
Mapping External Functionalities
into Autonomic Services

Borbala Katalin Benko
Budapest University of Technology and Economics

Magyar tudosok krt. 2.
H-1117 Budapest, Hungary

+36-1-463-3278

bbenko@hit.bme.hu

Robert Schulcz
Budapest University of Technology and Economics

Magyar tudosok krt. 2.
H-1117 Budapest, Hungary

+36-1-463-3284

schulcz@hit.bme.hu

ABSTRACT
In this paper, we present the functionality mapping model that is
used in the CASCADAS ACE model: external code libraries are
transformed into services of an autonomic element.

CASACDAS is an EU 6th Framework IST-FET project in the field
of situated, autonomic communication; various research topics are
organized around a common abstraction called Autonomic
Communication Element (ACE). When designing this common
abstraction, a big challenge is to define a natural, non-complex
but flexible and expressive way for transforming existing code
(libraries) into autonomic services of an ACE. In this paper, we
introduce, explain, and discuss the developed model, and compare
them with existing functionality mapping technologies.

Keywords
Functionality Repository, Autonomic Communication Element,
ACE, CASCADAS

1. INTRODUCTION

1.1 The CASCADAS Project
CASCADAS – which is an EU 6th Framework IST-FET project –
researches situated, autonomic technologies. Four different
viewpoints (aggregation, knowledge management, self-
supervision, security) are organized around a common component
model. [2][5]

The Autonomic Communication Element (ACE) is the common
abstraction used in CASCADAS to model situated, autonomic
services; the services of the future are envisioned to be available
via ACEs. [4]

In this paper we present the models and concepts applied in the
Functionality Repository that is one of the five ACE organs
(internal components). The functionality Repository is responsible
for mapping the non-ACE codes (libraries) into ACE
functionalities.

1.2 ACE Model
The Autonomic Communication Element has been designed on
different levels (conceptual model, architectural model,
component model) in this paper we are referring to the component
model of those.

ACE is a basic building block; the system is formed by
communicating and interacting ACEs. Communication is defined
as asynchronous message sending.

Internally, an ACE consists of 5 organs1: Gateway, Bus,
Facilitator, Reasoner, and Functionality Repository. The ACE
executes a Plan. The actual Plan defines its reactive and proactive
behavior: what to do with the incoming messages, and when to
initiate an interaction. The plan is adapted to the actual internal
and environmental conditions (ensuring self-awareness,
environment-awareness, and adaptivity).

• The Facilitator is the core autonomic component. It creates
the initial Plan at startup, then keeps track of the changing
internal and external conditions, and modifies or re-generates
the Plan according to a self-model.

• The Gateway is the single interface between the ACE and the
environment. The Gateway supports multicast and unicast
message sending. Received messages are forwarded to the
Bus.

• The Bus is in some means a technological necessity: it is the
only communication channel between the organs. The Bus
provides subscription based message delivery (all subscribed
organs will receive the Message that is sent to the Bus), in
either synchronous or asynchronous manner. The Bus makes
it possible to transparently supervise the ACE (the supervisor
needs to access the Bus only in order to monitor/control the
whole ACE).

• The Reasoner is the component that executes the Plan. It
handles the incoming messages and invokes actions
associated to certain steps of the plan.

• The Functionality Repository contains the invokable
functionalities of the ACE: common functionalities that are
available in all ACEs as well as type-specific functionalities

1 The word “organ” was chosen (1) to avoid the re-use of the

word “component” referring to one complete ACE and (2) to
emphasize the intelligent, sometimes biologically or
physiologically inspired aspects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BIONETICS’07, December 10-13, 2007, Budapest, Hungary.
Copyright 2007 ICST 978-963-9799-11-0

(services that a certain ACE instance is able to provide). Plan
actions refer to the functionalities.

In other words, the ACE consists of two intelligent, reflective
organs (the Reasoner controls the internal processes, the
Facilitator provides constructive criticism and adaptivity); two
communicational enablers (the Bus for the internal
communication, the Gateway for the external communication),
and one functionality container (Functionality Repository).

GatewayBusReasoner

FacilitatorFunctionality
Repository

2. SCE

1. SCE

3. SCE

4. FCE 5. SRE

SCE: Service Call Event

FCE: Functionality Call Event

SRE: Service Response Event

6. SRE

Figure 1. Internal message flow – service invocation

Let us follow an example message flow inside ACE1 when ACE2
(another ACE) invokes one of the services (Figure 1). The service
call event arrives at the Gateway, gets forwarded to the Bus, and
from there, reaches the Reasoner. The Plan in the Reasoner
defines an action for the incoming service call event, meaning, a
functionality call event is sent to the Repository (through the
Bus). The Repository invokes the requested functionality, creates
response events, and sends them to the Bus (internal response)
and/or to the Gateway (external response).

This message flow pattern separates the control (Reasoner) and
the effective actions (Repository) while enabling self-adaptation
(the Facilitator can change the plan at any time). The Reasoner
initiates the action, but the Repository is in charge of performing
the calls and sending the response events.

2. THE FUNCTIONALITY REPOSITORY
The Functionality Repository is the organ responsible for the
functionalities of an ACE. The Repository maintains a registry
about the deployed functionalities, performs calls into them when
requested, and sends the response events generated by the calls.

The Functionality Repository shows only reactive behavior: it
invokes functionalities when requested, but never decides about
the invocation itself and never schedules it on its own.

Although, the Repository may not seem to be a crucially
innovative organ at the first sigh, it has raised many challenging
questions. The most important problem is how to map external
libraries into ACE-understandable functionalities (from the

remote point of view: into services)2 in a trouble-free, natural but
expressive and flexible way.

2.1 How does the Repository work?
The life of the Functionality repository can be devided into two
phases: startup and serving.

Functionality Repository

FCE
resulting
events

Functionality registry

Invoker

Common functionality
Specific functionality
Functionality Call EventFCE

Figure 2. Functionality Repository
At startup, the Functionality Repository (Figure 2) dynamically
loads the functionalities from the file system and also performs
consistency check. Successfully loaded functionalities will be
available throughout the lifetime of the ACE. After startup, the
Repository reaches the serving phase, and serves the incoming
calls.

The “input” of the Functionality Repository is the functionality
call event (FCE) sent by the Reasoner. The FCE contains the
functionality name, the call arguments, and the actual
environment (sessions). By default, FCEs are handled in a non-
blocking manner, in order to prevent long-lasting calls from
blocking the whole ACE. Invocations are executed on separate
threads.

The “output” of the Functionality Repository is a set of events,
generated by the functionality invoked. The Repository sends the
resulting internal events to the Bus, and hands the external events
to the Gateway.

2.2 Requirements and Consequences
Requirements can be formulated two-folded: in terms of the
mapping of external libraries into ACE functionalities; and in
terms of the invocation process itself. In this paper we are
concentrating on the mapping only.

There are two basic design goals about the functionality mapping.

1. Existing libraries should be easy to ACEify.
It should be possible to transform an external library into an
ACE functionality without source code modification. There

2 By the terms “functionality” and “service” we mean two views

of the same thing: from local point of view, we are speaking
about functionalities, while the remote side sees them as
services.

should be no mandatory superclass or other code-related
restriction3.

2. Explicitly designed-for-ACE functionalities should have
maximal flexibility.
When the functionality is specifically designed for ACEs, it
should have access to as many ACE-related information as
possible. Whenever the Repository detects that the
functionality is capable of handling a particular information
type, it should pass all related (state, execution environment
and other) descriptors to it.

The first requirement naturally implies the usage of descriptors
for the mapping. We use XML based descriptors, describing the
name of the functionality, the call details and the output. In
simple cases, transforming an existing library into an ACE
functionality is not more complex than providing an XML
descriptor for the mapping.

The second requirement refers the code level, so it is quite
straightforward to mark the ability of dealing with ACE data on
the code level as well. The implementation of a given super-
interface guarantees that the functionality is ready to handle the
variable. A separate super-interface is defined for each ACE-
related variable; so that functionalities can express their very
exact interest4.

It is theoretically possible to differentiate between normal
functionalities and those functionalities specifically designed for
ACEs, but the difference only affects the “input-output range” of
the functionality; in all other aspects the invocation process is the
same.

3. FUNCTIONALITY MODEL
Functionality model describes the functionality on an abstract
level; and besides of that, also depicts our understanding of the
term “functionality”. In the ACE, the model of a functionality is
given in its XML descriptor (Functionality descriptor).

3.1 Three-layered Functionality Model
We defined a three-layered functionality model (Figure 3).

• Underlying call layer. The bottommost layer describes the
underlying call sequence. It describes which methods of
which classes to invoke as well as the calling order and the
parameter list.

• Black-box layer. The second layer defines the black-box
model of the complete call sequence: the input parameters (if
any) and the output parameters of the whole calling process
(in an even less mandatory way).

• Event layer. The third layer defines the input and the output
of the call in means of events. The input event is always an
FCE. The output is an arbitrary set of events (internal or
external).

3 Except for a mandatory default (no-arg) constructor.
4 For example: if a functionality wants to access the ACE variable

“x”, it has to implement the XAware interface. Similarly, a
functionality interested in both “x” and “y” should implement
XAware and YAware.

Underlying call layer

Black-box layer

Event layer

ACE
variables

Input event (=FCE) Output events

Input parameters Output parameters

Method call(s)

Figure 3. The three-layered functionality model

This three-layered model helps separating different abstraction
levels of the call. From the caller’s point of view, it is enough to
know the Black-box layer (what the mandatory input parameters
are) and the Event layer (what output events will be generated).
From the Repository’s point of view, the Underlying call layer is
also essential.

For those functionalities specifically designed for ACEs, ACE-
related variables are also available. These variables can be used
inside of the Underlying call and on the Event layers.

Functionalities are labeled with unique names.

The above model significantly differs from the classical method-
based approach as we use events on the highest abstraction level,
instead of methods.

3.2 Underlying Call Layer
The Underlying call layer describes the method calls that
technically mean the functionality. We differentiate between a
single method call (simple call) and a sequence of method calls
(complex call).

3.2.1 Simple call
Simple call means a single method invocation; where the input
and output parameters of the black-box model are directly used as
input and output arguments. The referred class is instantiated with
its default constructor and the specified method is called.

The call description in Figure 4 creates a new instance of the
example.PhoneBook class, to invoke its search method with
the input parameters defined in the black-box model, and the
return value will be saved under the output name of the black-box
model.

<simple-call-details
 class-name="example.PhoneBook"
 method-name="search"/>

Figure 4. Simple call

3.2.2 Complex call
A complex call consists of a sequence of simple calls with
explicitly marked input and output parameters. The origin of the
input arguments of any simple call item may be either the black-
box model or the output of a former call item in the series. When

performing a complex call, first all referred classes are
instantiated5, then the methods are invoked in the defined order
with the specified parameters.

According to the example in Figure 5 two classes are instantiated6
(the example.PhoneBook and the example.Cache), then 3
method calls are to be performed. First, the phoneBook.load
method is invoked with the value of the phone book file
parameter (coming from the black-box model). The return value
of the method call is ignored (if any). Then, the
phoneBook.search method is invoked with the surname and
first name as parameters, and the result is saved under the
name phone number. In the last call, the value-triplet
[surname, first name, phone number] is put to the cache.
Two of the values come from the black box model; while one
value (phone number) comes from the output of a previous call
item.

<complex-call-details>
 <call
 class-name="example.PhoneBook"
 method-name="load" >
 <arg ref="phone book file"/>
 </call>
 <call
 class-name="example.PhoneBook"
 method-name="search">
 <arg ref="surname"/>
 <arg ref="first name"/>
 <return ref="phone number"/>
 </call>
 <call
 class-name="example.Cache"
 method-name="put">
 <arg ref="surname"/>
 <arg ref="first name"/>
 <arg ref="phone number"/>
 </call>
</complex-call-details>

Figure 5. Complex call
For input and output arguments we use reference names, the
actual value of the referred variable changes dynamically,
depending on the call (when the surname parameter of the
incoming call has the value “John” then surname is going to
have the value John and John’s number will be looked up). The
Repository is in charge of resolving the reference names into their
actual values. Referenced values must be properly typed;
otherwise the method invocation will fail technically.

3.3 Black-box Layer
The Black box layer defines the input and output parameters of
the Underlying call layer. It provides a higher-level abstraction of
the call: only cares about the mandatory input and output
parameters and hides the underlying process.

The input section specifies all external input parameters that are
required during the call. Input parameters are defined with name
and type; their actual value is extracted from the input event. The
type of the parameter can be any valid primitive or complex Java
type; complex types are given as qualified names.

5 or an existing instance is re-used
6 or an existing instance is re-used

The output is a single variable, similarly defined with name and
type. In simple calls, the output of the method is saved under the
reference name defined as output value. For complex calls, the
output value is not important, it can be the output of any of the
calls (their reference names must match).

Neither the input nor the output values are mandatory in all cases;
the only restriction is that the description has to contain all
technically important elements.

<black-box-description>
 <input>
 <param name="name" type="java.lang.String"/>
 <param name="apple" type="example.Apple"/>
 <param name="item counter" type="int"/>
 </input>
 <output name="summary" type="java.lang.String"/>
</black-box-description>

Figure 6. Black box model
Figure 6 contains an example for a fully filled black-box model.
There are three input values and a single output. The first input
value is called name and its type is a standard java class
(String); the second input parameter – apple – is of a custom
class (custom classes must be available in the classpath7); while
the last input argument is of a primitive type (integer).

3.4 Event Layer
The Event layer describes the event model of the functionality. As
the input event is fixed (FunctionalityCallEvent), the description
contains information about the output events only.

There are two ways to define the output events: mapping and
mapper. It is possible to use more than one mappings and/or
mappers in the output section, even in a mixed way (e.g. three
mappings and two mappers).

3.4.1 Mapping
Mapping means a direct mapping of the some parameters or ACE
variables to an event and its attributes. First the event itself is
declared, and then the parameter mappings follow. Figure 7
shows an example where three arguments are mapped to a service
response event. First the SRE is instantiated and gets addressed to
the remote ACE that plays the user role8; then the four attributes
are added to the message. The first three attributes (surname,
first name, phone number) are refer to the call parameters
(input and output), while the last one is comes from one of the
ACE variables (from the globalSession, in this case). The SRE
is sent out through the Gateway by the Repository.

<output-event-mappings>
 <mapping
 event="cascadas.ace.event.ServiceResponseEvent"
 target-role="user">
 <value ref="surname"/>
 <value ref="first name"/>

7 Where the Java Virtula Machine looks up the classes for

loading.
8 Service call and service response events are sent over contracted

connections where the parties are playing previously agreed
roles. The details of the contract concept are outside of the
scope of this paper.

 <value ref="phone number"/>
 <value ref=”globalSession://signature”>
 </mapping>
</output-event-mappings>

Figure 7. Mapping
The biggest advantage of the mapping concept is that it does not
require program (code) writing. The person who creates the
Functionality descriptor does not have to care about the details of
the ACE-defined events, nor to modify the source code or to
include additional classes. The Repository hides several technical
details (handles the contracts, and fills the obligatory fields of the
message).

On the other hand, the mapping is not flexible enough in some
cases. We have to know the exact number of outgoing messages
when the descriptor is created, so with this syntax, it is not
possible to send output events depending on the result (e.g.
separate output message per phone number found; or a warning to
the supervisor about suspicious calls). The attribute list isn’t
dynamic either: it is impossible to describe that the passed
attributes should depend on a condition. In cases when the
Mapping is not enough to describe the intended operation,
Mappers should be used.

3.4.2 Mapper
Mappers are special units able to dynamically generate output
events from the actual after-call environment (input and output
values, ACE variables). Mappers may dynamically define the
number, type and content of the output events depending on the
current circumstances; resulting in a way of flexibility that is
missing from the Mapping concept. Technically, Mappers are
required to implement a predefined interface. Figure 8 shows an
example where all the output events are generated by the class
example.MyMapper.

<output-event-mappings>
 <mapper mapper-class="example.MyMapper"/>
</output-event-mappings>

Figure 8. Mapper
Mappers have unlimited control over the number and type of the
outgoing events; which also means that Mappers should be
designed with care, as, for example, no other component is going
to fill the mandatory fields of a message.

However, the Repository does not differentiate between events
resulting from Mappings and those generated by Mappers. In both
cases, internal events are sent to the Bus, external events are sent
to the Gateway.

3.5 Example: a simple ACEification
Let us see a simple example about transforming an existing
library (program code) into an ACE functionality. We have
chosen a simple string concatenation service, with the following
program code.

package example;
public class StringProcessor {
 // default constructor
 public StringProcessor() { }
 // functionality
 public String concat(String a, String b) {
 return a+b;
 }
}

Figure 9. Source code of a service
The only required step to turn the above class into an ACE
functionality is to create a suitable Functionality descriptor. The
descriptor consists of an event layer descriptor, a black-box model
and the underlying call sequence.

<?xml version="1.0" encoding="UTF-8"?>
<functionality id="string_concat_service">
 <black-box-description>
 <input>
 <param name="first string"
 type="java.lang.String"/>
 <param name="second string"
 type="java.lang.String"/>
 </input>
 <output name="concatenation"
 type="java.lang.String"/>
 </black-box-description>
 <simple-call-details
 class-name="example.StringProcessor"
 method-name="concat"/>
 <output-event-mappings>
 <mapping
 event="cascadas.ace.event.ServiceResponseEvent"
 target-role="user">
 <value ref="concatenation"/>
 </mapping>
 </output-event-mappings>
</functionality>

Figure 10. Functionality descriptor
The descriptor in Figure 10 assigns the name
string_concat_service to the functionality, and defines the
three layers as follows. The Black-box layer describes two input
strings and one output string. The Call layer specifies the class to
be instantiated (example.String–Processor) and the method
to be invoked (concat). The Event layer specifies that the output
event is an SRE, which is addressed to the user of the service;
and the event contains the concatenation of the two input strings.

4. ACE VARIABLES
Custom services may need to access more data just some input
and a single output parameter. If a functionality expresses
awareness of an ACE-related variable –in way of implementing
an interface – it gets full access to that variable.

There are two general ACE variables (globalSession and
executionSession) and one Repository-defined variable
(callWideContext). Functionalities are able to express exact
interest in one or more of the variables.

All three ACE variables are rather containers than simple
variables. They are able to store name-value pairs, without
restrictions on the value type. So, it is possible to save variable to
any of the container following a name=value pattern (e.g.
globalSession.put(“temperature”,22)).

4.1 CallWideContext
The call-wide context is a container available throughout the call.
It is designed to store key-value pairs that are important during
the call, but are not direct input or output parameters of any call
segment.

With help of the call-wide context, the functionality can produce
more than one “output” values. The model used in the Underlying
call layer only allows one output value per method call, which is
natural in a programming language like Java, but may bind the
hands of the programmer when more than one value should be
published (e.g. two fields should be added to the output event). In
this case, the functionality can use the call-wide context as a
temporal storage for the second value. The call-wide context can
also be referenced during the output event generation (Figure 11).

<mapping
 event="cascadas.ace.event.ServiceResponseEvent"
 target-role="user">
 <value ref="the normal return value"/>
 <value ref="callWideContext://plum"/>
</mapping>

Figure 11. Referencing to the call-wide context
in the output event mapping

Another way to use the call-wide context is to pass arguments
between different classes. Let us suppose that a call sequence
consists of calls to classes A, B and C: A reads in people’s names
and addresses from a list; B looks up the weight and height of
each person in a medical database; finally C selects the thinnest
person which will be the return value of the service. Although it is
possible to pass the parameters between the classes as complex
return types; that’ll results in a complicated code. If A, B and C
all declare themselves to be aware of the CallWideContext, they
can use it as a convenient storage for their specific temporal data.

The call-wide context is created when the input event arrives, and
is available until the last output event is sent.

4.2 Execution Session and Global Session
The execution session and the global session are two deeply
ACE-related containers; they are created and maintained by the
Reasoner, and they hold all state-specific ACE data.

The global session gets created at the initiation of the ACE, and is
maintained as long as the ACE is alive (event survives
movements).

The execution session is valid for a plan; and is lost when the plan
is replaced.

With the help of the two sessions, the programmer is able to save
and access state information between calls. By state information
we mean both ACE-related and functionality-related information.
(It might be necessary to store functionality-related information
between calls because it is not guaranteed that the next call to the
functionality will be executed on the same class instances,
meaning that the values of the fields may get lost.)

5. FURTHER PROPERTIES

5.1 Multithreading
The functionality model of the Repository guarantees the thread-
safe execution unless the functionality itself makes it technically
impossible (e.g. non-thread-safe singletons in the background). In
normal cases – where there are no static methods or variables –
the functionality itself does not need to care about the thread
safety; the Repository guarantees that no parallel/overlapping
calls will be executed on the same instance of the class.

The Repository itself does not put restriction on the number of
parallel functionality call requests. This means that the Reasoner
may invoke a new – or the same – functionality before the
execution of the actual one is finished; and threading problems
must be handled by the Repository.

The Repository contains a built-in load balancing logic to decide
when to create a new instance of the called class, and when to
reuse existing (old) instances.

5.2 Statefulness
The state of a functionality is preserved during the call (from the
first method invocation to the last output event); but is not
guaranteed to be preserved between calls. This implies that
stateful functionalities should store/restore their state variables
to/from one of the sessions. Saving/loading variables from/to a
session is the responsibility of the functionality.

5.3 Instantiation
The classes referenced in the Functionality descriptor are
automatically instantiated by the Repository through their default
constructor exactly when the request (FCE) arrives. If no request
arrives, then no instance is created.

If the instantiation policy is not suitable in a special case, the
programmer of the functionality should create a wrapper for the
functionality. The wrapper may hide the non-default-constructor,
or may refer to singletons in the background.

5.4 Chaining and Code Fragmentation
Functionalities cannot invoke each other directly but their output
event may request the invocation of another functionality (or even
itself). Thus, cross-invocation is possible in means of chaining,
but not in means of invoking a functionality in the middle of
another.

The above restriction may be resolved by code fragmentation. Let
us suppose that service SA want to invoke SB in the middle of the
code. By fragmenting the code of SA into two sub-functionalities
(SA1, SA2) so that SA1 is the code before the invocation and
SA2 is the code after the invocation; the problem can simply be
solved (state information can be saved in the session).

5.5 Autonomic Aspects
Our goal with the functionality model was to map “normal
program code” into functionalities of a self-aware system.

With the three-level description, we can guarantee that the
autonomic components (Facilitator, Reasoner) are able to model

the functionalities properly, in order to achieve self-awareness
and self-reflection.

We believe that our choice of modeling the functionalities as
input and output events was a right and straightforward one,
beating several burdens of the classical “method” approach.

6. COMPARISION WITH EXISTING
TECHNOLOGIES
The presented functionality model has been motivated by and
shows similarities with several of today’s leading technologies. In
this chapter we discuss the relationship with Web Services (WS)
[3], Enterprise Java Beans (EJB) [1], and classical execution
frameworks.

6.1 Relationship with Web Services
The Web Services technology has defined one of the most
complete and best-detailed functionality models of today.

Although WS has introduced many basic abstractions; their goals
differ from the goals of CASCADAS. WS provides a standard
interface to the native code, with well-defined input and output
mappings, client-instance assignment, and statefulness definition;
but this standard interface is still the classical “method” format. In
CASCADAS, we map the program code to a “service” which
significantly differs from a classical “method” concept: the input
and the outputs are events, and output events are addressed to
contracted roles.

WS defines at least three client-service assignment models
(scopes): one service instance per call, or per client, or for
everybody; the last two ones have importance in case of stateful
services. In CASCADAS, currently, we are using a per call model
only.

Just like WS (and EJB), we use descriptors for our services. A big
advantage of this is that the descriptor itself provides a clear
abstract picture about the functionality (on different levels),
making the work easier both on the self-model creator and on the
caller side. We use three-layered descriptors, while WS
descriptors are one-tier only.

6.2 Relationship with Enterprise Java Beans
Many details have been borrowed from the statefulness and
persistence concepts of the Enterprise Java Beans – but in a rather
simplified way.

EJB differentiates between stateful and stateless beans, stateful
ones are guaranteed to preserve their state during the session. In
our model, functionalities are stateless by default, but they are
allowed to save/restore their state information.

In EJB, the bean can have metadata assigned describing how to
save/restore the state information between calls (e.g. into
database); and the bean container is in charge of ensuring the
consistency. In our model, the save/restore code is placed (left) in
the functionality itself. We believe that in simple cases9 it is more
natural to leave this task for the programmer than to provide

9 In CASCADAS the support for very high load or achieving

extreme robustness are not as essential as in EJB/WS.

meta-descriptors, based on which the Repository can symbolically
invoke loader/saver code. In later versions of the Repository this
may change.

6.3 Comparison with Classical Frameworks
We categorically do not follow the approach of many classical
frameworks where deployed services must extend a fixed
superclass. In CASCADAS, services can be introduced without
source-code level restrictions10 which – we believe – makes the
system more open and flexible. The descriptor approach helps in
understanding the functionalities in a clear and abstract way,
without the need for checking the documentation.

7. SUMMARY
In this paper we have presented the functionality mapping model
used in CASCADAS ACEs. We have chosen not to follow the
classical method (input values, one output value) approach; but to
define the functionality as a set of input and output events on the
top level. We introduced a three-layer functionality model
ensuring the system to be self-aware. Several other aspects
(threading, statefulness) were also presented in details. The
comparison of our model and existing technologies revealed
several similarities and differences as well.

8. ACKNOWLEDGEMENTS
Special thanks to WP1 of the CASCADAS project and to Cefn
Hoile from BT for the fruitful discussions. Thanks to the WP6
people for allowing me to better understand what they need from
a Repository.

9. REFERENCES
[1] B. Burke, R. Monson-Haefel. Enterprise JavaBeans 3.0,

O'Reilly Media, Inc, 2006., ISBN 059600978X
[2] CASCADAS project website:

http://www.cascadas-project.org
[3] F. Curbera, W.A. Nagy, and S. Weerawarana. Web services:

Why and how. In OOPSLA 2001 Workshop on Object-
Oriented Web Services. ACM, 2001. 34

[4] E. Hoefig, B. Wuest, B. K. Benko, A. Mannella, M. Mamei,
E. Di Nitto: On Concepts for Autonomic Communication
Elements, in Proceedings of IEEE International Workshop
on Modelling Autonomic Communications Environments
2006, Dublin, 2006

[5] A. Manzalini, F. Zambonelli: Towards Autonomic and
Situation-Aware Communication Services: the CASCADAS
Vision, in Proceedings of IEEE Workshop on Distributed
Intelligent Systems 2006, Prague, 2006

10 The only restriction is to have a default constructor.

