rmed these results by means of simulations. We
have also con�rmed previous results of [4] and [8] about
the relation between the epidemic threshold and the largest
eigenvalue of the adjacency matrix of the graph over which
the virus is spreading. In addition the model was improved



by introduction of infection delay. Inspired by simulation
results we have analyzed the probability distribution of the
number of infected nodes in the steady state for the case
without infection delay. For the complete bi-partite graph
KM;N , our mathematical model (Eq. (22)) is able to predict
the probability distribution very well, in particular for large
values of the e¤ective spreading rate. It was also shown
that the probabilistic analysis and the mean �eld theory
predict the same average number of infected nodes in the
steady state, see Eq. (21). Additionally we have presented
a heuristic for the prediction of the extinction probability in
the �rst phase of the infection. Simulations show that for the
case without infection delay this time dependent heuristic is
quite accurate.
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