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ABSTRACT 
In this paper, a class of molecular communication media is 
formalized, in which senders and receivers communicate by 
second messengers. Second messengers in the communication 
medium are released by senders of communication, propagated, 
amplified, removed in the medium, and sensed by receivers of 
communication that in turn decode the second messengers. Based 
on generalization of intracellular molecular communication 
processes in terms of information theory, an information theoretic 
model is proposed to understand and characterize the signaling 
mechanism of the molecular communication medium. 
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1. INTRODUCTION 
Molecule-based communication, or molecular communication, is 
universally found at all levels of biological systems ranging from 
the molecular level to the cellular and tissue/organ levels, where  
molecular components of corresponding biological systems 
communicate by means of signal molecules [1]. In addition to 
naturally existing biological systems, molecular communication is 
also used in engineered biological systems, where engineered 
biological devices exchange signal molecules that carry specific 
information [7, 19, 20, 21]. 

Molecular communication is important for numerous cellular 
processes and functioning including cellular signaling and signal 
transduction, and therefore the biological mechanisms of 
molecular communication have been long studied in cell biology. 
However, the corresponding informatics of molecular 
communication has not been paid much attention in the literature. 
In this paper, we discuss informatics approaches to molecular 
communication from a view point of information theory and 
communication engineering. Informatics approaches employed in 
this paper would possibly reveal new aspects of molecular 
communication, including the origin of the robustness and 

efficiency of molecular communication. 

A general form of molecular communication is schematically 
described in Figure 1. Here, the transmitter (i.e., sender) and 
receiver are the two communicating entities, which could be 
molecules, cellular organelles, cells, or organs. The transmitter 
and receiver in molecular communication often represent a group 
of entities performing n-to-n communication (as opposed to 1-to-1 
communication) (or MIMO -- multiple input multiple output 
communication). The signal molecules are transmitted by a 
sender(s) of communication, transported or propagated over the 
communication medium, and received by a recipient(s) of 
communication (i.e., receivers), along which various chemical 
reactions may occur (e.g., one of the effector molecules involved 
in MAPK cascades amplify signals and increase the concentration 
of target molecules.) The communication medium that propagates 
signal molecules from transmitters to receivers is regarded as the 
communication channel in a dynamical environment. The 
environment contains various noise sources such as white noise or 
colored noise, owing to the features of thermal dynamics in the 
environment.  

In this paper, we model an instance of molecular communication 
based on Ca2+ signaling without a feedback loop (cf. section 3). 
Ca2+ signaling is the “ubiquitous” signaling mechanism for 
cellular organisms [3, 4]. The temporal and spatial dynamics 
patterns of Ca2+ signaling, termed as Ca2+ spikes, oscillations and 
waves, are known to regulate and control various biological 
processes such as fertilization, differentiation, proliferation, and 
death. 
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Figure 1: Molecular Communication 



In modeling the above mentioned molecular communication, we 
employ an information theoretic approach to address a set of 
fundamental questions regarding cellular signaling, including (1) 
molecular codes - how biological information may be encoded to 
and decoded from signal molecules, (2) performance of molecular 
communication - how the channel capacity that transmits 
biological information can be quantitatively measured, calculated 
or estimated, (3) efficient design schemes of molecular 
communication systems - how the channel capacity can be 
maximized for synthetic molecular communication systems (e.g., 
under the condition of a discrete memory-less channel),  and  (4) 
dynamic features of molecular communication - what the impact 
of environmental noise on channel capacity is and how noise can 
be optimally filtered out for signal detection in the noisy 
environment.  

Information theoretic research of biological communication media 
is still premature. To the best of our knowledge, there are only a 
few published papers addressing channel capacity of biological 
communication media. Those papers found in literature [6, 19, 22, 
23] have so far modeled and quantified channel capacity of (a) a 
free diffusion medium over which a sender  communicates with a 
receiver using molecules that randomly move based on Brownian 
motion [6], (b) a free diffusion media in which a sender 
communicates with a receiver using frequency encoding (e.g., 
concentration change of signal molecules) [23], (c) 
transmembrane of neural systems where frequency encoded 
extracellular signals are transduced into intracellular Ca2+ spikes 
[22], and (d) an active transport medium that transport signals 
molecules by molecular motors [19].  

The remaining sections of this paper are organized as follows. 
Section 2 examines cellular signaling from a molecular 
communication view point relative to the general representation 
of molecular communication. Section 3 describes an information 
theoretic model of molecular communication media based on 
cellular signaling and Section 4 concludes this paper. 

2. MOLECULAR COMMUNICATION 
BASED ON CELLULAR SIGNALING 
Ca2+ signals are the ubiquitous second messengers for cellular 
communication and are involved in a number of signal 
transduction pathways. In [3], the Ca2+ signaling process in cells 
is generalized as the Ca2+ signaling “toolkit” that is composed of 
the following four units: (1) stimuli that generate Ca2+ mobilizing 
signals activating the “on”-mechanisms, (2) the “on”-mechanisms 
that release Ca2+ signals for increasing the concentration of 
cytosolic Ca2+, (3) Ca2+ sensitive processes (e.g., Ca2+ sensitive 
proteins) that activate various Ca2+ sensitive signaling pathways 
in response to the increased cytosolic Ca2+ concentration, and (4) 
the “off”-mechanisms that decrease the cytosolic Ca2+ 
concentration. From the viewpoint of communication engineering, 
we consider the stimuli as information sources, cellular 
components equipped with on-mechanisms as transmitters, Ca2+ 
sensitive components that trigger downstream signaling pathways 
as receivers, and the cytosolic medium containing the “off”-
mechanisms as the communication medium. 
Three specific examples (Figure 2) are provided below to 
illustrate how Ca2+ signaling is mapped to the general 
representation of molecular communication (Figure 1). 

Example 1: Ca2+ signaling as a communication channel  
In response to various stimuli, Ca2+ signals are released from Ca2+ 
sources via Ca2+ channels to the cytoplasm. For example, when 
extracellular signal molecules (e.g., agonists) bind to Ca2+ entry 
channels on the cell surface, the channels open, allowing 
extracellular Ca2+ signals to enter the cytoplasm. The increased 
Ca2+ signals within the cell can then activate Ca2+ binding 
proteins such as CAM (calmodulin) that is used to regulate 
numerous cellular processes; TnC (troponin C) that controls 
muscle contraction; and PYK2 (proline-rich tryosine kinase 2) 
that can initiate the MAPK cascading event [3]. In this example, 
Ca2+ entry channels are viewed as transmitters, Ca2+ binding 
proteins that decode Ca2+ signals as receivers, and free diffusion 
space in the cytosolic medium between transmitters and receivers 
as the communication medium. 

Example 2: Amplification and relay of Ca2+ signals 
Ca2+ signals locally induced as in Example 1 can be amplified and 
relayed along the ER, propagating globally in the cytoplasm. In 
one form of neural Ca2+ signaling [2], Ca2+ influx across the 
plasma membrane can initiate Ca2+ waves that propagate through 
CICR (Calcium Induced Calcium Release) along the ER 
(Endoplasmic Reticulum). The ER extends throughout the neuron 
toward the nuclear envelop, thereby propagating Ca2+ signals into 
the nucleus. Owing to the phosphorylation function, Ca2+ entry 
into the nucleus can in turn phosphorylate CREB to regulate gene 
transcription. In this example, membrane Ca2+ channels act as 
transmitters, the Ca2+ sensitive proteins in the nucleus as receivers, 
and the ER in the cytosol as the communication medium. 
Example 3: Gap junction channels for cell-cell Ca2+ signaling 
Cell-to-cell communication can be carried out by various 
mechanisms including paracrine, endocrine, synaptic and gap 
junctional communication. In the case of gap junctional 
communication, neighboring cells are connected through physical 
channels called gap junction channels, and Ca2+ signals propagate 
cell to cell known as intercellular Ca2+ waves [3]. Ca2+ waves may 
become regenerative if Ca2+ signals are amplified and relayed 
recursively while they are spatially diffusing. Intercellular Ca2+ 
waves allow connected cells to coordinate various cellular 
activities such as cell proliferation and death. In this example, 

Figure 2: Cellular Signaling 



senders and receivers can be located in different cells, and the 
communication medium includes gap junction channels. 

3. INFORMATION THEORITIC MODEL 
The goal of this paper is to describe an information theoretic 
model of entire molecular communication processes illustrated in 
previous section. This goal is motivated by authors’ previous 
work on intercellular communications [20, 21] and intracellular 
communications [13, 14] and is geared toward establishing a 
unified communication capacity theory of integrated molecular 
communication systems built based on intercellular and 
intracellular communications.  
It is noted that Eckford [6] and Thomas et al. [23] have 
successfully formulated diffusion-based (or Brownian motion-
based) molecular communication media, in which Gaussian 
distribution and Poisson distribution are applied for calculating 
and estimating the channel capacity. Specifically in their models, 
molecular communication channels are quantified as a random 
process in molecular concentrations or some observed values (e.g., 
time in the Eckford’s model).  
In our model, we generalize communication processes of a 
different type of molecular communication media using a unified 
measurement, that is, point process in probability theory. In the 
molecular communication media, Ca2+ signals diffuse spatially 
and Ca2+ sensitive processes contribute to the channel capacity of 
the communication media, owing to its role as the universal 
second messenger. In this model, the amount of messages (bits) 
transmitted in the molecular communication channel directly 
derived from Ca2+ signaling can be calculated and estimated to 
infer the upper bound of channel capacity, sup (C). A method of 
calculating sup (C) is under development and is not presented in 
this paper1. The model to be presented in this paper is instead 
designed for understanding a network protocol of cellular 
communications (e.g., how Ca2+ signals are translated into a 
signaling event in a pathway network). In the present model, the 
communication performance (i.e., channel capacity) is therefore 
limited to the topological structure of the signal transduction 
pathway network (and not impacted by diffusion-reaction 
processes of Ca2+ signals); and accordingly, we discuss the lower 
bound of channel capacity, inf(C).  
It is also noted that Thomas et al. has estimated channel capacity 
as 0.087 bits/second under the condition given in [23] and K. 
Prank et al. has used bit/spike as the unit for quantitative 
description of information transmission process in [22]. In a 
generalized description of molecular communication, the form of 
a nonlinear function is expected in order to unify different 
molecules in homogenous and heterogeneous media. 

3.1 Ca2+ Signals Involved in Signal Transduction Networks 
According to Kraus et al. [9], the temporal representation of Ca2+ 

is realized by Ca2+ oscillators, which is the basis of temporal 
codes of Ca2+ signals. As shown in the reaction-diffusion equation, 
the spatial distribution of Ca2+ is one of the important keys to 
understand the diffusion mechanism of the Ca2+ signaling 
processes in cells. 
From [9], the reaction process is formulated in stochastic 
modeling and the diffusion process is formulated in a similar way: 

                                                                 
1 To be presented in [18]. 

                      < pN(t), Λ(α) >     

where the notations are defined in above-mentioned reference.   
The set of all states of {N} is denoted as UN. Owing to the eq.1-3 
in [9], it is inferred as follows: 

          pN(t＋１) ＜― pN(t) ∝ the Markov process 

where the corresponding transition probability can be estimated 
e.g., by the Monte Carlo algorithm in [9].  
With the lattice coordinates in two dimensional space, the 
measurement Λ(α) connects the locations in X(t) and X(t+1), 
which the spatial measurement can be synchronously calculated 
with the comparison to the ones pN(t) and pN(t＋１). 

The unified measure proposed in this paper is the coefficients of a 
two dimensional simultaneous auto-regression (2D SAR) model: 

        βΞ= <β(1,1), β(-1,1), β(1,0), β(-1,0), β(0,0), β(0,1), β(0,-1), 
β(1,-1), β(-1,-1)> 

which is defined in a 8-neighborhood. 

This measurement describes the diffusion factor by β(1,1), β(-1,1), 
β(1,0), β(-1,0), β(0,1), β(0,-1), β(1,-1), β(-1,-1) and the reaction 
factor by β(0,0).  

    From the observed samples in the set of βΞ, the Ca2+ signaling 
process is represented by the extracted vectors 

      β(x(t-1,y(t-1)) --> β(x(t),y(t)) --> β(x(t+1),y(t+1))     s.t.   Pβ(t) 
where the non-causal constraint is assumed within the observed 
domain of the sample signals. 

     Let Tβ be the threshold of the extracted vectors in 2D SAR, it 
is inferred that: 

• the input to the LNC (linear network coding) model for 
describing the Ca2+ signaling process: 

1,  p(β(x(t-1,y(t-1))) ≥  Tβ 

0,  p(β(x(t-1,y(t-1))) ≤ Tβ 

• the output of this signaling process:  

1,  p(β(x(t+1),y(t+1))) ≥  Tβ 

0,  p(β(x(t+1),y(t+1))) ≤ Tβ 

The average value of the capacity of the individual Ca2+ signaling 
channel is formulated as 

     min arg k   s.t.  (p(β(x(t),y(t))) ≥  Tβ） 

where k refers to the bit number reflecting the number of the Ca2+ 
signals in the corresponding activated pathway networks. 
Ca2+ signals are universal intracellular second messengers 
involved in complex cellular signal transduction networks. 
Numerous Ca2+ sensitive processes act as switch-like units that 
perform cross-talks in signal transduction networks. To model 
Ca2+ signaling in signal transduction networks, we first introduce 
the following two axioms. 

Axiom 1: Provided that there is a mutual relationship between 
Ca2+ signals and phosphorylation/dephosphorylation of particular 
Ca2+ sensitive proteins, we have the predicate forms of logical 
representation for describing the building-blocks of cellular signal 
transduction networks as follows: 



       Calcium-to-phosphorylation (X), 
       Calcium-to-dephosphorylation (X), 
       Phosphorylation-to-calcium (Y), 
       Dephosphorylation-to-calcium (Y), 
where X refers to a set of signaling molecules located in upstream 
pathways (e.g., Ca2+ signaling pathways activated by membrane 
receptors); Y refers to a set of signaling molecules located in the 
downstream pathways, (e.g., mitosis pathways); and the 
predicates take a value from the set of {T, F} in which T and F 
denote true and false values, respectively. 

Axiom 2: Provided that the conditions of axiom 1 are satisfied, 
cross-talks among Ca2+ signals and phosphorylation/ 
dephosphorylation of particular Ca2+ sensitive proteins can be 
formulated as follows: 

Feedback (+, →, Calcium-to-phosphorylation (X), Z), 
Feedback (+, →, Calcium-to-dephosphorylation (X), Z), 
Feedback (-,→, Phosphorylation-to-calcium (Y), Z), 
Feedback (-,→, Dephosphorylation-to-calcium (Y), Z), 

where + refers to a positive feedback; - refers to a negative 
feedback; → refers to the direction of information flow from a 
pathway to another pathway according to the appeared order in 
the predicate form; Z refers to a pathway in a signal transduction 
network. 
The nonlinear dynamics features of network reconstruction 
described in Axiom 2 may play an important role in 
understanding and characterizing the role of Ca2+ signals in 
complex signaling networks. One of the latest evidence about the 
nonlinear features in cell biology is the double punch effect that 
links Ca2+ signals and phosphorylation/dephosphorylation 
pathways [8]. 

3.2 Network Coding for Signal Transduction Networks 
3.2.1 Network Coding for Dynamical Networks 
Linear network coding (LNC for short) [24] is a widely accepted 
tool that can be used to formulate a complex network structure. 
LNC is, for example, used to formulate communication networks 
at the protocol level and to understand the dynamic behavior of 
communication networks. 
Here we introduce necessary notations of dynamical networks in 
order to apply LNC to signal transduction networks. 
Corresponding to Fig.1 (d) in [24], we have the following 
notations: 

G (LNC) = <V, E> 
where  
           V = {x1, u(1,1), u(1,2),u(2,1),u(3,1),y1,y2}, 
           E = {(x1->u(1,1)),(x1->u(1,2)),(u(1,1)->u(2,1)), 
                   (u(1,2)->u(2,1)),(u(2,1)->u(3,1)),(u(3,1)->y1), 

(u(3,1)->y2)}. 
The network-coding scheme is explained as follows: 

Input X = {x1} 
Output Y = {y1,y2} 
System F(X,Y) = G(X) 

The structural matrix of the system F(X,Y) is  
0 1 1 0 0 0 0 
0 0 0 1 0 0 0 

0 0 0 1 0 0 0 
0 0 0 0 1 0 0 
0 0 0 0 0 1 1 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

where the index is with the order of {x1, u(1,1), u(1,2), u(2,1), 
u(3,1), y1, y2}. 
For nodes in G, the operations take the form of 

                       Q(v(i)->v(j)),   i,j ∈ N. 

For dynamical networks, the operations (operators) take the form 
of 

Q = { Q(v(i)->v(j)),   i,j ∈ N}, 

in which the concrete forms of related operators can be realized in 
terms of (hyper-)graph rewriting. Dynamically reconfiguring 
signal transduction networks needs the following major operators: 

hyper-edge replacement ::= delete or insert linked edges; 
hyper-vertex replacement ::= delete or insert aggregated vertexes 

Here notice that in order to unify the notations of (hyper-)graph 
rewriting, the “hyper-vertex” is defined as a set of the nodes 
(vertexes) located in the same sub-set in the related graph, i.e., the 
input set, output set, and the reactant sets in signal transduction 
networks. The readers can easily find the difference between the 
above-mentioned term and the well-known one by Courcelle [5]. 

3.2.2 Network Coding for Phsophorylation/Dephosphorylation 
The operation set of LNC is used to formulate signal transduction 
processes of phosphorylation and dephosphorylation pathways 
under the regulation of kinases and phosphatases. 
For the system (here we use the notations in [15, 16]) 
        Y = GKP (X) 
where 

X = {x1} 
Y = {y1,y2} 
x1 – the variable (kinase or phosphatase); 
y1 – the phosphorylated protein; 
y2 – the protein with the dephosphorylation state; 
u(1,1) – kinase; 
u(1,2) – phosphatase; 
u(2,1) – the activation state of kinase or phosphatase; 
u(2,2) – the  input to the phosphorylation/dephosphorylation 

pathway. 
3.2.3 Embedding Ca2+ Pathways into the LNC Model 
Considering diverse building blocks of functional pathways, the 
signal transduction processes are modeled in the terms of system 
of systems, in which Ca2+ signaling pathway and 
phosphorylation/dephosphorylation pathway interact. 
Consequently, a generalized form of several network-coding 
models is formalized as follows: 

          NC (Ф1,Ф2,…ФL) = Ф1ΘФ2Θ…ΘФL 

whereФ1,Ф2,…ФL refers to each network-coding model 
corresponding to each building block of pathways; Θrefers to the 
operator of network reconstruction for the interaction of the 
building blocks; and L is the number of the building blocks. 



A binary tree is the basic pattern for unifying multiple network-
coding models, and we have that 

        T (x) ::= a binary tree consisting of a root x and two leafs 
{leaf1, leaf2},  

T-1 ::= a inverse binary tree consisting of two leafs and a root 
z where the order of graphical description is 
inverse compared with the normal diagram 
illustration of a binary tree. 

        T(y1,y2) ::= a binary tree consisting of two leafs y1 and y2 
and a root in a binary tree.  

        T*(m) ::= a binary tree consisting of a root x and two leafs 
{leaf1, leaf2} where leaf1 = leaf2 = m or y1 = y2. 

where x, y1, y2, y = y1 or y2, z, m∈А, refers to the alphabet set 
for the entire domain of the underlying problem in this paper. 
The notation G(LNC) is modified as  

Ж(x,y) = T (x)ΞT*(m)ΞT*(m’)ΞT-1(y1,y2)ΞT(y) 

where Ξ refers to the partial order relation in algebraic theory to 
connect the upstream pathway with the downstream pathway in a 
hierarchical structure for network-coding model. With the 
operator Ξ, T(y) is added to the classical LNC model. The 
reduction rules of logical reasoning are given as follows: 

u(1,1) -> y1, u(1,2) -> y2, u(2,1) -> z,  u(3,1) -> m 
Notice the related logical inference processes may obey to the 
constraint of λ－ calculus in mathematical logic and/or π -
calculus by R. Milner (owing to the limitation of space, we omit 
the details here). 
It is natural that the investigation on the coupling mechanism of 
multiple indivisible pathways can start from the interaction of 
Ca2+ signaling pathway and phosphorylation/ dephosphorylation 
pathway: 

Ж(Ca2+, kinase) ФｃЖ(p,p’)  

where p and p’ refer to a phosphorylated protein and a 
dephosphorylated protein, respectively. 

Ф1Ж(x,y) Ф1 

With the MAPK cascade in general, we can get that 

Ж (Ca2+, kinase) Ф ｃ Ж (MAPKKKK) Ф ｃ Ж
(MAPKKK) ФｃЖ(MAPKK) ФｃЖ(MAPK) 

Here the dephosphorylation is omitted (as a default variable in the 
predicate) in order to obey the tradition of cell biology for 
representing pathway. 
Corresponding to the evidence reported in [8], it is inferred that  

Ж(Ca2+, kinase)ФｃЖ(MAPKKK) ФｃЖ(MAPKK)  
Ф ｃ Ж (MAPK) s.t. Feedback (+, → , Calcium-to-
dephosphorylation (Ca2+), MAPKKK), 

The linear constraint of networking-code model in our hands is 
“relaxed” and nonlinearity is emerged mainly owing to the 
feedback mechanism added into the signal transduction network. 
Readers may reveal the partial order condition we mentioned 
before, it is reasonably claimed that from the model 

Ж(Ca2+, kinase)ФｃЖ(MAPKKK) ФｃЖ(MAPKK)  
Ф ｃ Ж (MAPK) s.t. Feedback (+, → , Calcium-to-
dephosphorylation (Ca2+), MAPKKK), 

The robustness performance of the underlying signal transduction 
network can be analyzed by a general algebraic network-coding 
model as defined in [10]. The arising question becomes how to 
reconstruct the topological structure of the pathway network as a 
synthetic way to explain the robustness observed from it. 

3.3 Operation for Reconstruction of Pathways Based on a 
Nonlinear Dynamic Networking Mechanism 
As implied in [1], the analog model of molecular concentration of 
Ca2+ signals can be quantified by the discrete measure of kinase in 
signal transduction. The open problem is how to establish an 
algorithm to generate kinase-centered cascades for topologically 
configuring a network by quantitative criteria. Efforts on solving 
the problem may be assisted by using the algorithm for generating 
the fixed-point phenomena in a MAPK cascade (reported in [17]), 
that is, one of the criteria could be formulated as: 
     IF Δ satisfies the condition Λ 
     THEN  Ж(.) can be (re)constructed by the algorithm Υ 

where the parameter set Δ refers to the set of the coefficients of 
the Michaelis-Menten equation, condition Λ  refers to the 
existence of fixed-point in signal cascade, the algorithm in this 
sub-section is denoted asΥ. 

Fixed point has been intensively studied in nonlinear systems, but 
its application in advanced telecommunication [11] and 
bioinformatics [12] are only reported in recent years. Our idea is 
to designate the stable topological network structure by 
quantifying the coefficients of the biochemical reactions from the 
signal transduction networks. From the fixed-point constrained 
configuration, the probability of the network configuration 
denoted as G is the basis of estimation of the mutual information 
of the cellular communication processes in Shannon theory.  

3.4 Remarks on Capacity of Cellular Communications 
There could be various ways to describe the capacity of molecular 
communication processes. As an equivalent result2, the capacity 
of the cellular communication channel is defined based on the 
maximum number of the activated second messengers in the 
pathway network. Therefore, we have that 

 C = G0(t) + ∫0
tL(t-s)d G1(s) 

where G refers to the probability of the constrained network 
configuration, G0(t) and G1(s) refer to the distribution of G under 
T0 and T1, respectively. T0 is the initial configuration of the 
pathway, i.e., joint probability of the parameters from the 
indivisible pathways; T1 is the probability of the configuration of 
the pathway in the reconstruction processes, i.e., joint probability 
of the parameters from interacting building blocks in pathway 
networks. 
Here the activated number of the second messengers is modeled 
as a renewal process in probability theory under the constraints 
we discussed above. The amount of the transmitted information 
inferred from the maximum configuration of the signal 
transduction network is equivalent to the maximum of mutual 
information in Shannon theory. The lower bound of C is 

                                                                 
2 The above-mentioned definition is an empirical concept or physical term 

rather than a rigorous mathematics-rooted one. The complete method of 
calculating C is under development [18]. 



estimated as   inf (C) =κ(n,m,k) ×f(n.m)  where n refers to the 
number of signaling molecules, m refers to the number of the 
cross-talked signaling molecules, k refers to to the layer of MAPK 
cascade; κis unction dependent on n, m, and k, from which the 
“side information” is expected to be extracted, f(n,m) is a 
polynomial function that is regarded as a measure of the 
computational complexity of the reconstructed pathway networks. 
Based on the information extraction (encoding/decoding) from the 
“wet” cellular signaling in living cells, cellular pathway 
networking provides us a bioinformatics framework for 
identifying the cellular communication protocols in nature based 
on the self-organizing mechanism in dynamics networks. 

4. CONCLUSIONS 
How biological and cellular information is encoded, 
communicated, and decoded with spatial and temporal dynamics 
of signal molecules is of great interest to cell biologists as well as 
molecular communication engineers. As the first step to 
understanding and characterizing the molecular communication 
media that propagate Ca2+ signals as carriers of information, we 
apply an information theoretic approach to modeling the 
molecular communication media. The presented model is 
currently under further refinement to possibly reveal the new 
aspects of molecular communication. 
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