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ABSTRACT 
In this paper, we present the functionality mapping model that is 
used in the CASCADAS ACE model: external code libraries are 
transformed into services of an autonomic element. 

CASACDAS is an EU 6th Framework IST-FET project in the field 
of situated, autonomic communication; various research topics are 
organized around a common abstraction called Autonomic 
Communication Element (ACE). When designing this common 
abstraction, a big challenge is to define a natural, non-complex 
but flexible and expressive way for transforming existing code 
(libraries) into autonomic services of an ACE. In this paper, we 
introduce, explain, and discuss the developed model, and compare 
them with existing functionality mapping technologies.  

Keywords 
Functionality Repository, Autonomic Communication Element, 
ACE, CASCADAS 

1. INTRODUCTION 

1.1 The CASCADAS Project 
CASCADAS – which is an EU 6th Framework IST-FET project –
researches situated, autonomic technologies. Four different 
viewpoints (aggregation, knowledge management, self-
supervision, security) are organized around a common component 
model. [2][5]  

The Autonomic Communication Element (ACE) is the common 
abstraction used in CASCADAS to model situated, autonomic 
services; the services of the future are envisioned to be available 
via ACEs. [4]  

In this paper we present the models and concepts applied in the 
Functionality Repository that is one of the five ACE organs 
(internal components). The functionality Repository is responsible 
for mapping the non-ACE codes (libraries) into ACE 
functionalities. 

1.2 ACE Model 
The Autonomic Communication Element has been designed on 
different levels (conceptual model, architectural model, 
component model) in this paper we are referring to the component 
model of those.  

ACE is a basic building block; the system is formed by 
communicating and interacting ACEs. Communication is defined 
as asynchronous message sending. 

Internally, an ACE consists of 5 organs1: Gateway, Bus, 
Facilitator, Reasoner, and Functionality Repository. The ACE 
executes a Plan. The actual Plan defines its reactive and proactive 
behavior: what to do with the incoming messages, and when to 
initiate an interaction. The plan is adapted to the actual internal 
and environmental conditions (ensuring self-awareness, 
environment-awareness, and adaptivity).  

• The Facilitator is the core autonomic component. It creates 
the initial Plan at startup, then keeps track of the changing 
internal and external conditions, and modifies or re-generates 
the Plan according to a self-model. 

• The Gateway is the single interface between the ACE and the 
environment. The Gateway supports multicast and unicast 
message sending. Received messages are forwarded to the 
Bus. 

• The Bus is in some means a technological necessity: it is the 
only communication channel between the organs. The Bus 
provides subscription based message delivery (all subscribed 
organs will receive the Message that is sent to the Bus), in 
either synchronous or asynchronous manner. The Bus makes 
it possible to transparently supervise the ACE (the supervisor 
needs to access the Bus only in order to monitor/control the 
whole ACE). 

• The Reasoner is the component that executes the Plan. It 
handles the incoming messages and invokes actions 
associated to certain steps of the plan. 

• The Functionality Repository contains the invokable 
functionalities of the ACE: common functionalities that are 
available in all ACEs as well as type-specific functionalities 

                                                                 
1 The word “organ” was chosen (1) to avoid the re-use of the 

word “component” referring to one complete ACE and (2) to 
emphasize the intelligent, sometimes biologically or 
physiologically inspired aspects. 
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(services that a certain ACE instance is able to provide). Plan 
actions refer to the functionalities.  

In other words, the ACE consists of two intelligent, reflective 
organs (the Reasoner controls the internal processes, the 
Facilitator provides constructive criticism and adaptivity); two 
communicational enablers (the Bus for the internal 
communication, the Gateway for the external communication), 
and one functionality container (Functionality Repository). 
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SCE: Service Call Event
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Figure 1. Internal message flow – service invocation 

Let us follow an example message flow inside ACE1 when ACE2 
(another ACE) invokes one of the services (Figure 1). The service 
call event arrives at the Gateway, gets forwarded to the Bus, and 
from there, reaches the Reasoner. The Plan in the Reasoner 
defines an action for the incoming service call event, meaning, a 
functionality call event is sent to the Repository (through the 
Bus). The Repository invokes the requested functionality, creates 
response events, and sends them to the Bus (internal response) 
and/or to the Gateway (external response). 

This message flow pattern separates the control (Reasoner) and 
the effective actions (Repository) while enabling self-adaptation 
(the Facilitator can change the plan at any time). The Reasoner 
initiates the action, but the Repository is in charge of performing 
the calls and sending the response events. 

2. THE FUNCTIONALITY REPOSITORY 
The Functionality Repository is the organ responsible for the 
functionalities of an ACE. The Repository maintains a registry 
about the deployed functionalities, performs calls into them when 
requested, and sends the response events generated by the calls. 

The Functionality Repository shows only reactive behavior: it 
invokes functionalities when requested, but never decides about 
the invocation itself and never schedules it on its own. 

Although, the Repository may not seem to be a crucially 
innovative organ at the first sigh, it has raised many challenging 
questions. The most important problem is how to map external 
libraries into ACE-understandable functionalities (from the 

remote point of view: into services)2 in a trouble-free, natural but 
expressive and flexible way. 

2.1 How does the Repository work? 
The life of the Functionality repository can be devided into two 
phases: startup and serving. 

Functionality Repository

FCE
resulting
events

Functionality registry

Invoker

Common functionality
Specific functionality
Functionality Call EventFCE  

Figure 2. Functionality Repository 
At startup, the Functionality Repository (Figure 2) dynamically 
loads the functionalities from the file system and also performs 
consistency check. Successfully loaded functionalities will be 
available throughout the lifetime of the ACE. After startup, the 
Repository reaches the serving phase, and serves the incoming 
calls. 

The “input” of the Functionality Repository is the functionality 
call event (FCE) sent by the Reasoner. The FCE contains the 
functionality name, the call arguments, and the actual 
environment (sessions). By default, FCEs are handled in a non-
blocking manner, in order to prevent long-lasting calls from 
blocking the whole ACE. Invocations are executed on separate 
threads. 

The “output” of the Functionality Repository is a set of events, 
generated by the functionality invoked. The Repository sends the 
resulting internal events to the Bus, and hands the external events 
to the Gateway. 

2.2 Requirements and Consequences 
Requirements can be formulated two-folded: in terms of the 
mapping of external libraries into ACE functionalities; and in 
terms of the invocation process itself. In this paper we are 
concentrating on the mapping only. 

There are two basic design goals about the functionality mapping. 

1. Existing libraries should be easy to ACEify.  
It should be possible to transform an external library into an 
ACE functionality without source code modification. There 

                                                                 
2 By the terms “functionality” and “service” we mean two views 

of the same thing: from local point of view, we are speaking 
about functionalities, while the remote side sees them as 
services. 



should be no mandatory superclass or other code-related 
restriction3.  

2. Explicitly designed-for-ACE functionalities should have 
maximal flexibility.  
When the functionality is specifically designed for ACEs, it 
should have access to as many ACE-related information as 
possible. Whenever the Repository detects that the 
functionality is capable of handling a particular information 
type, it should pass all related (state, execution environment 
and other) descriptors to it. 

The first requirement naturally implies the usage of descriptors 
for the mapping. We use XML based descriptors, describing the 
name of the functionality, the call details and the output. In 
simple cases, transforming an existing library into an ACE 
functionality is not more complex than providing an XML 
descriptor for the mapping. 

The second requirement refers the code level, so it is quite 
straightforward to mark the ability of dealing with ACE data on 
the code level as well. The implementation of a given super-
interface guarantees that the functionality is ready to handle the 
variable. A separate super-interface is defined for each ACE-
related variable; so that functionalities can express their very 
exact interest4. 

It is theoretically possible to differentiate between normal 
functionalities and those functionalities specifically designed for 
ACEs, but the difference only affects the “input-output range” of 
the functionality; in all other aspects the invocation process is the 
same. 

3. FUNCTIONALITY MODEL 
Functionality model describes the functionality on an abstract 
level; and besides of that, also depicts our understanding of the 
term “functionality”. In the ACE, the model of a functionality is 
given in its XML descriptor (Functionality descriptor). 

3.1 Three-layered Functionality Model 
We defined a three-layered functionality model (Figure 3). 

• Underlying call layer. The bottommost layer describes the 
underlying call sequence. It describes which methods of 
which classes to invoke as well as the calling order and the 
parameter list. 

• Black-box layer. The second layer defines the black-box 
model of the complete call sequence: the input parameters (if 
any) and the output parameters of the whole calling process 
(in an even less mandatory way).  

• Event layer. The third layer defines the input and the output 
of the call in means of events. The input event is always an 
FCE. The output is an arbitrary set of events (internal or 
external). 

                                                                 
3 Except for a mandatory default (no-arg) constructor. 
4 For example: if a functionality wants to access the ACE variable 

“x”, it has to implement the XAware interface. Similarly, a 
functionality interested in both “x” and “y” should implement 
XAware and YAware. 
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Figure 3. The three-layered functionality model 

This three-layered model helps separating different abstraction 
levels of the call. From the caller’s point of view, it is enough to 
know the Black-box layer (what the mandatory input parameters 
are) and the Event layer (what output events will be generated). 
From the Repository’s point of view, the Underlying call layer is 
also essential. 

For those functionalities specifically designed for ACEs, ACE-
related variables are also available. These variables can be used 
inside of the Underlying call and on the Event layers. 

Functionalities are labeled with unique names.  

The above model significantly differs from the classical method-
based approach as we use events on the highest abstraction level, 
instead of methods. 

3.2 Underlying Call Layer 
The Underlying call layer describes the method calls that 
technically mean the functionality. We differentiate between a 
single method call (simple call) and a sequence of method calls 
(complex call).  

3.2.1 Simple call 
Simple call means a single method invocation; where the input 
and output parameters of the black-box model are directly used as 
input and output arguments. The referred class is instantiated with 
its default constructor and the specified method is called.  

The call description in Figure 4 creates a new instance of the 
example.PhoneBook class, to invoke its search method with 
the input parameters defined in the black-box model, and the 
return value will be saved under the output name of the black-box 
model. 

<simple-call-details  
  class-name="example.PhoneBook"  
  method-name="search"/> 

Figure 4. Simple call  

3.2.2 Complex call 
A complex call consists of a sequence of simple calls with 
explicitly marked input and output parameters. The origin of the 
input arguments of any simple call item may be either the black-
box model or the output of a former call item in the series. When 



performing a complex call, first all referred classes are 
instantiated5, then the methods are invoked in the defined order 
with the specified parameters. 

According to the example in Figure 5 two classes are instantiated6 
(the example.PhoneBook and the example.Cache), then 3 
method calls are to be performed. First, the phoneBook.load 
method is invoked with the value of the phone book file 
parameter (coming from the black-box model). The return value 
of the method call is ignored (if any). Then, the 
phoneBook.search method is invoked with the surname and 
first name as parameters, and the result is saved under the 
name phone number. In the last call, the value-triplet 
[surname, first name, phone number] is put to the cache. 
Two of the values come from the black box model; while one 
value (phone number) comes from the output of a previous call 
item. 

<complex-call-details> 
  <call  
    class-name="example.PhoneBook"  
    method-name="load" > 
      <arg ref="phone book file"/> 
    </call> 
  <call  
    class-name="example.PhoneBook"  
    method-name="search"> 
      <arg ref="surname"/> 
      <arg ref="first name"/> 
      <return ref="phone number"/> 
    </call> 
  <call  
    class-name="example.Cache"  
    method-name="put"> 
      <arg ref="surname"/> 
      <arg ref="first name"/> 
      <arg ref="phone number"/> 
    </call> 
</complex-call-details> 

Figure 5. Complex call 
For input and output arguments we use reference names, the 
actual value of the referred variable changes dynamically, 
depending on the call (when the surname parameter of the 
incoming call has the value “John” then surname is going to 
have the value John and John’s number will be looked up). The 
Repository is in charge of resolving the reference names into their 
actual values. Referenced values must be properly typed; 
otherwise the method invocation will fail technically. 

3.3 Black-box Layer 
The Black box layer defines the input and output parameters of 
the Underlying call layer. It provides a higher-level abstraction of 
the call: only cares about the mandatory input and output 
parameters and hides the underlying process. 

The input section specifies all external input parameters that are 
required during the call. Input parameters are defined with name 
and type; their actual value is extracted from the input event. The 
type of the parameter can be any valid primitive or complex Java 
type; complex types are given as qualified names. 

                                                                 
5 or an existing instance is re-used 
6 or an existing instance is re-used 

The output is a single variable, similarly defined with name and 
type. In simple calls, the output of the method is saved under the 
reference name defined as output value. For complex calls, the 
output value is not important, it can be the output of any of the 
calls (their reference names must match).  

Neither the input nor the output values are mandatory in all cases; 
the only restriction is that the description has to contain all 
technically important elements. 

<black-box-description> 
  <input> 
    <param name="name" type="java.lang.String"/> 
    <param name="apple" type="example.Apple"/> 
    <param name="item counter" type="int"/> 
  </input> 
  <output name="summary" type="java.lang.String"/> 
</black-box-description> 

Figure 6. Black box model 
Figure 6 contains an example for a fully filled black-box model. 
There are three input values and a single output. The first input 
value is called name and its type is a standard java class 
(String); the second input parameter – apple – is of a custom 
class (custom classes must be available in the classpath7); while 
the last input argument is of a primitive type (integer).  

3.4 Event Layer 
The Event layer describes the event model of the functionality. As 
the input event is fixed (FunctionalityCallEvent), the description 
contains information about the output events only. 

There are two ways to define the output events: mapping and 
mapper. It is possible to use more than one mappings and/or 
mappers in the output section, even in a mixed way (e.g. three 
mappings and two mappers). 

3.4.1 Mapping 
Mapping means a direct mapping of the some parameters or ACE 
variables to an event and its attributes. First the event itself is 
declared, and then the parameter mappings follow. Figure 7 
shows an example where three arguments are mapped to a service 
response event. First the SRE is instantiated and gets addressed to 
the remote ACE that plays the user role8; then the four attributes 
are added to the message. The first three attributes (surname, 
first name, phone number) are refer to the call parameters 
(input and output), while the last one is comes from one of the 
ACE variables (from the globalSession, in this case). The SRE 
is sent out through the Gateway by the Repository. 

<output-event-mappings> 
  <mapping  
  event="cascadas.ace.event.ServiceResponseEvent" 
  target-role="user"> 
    <value ref="surname"/> 
    <value ref="first name"/> 

                                                                 
7 Where the Java Virtula Machine looks up the classes for 

loading. 
8 Service call and service response events are sent over contracted 

connections where the parties are playing previously agreed 
roles. The details of the contract concept are outside of the 
scope of this paper. 



    <value ref="phone number"/> 
    <value ref=”globalSession://signature”> 
  </mapping> 
</output-event-mappings> 

Figure 7. Mapping 
The biggest advantage of the mapping concept is that it does not 
require program (code) writing. The person who creates the 
Functionality descriptor does not have to care about the details of 
the ACE-defined events, nor to modify the source code or to 
include additional classes. The Repository hides several technical 
details (handles the contracts, and fills the obligatory fields of the 
message). 

On the other hand, the mapping is not flexible enough in some 
cases. We have to know the exact number of outgoing messages 
when the descriptor is created, so with this syntax, it is not 
possible to send output events depending on the result (e.g. 
separate output message per phone number found; or a warning to 
the supervisor about suspicious calls). The attribute list isn’t 
dynamic either: it is impossible to describe that the passed 
attributes should depend on a condition. In cases when the 
Mapping is not enough to describe the intended operation, 
Mappers should be used. 

3.4.2 Mapper 
Mappers are special units able to dynamically generate output 
events from the actual after-call environment (input and output 
values, ACE variables). Mappers may dynamically define the 
number, type and content of the output events depending on the 
current circumstances; resulting in a way of flexibility that is 
missing from the Mapping concept. Technically, Mappers are 
required to implement a predefined interface. Figure 8 shows an 
example where all the output events are generated by the class 
example.MyMapper. 

<output-event-mappings> 
  <mapper mapper-class="example.MyMapper"/> 
</output-event-mappings> 

Figure 8. Mapper 
Mappers have unlimited control over the number and type of the 
outgoing events; which also means that Mappers should be 
designed with care, as, for example, no other component is going 
to fill the mandatory fields of a message. 

However, the Repository does not differentiate between events 
resulting from Mappings and those generated by Mappers. In both 
cases, internal events are sent to the Bus, external events are sent 
to the Gateway. 

3.5 Example: a simple ACEification 
Let us see a simple example about transforming an existing 
library (program code) into an ACE functionality. We have 
chosen a simple string concatenation service, with the following 
program code. 

package example; 
public class StringProcessor { 
  // default constructor 
  public StringProcessor() { } 
  // functionality 
  public String concat(String a, String b) { 
    return a+b; 
  } 
} 

Figure 9. Source code of a service 
The only required step to turn the above class into an ACE 
functionality is to create a suitable Functionality descriptor. The 
descriptor consists of an event layer descriptor, a black-box model 
and the underlying call sequence.  

<?xml version="1.0" encoding="UTF-8"?> 
<functionality id="string_concat_service"> 
 <black-box-description> 
  <input> 
    <param name="first string"  
           type="java.lang.String"/> 
    <param name="second string"  
           type="java.lang.String"/> 
  </input> 
  <output name="concatenation"  
          type="java.lang.String"/> 
 </black-box-description> 
 <simple-call-details  
    class-name="example.StringProcessor"  
    method-name="concat"/> 
 <output-event-mappings> 
   <mapping  
   event="cascadas.ace.event.ServiceResponseEvent" 
   target-role="user"> 
     <value ref="concatenation"/> 
  </mapping> 
 </output-event-mappings> 
</functionality> 

Figure 10. Functionality descriptor 
The descriptor in Figure 10 assigns the name 
string_concat_service to the functionality, and defines the 
three layers as follows. The Black-box layer describes two input 
strings and one output string. The Call layer specifies the class to 
be instantiated (example.String–Processor) and the method 
to be invoked (concat). The Event layer specifies that the output 
event is an SRE, which is addressed to the user of the service; 
and the event contains the concatenation of the two input strings. 

4. ACE VARIABLES 
Custom services may need to access more data just some input 
and a single output parameter. If a functionality expresses 
awareness of an ACE-related variable –in way of implementing 
an interface – it gets full access to that variable. 

There are two general ACE variables (globalSession and 
executionSession) and one Repository-defined variable 
(callWideContext). Functionalities are able to express exact 
interest in one or more of the variables. 

All three ACE variables are rather containers than simple 
variables. They are able to store name-value pairs, without 
restrictions on the value type. So, it is possible to save variable to 
any of the container following a name=value pattern (e.g. 
globalSession.put(“temperature”,22)). 



4.1 CallWideContext 
The call-wide context is a container available throughout the call. 
It is designed to store key-value pairs that are important during 
the call, but are not direct input or output parameters of any call 
segment. 

With help of the call-wide context, the functionality can produce 
more than one “output” values. The model used in the Underlying 
call layer only allows one output value per method call, which is 
natural in a programming language like Java, but may bind the 
hands of the programmer when more than one value should be 
published (e.g. two fields should be added to the output event). In 
this case, the functionality can use the call-wide context as a 
temporal storage for the second value. The call-wide context can 
also be referenced during the output event generation (Figure 11). 

<mapping 
  event="cascadas.ace.event.ServiceResponseEvent"  
  target-role="user"> 
    <value ref="the normal return value"/> 
    <value ref="callWideContext://plum"/> 
</mapping> 

Figure 11. Referencing to the call-wide context  
in the output event mapping 

Another way to use the call-wide context is to pass arguments 
between different classes. Let us suppose that a call sequence 
consists of calls to classes A, B and C: A reads in people’s names 
and addresses from a list; B looks up the weight and height of 
each person in a medical database; finally C selects the thinnest 
person which will be the return value of the service. Although it is 
possible to pass the parameters between the classes as complex 
return types; that’ll results in a complicated code. If A, B and C 
all declare themselves to be aware of the CallWideContext, they 
can use it as a convenient storage for their specific temporal data. 

The call-wide context is created when the input event arrives, and 
is available until the last output event is sent. 

4.2 Execution Session and Global Session 
The execution session and the global session are two deeply 
ACE-related containers; they are created and maintained by the 
Reasoner, and they hold all state-specific ACE data. 

The global session gets created at the initiation of the ACE, and is 
maintained as long as the ACE is alive (event survives 
movements).  

The execution session is valid for a plan; and is lost when the plan 
is replaced. 

With the help of the two sessions, the programmer is able to save 
and access state information between calls. By state information 
we mean both ACE-related and functionality-related information. 
(It might be necessary to store functionality-related information 
between calls because it is not guaranteed that the next call to the 
functionality will be executed on the same class instances, 
meaning that the values of the fields may get lost.) 

5. FURTHER PROPERTIES 

5.1 Multithreading 
The functionality model of the Repository guarantees the thread-
safe execution unless the functionality itself makes it technically 
impossible (e.g. non-thread-safe singletons in the background). In 
normal cases – where there are no static methods or variables – 
the functionality itself does not need to care about the thread 
safety; the Repository guarantees that no parallel/overlapping 
calls will be executed on the same instance of the class. 

The Repository itself does not put restriction on the number of 
parallel functionality call requests. This means that the Reasoner 
may invoke a new – or the same – functionality before the 
execution of the actual one is finished; and threading problems 
must be handled by the Repository. 

The Repository contains a built-in load balancing logic to decide 
when to create a new instance of the called class, and when to 
reuse existing (old) instances.  

5.2 Statefulness 
The state of a functionality is preserved during the call (from the 
first method invocation to the last output event); but is not 
guaranteed to be preserved between calls. This implies that 
stateful functionalities should store/restore their state variables 
to/from one of the sessions. Saving/loading variables from/to a 
session is the responsibility of the functionality. 

5.3 Instantiation 
The classes referenced in the Functionality descriptor are 
automatically instantiated by the Repository through their default 
constructor exactly when the request (FCE) arrives. If no request 
arrives, then no instance is created. 

If the instantiation policy is not suitable in a special case, the 
programmer of the functionality should create a wrapper for the 
functionality. The wrapper may hide the non-default-constructor, 
or may refer to singletons in the background. 

5.4 Chaining and Code Fragmentation 
Functionalities cannot invoke each other directly but their output 
event may request the invocation of another functionality (or even 
itself). Thus, cross-invocation is possible in means of chaining, 
but not in means of invoking a functionality in the middle of 
another. 

The above restriction may be resolved by code fragmentation. Let 
us suppose that service SA want to invoke SB in the middle of the 
code. By fragmenting the code of SA into two sub-functionalities 
(SA1, SA2) so that SA1 is the code before the invocation and 
SA2 is the code after the invocation; the problem can simply be 
solved (state information can be saved in the session).  

5.5 Autonomic Aspects 
Our goal with the functionality model was to map “normal 
program code” into functionalities of a self-aware system.  

With the three-level description, we can guarantee that the 
autonomic components (Facilitator, Reasoner) are able to model 



the functionalities properly, in order to achieve self-awareness 
and self-reflection. 

We believe that our choice of modeling the functionalities as 
input and output events was a right and straightforward one, 
beating several burdens of the classical “method” approach. 

6. COMPARISION WITH EXISTING 
TECHNOLOGIES 
The presented functionality model has been motivated by and 
shows similarities with several of today’s leading technologies. In 
this chapter we discuss the relationship with Web Services (WS) 
[3], Enterprise Java Beans (EJB) [1], and classical execution 
frameworks. 

6.1 Relationship with Web Services 
The Web Services technology has defined one of the most 
complete and best-detailed functionality models of today.  

Although WS has introduced many basic abstractions; their goals 
differ from the goals of CASCADAS. WS provides a standard 
interface to the native code, with well-defined input and output 
mappings, client-instance assignment, and statefulness definition; 
but this standard interface is still the classical “method” format. In 
CASCADAS, we map the program code to a “service” which 
significantly differs from a classical “method” concept: the input 
and the outputs are events, and output events are addressed to 
contracted roles. 

WS defines at least three client-service assignment models 
(scopes): one service instance per call, or per client, or for 
everybody; the last two ones have importance in case of stateful 
services. In CASCADAS, currently, we are using a per call model 
only.  

Just like WS (and EJB), we use descriptors for our services. A big 
advantage of this is that the descriptor itself provides a clear 
abstract picture about the functionality (on different levels), 
making the work easier both on the self-model creator and on the 
caller side. We use three-layered descriptors, while WS 
descriptors are one-tier only. 

6.2 Relationship with Enterprise Java Beans 
Many details have been borrowed from the statefulness and 
persistence concepts of the Enterprise Java Beans – but in a rather 
simplified way.  

EJB differentiates between stateful and stateless beans, stateful 
ones are guaranteed to preserve their state during the session. In 
our model, functionalities are stateless by default, but they are 
allowed to save/restore their state information.  

In EJB, the bean can have metadata assigned describing how to 
save/restore the state information between calls (e.g. into 
database); and the bean container is in charge of ensuring the 
consistency. In our model, the save/restore code is placed (left) in 
the functionality itself. We believe that in simple cases9 it is more 
natural to leave this task for the programmer than to provide 

                                                                 
9 In CASCADAS the support for very high load or achieving 

extreme robustness are not as essential as in EJB/WS.  

meta-descriptors, based on which the Repository can symbolically 
invoke loader/saver code. In later versions of the Repository this 
may change. 

6.3 Comparison with Classical Frameworks 
We categorically do not follow the approach of many classical 
frameworks where deployed services must extend a fixed 
superclass. In CASCADAS, services can be introduced without 
source-code level restrictions10 which – we believe – makes the 
system more open and flexible. The descriptor approach helps in 
understanding the functionalities in a clear and abstract way, 
without the need for checking the documentation. 

7. SUMMARY 
In this paper we have presented the functionality mapping model 
used in CASCADAS ACEs. We have chosen not to follow the 
classical method (input values, one output value) approach; but to 
define the functionality as a set of input and output events on the 
top level. We introduced a three-layer functionality model 
ensuring the system to be self-aware. Several other aspects 
(threading, statefulness) were also presented in details. The 
comparison of our model and existing technologies revealed 
several similarities and differences as well. 
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