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ABSTRACT

This paper provides a new approach to the efficient anal-
ysis of equilibrium state of a combinatorial Hybridization
Reaction System (HRS, for short) in which exponentially
many assemblies of molecules are generated from a set of
molecules. The proposed framewok provides a method to
overcome the combinatorial explosion problem of resultant
assemblies. The key idea exists in the locality of HRSs. The
goal of this paper is to present a general theory for the effi-
cient computation of equilibrium states.
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1. INTRODUCTION

Since the pioneering work by Adleman([1]), the paradigm
of DNA computing (in a broad sense, molecular computing)
has emerged and attracted much attention from computer
scientists, molecular biologists, DNA nanotechnologists, etc.
The principle of DNA computing paradigm essentially relies
on DNA hybridization process, but it is in essence error-
prone. Therefore, it is substantially important to design a
set of DNA sequences or tiles with which we can obtain a
maximum concentration of a target molecular architecture.
In order to evaluate a given set of DNA sequences or tiles in
this respect, we need to devise a methodology for efficiently
computing the concentration of the target assembly at the
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equilibrium state of hybridization reaction systems (HRSs,
for short).

This paper gives a new approach to the efficient analysis
of equilibrium state of HRSs by overcoming the combinato-
rial explosion problem of resultant assemblies. The key idea
exists in the locality of HRSs. The goal of this paper is to
present a general theory of the efficient computation of equi-
librium states. Thus, it can be applied to various kinds of
HRSs other than those of DNA and RNA molecules. As far
as the author’s knowledge, this is the first attempt to formu-
late such a general theory for computing equilibrium state
of combinatorially complex hybridization reaction systems.

By locality, we intuitively mean the physical property that
the free energy of an assembly X of molecules can be com-
puted as the sum of free energies of all local substructures of
X. For instance, the free energy of a single RNA and DNA
molecule at the secondary structure level can be calculated
as the sum of free energies of all local substructures such
as hairpin loops, bulge loops, internal loops, multiple loops,
etc. But, how we can formulate the concept of this kind of
locality of HRSs in a general setting?

We will give a theoretical formulation of locality of HRSs
using graph theory. We first require such an HRS of high
locality to have the following properties: (1) there exists a
weighted directed hypergraph G with initial and final ver-
tices such that the set of hyperpaths from initial vertices to
final vertices is in many-to-one correspondence with the set
of assemblies of molecules, (2) the weight of a hyperpath
is equivalent to the free energy of its corresponding assem-
bly, (3) the hypergraph G has some symmetric structures
which capture the symmetric property of the space of as-
semblies. In this formulation, a hyperarc of a hyperpath
can be regarded as a substructure of its corresponding as-
sembly. With this key concept of locality of HRSs, we will
establish a general theory for computing equilibrium state
of HRSs'.

After providing the definition of HRSs, we will give a fun-
damental and preliminary discussion on the close relation-
ship between the computation of equilibrium state and min-
imum free energy of HRSs in section 2. So, the problem of

'The theory proposed in this paper allows us to deal with
globally defined entropic factors, such as those related to ro-
tational symmetry of the assemblies, by decomposing graphs
into subcomponents so that every component enumerates
only assemblies with the same global entropic constant with
respect to the concentration.



computing equilibrium state is converted to that of comput-
ing minimum free energy. Section 3 gives the definition of
local HRSs. With this key concept of locality, in section 4,
we will give a general theory of how to transform a free en-
ergy minimization problem with huge number of assemblies
of molecules to that with a small number of variables.

2. EQUILIBRIUM STATE OF HYBRIDIZA-
TION REACTION SYSTEM

For a set N of numbers, by N1 and N4, we denote the
subsets of N consisting of only nonnegative and positive
numbers, respectively. By R and Z, we denote the set of
real numbers and integers, respectively.

Let M be a finite set of molecules and A be a set of
assemblies of molecules consisting of molecules in M. For
z € M and X € A, by #(z,X), we denote the number of
molecules = contained in an assembly X. A reaction rule
over A is given by a pair of X7 and Xs of finite multisets
consisting of elements of A such that the following equation
holds:

XeX; XX

(Ve e M) (1)

Note that the sum over a multiset counts elements duplicat-
edly for their multiple occurrences. This equality constraint
(1) corresponds to the law of conservation of each molecule.
A reaction rule (X1,X2) is usually denoted by X1 = AXb.
In case of X1 = {X1,..., Xn, } and X2 = {Y1, ..., Y, }, where

multiple occurrences of assemblies are allowed, we often write:

Xi4 ot Xn, 2 Vit Yoy

A distribution of a set U is a function from U to R4. Usu-
ally, we use notations, [], []1, []2, .-, etc., for representing
distributions. For example, for a distribution [] of A and an
assembly X € A, [X] represents a concentration of the as-
sembly X. A distribution of M is especially called an initial
distribution. If we have a set M of molecules with its initial
distribution []o, then any distribution [] of A should satisfy
the following equation:

S #(@X) - [X] = [

XecA

(VzeM) (2

This equality constraint corresponds to the law of conserva-
tion of each molecule.

For instance, let us consider two molecules o and 3, and
an assembly a3 consisting of molecules o and . Note that
each of o and [ is itself an assembly consisting of only one
molecule. Thus, we can consider a reaction rule o + 3 =
af. Equilibrium state of this reaction rule is determined by
free energies E(«), E(B) and E(af3) of assemblies «, 3, and
af3, respectively. More precisely, the distribution [] at the
equilibrium state should satisfy?:

(@8] _  —Ees)-E@+E®)
(][]

We will give the definition of this kind of equilibrium equa-
tion in a general setting. For a reaction rule X3 = A%, its

2In this paper, the free energy E(X) of X is a dimensionless
quantity, i.e., E(X) is the free energy per mol of X divided
by the physical quantity R1', where R is the gas constant
and 7' is the absolute temperature of the reaction system.

equilibrium equation is given by:

eZXGXIE(X)-H xX] = Cersz(x).H X1 (3

Xex; XeXs

In summary, a hybridization reaction system (HRS, for
short) is defined by P = (M, A, #, R, E,[]o), where M is a
nonempty set of molecules, A is a nonempty set of assemblies
consisting of molecules in M, # is a function from M x A
to N4 such that #(z, X) indicates the number of molecules
x contained in an assembly X, R is a set of reaction rules
satisfying the equations (1), £ is a free energy function from
A to R, and []o is an initial distribution of M. In the rest of
this paper, we assume that M, A and R are finite, M C A,
and [z]o > 0 holds for every z € M.

The problem of interest is to find an equilibrium state of
P, i.e., adistribution [] of A satisfying equilibrium equations
(3) of all » € R and conservation laws (2) of all molecules
z € M. Such a distribution [] is called an equilibrium state
of P.

For instance, let us define an HRS for the above example

reaction a+8 = af. Consider an HRS P = (M, A, #, R, E. []o),

where M = {a, 8}, A ={a,8,08}, R = {a+ 8 = o},
and a function # is defined by: #(a, @) = 1, #(a, 3) = 0,

#(o,af) =1, #(8,a) = 0, #(8,8) = 1, #(8,ap) = L.
Then, the problem is to find a distribution [] of A satis-

fying:
e [af] = PO x (o] ],
o] + ] = [alo.  [8]+ [aB] = [Blo-

Let P = (M, A, #, R,E,[]o) be an HRS. The free energy
FE1(P,]]) of P under distribution [] of A is defined by:

FE(P[))= Y E(X)-[X] + Y [X](log[X] —1), (4)
XeA XeA

where we define 0log0 = 0. Note that for any X € A,
E(X) is regarded as a constant. Free energy FE1(P,[])
can be regarded as a function with respect to the variables
[X]’s (X € A). We often simply write FE1(P) instead of
FE;(P,]]) if the context allows.

Consider the following minimization problem:

Free Energy Minimization Problem 1 (FEMP1)
minimize : FE(P)
subject to :

3 #(@, X) - [X]

XcA

[*]o, (Vo e M)

[X] > o. (VX € A)

The following theorem is a well-known result (but, the
author does not know who is the first one who found it).

THEOREM 1. A distribution [] of A is an equilibrium state
of P if [] is a minimizer of FEMP1. [

Therefore, the problem of computing equilibrium state
can be reduced to FEMP1. But, in this paper, we are inter-
ested in the case that the cardinality of A is tremendously
larger than that of M. We will give an approach to overcome
such a difficulty.

3. LOCALITY OF HRS



3.1 Hypergraphs

Basic notions and definitions related to directed hyper-
graphs will be introduced in this subsection mainly based
on [4], but some notions are slightly different from its origi-
nals.

A directed hypergraph G is a pair (V, Eg), where V is a
finite set of vertices, and Eg is a finite set of hyperarcs as-
sociated with two functions t : Eg — V and H : Eg — 2".
A directed hypergraph is simply referred as a hypergraph in
this paper. A hyperarc e is interpreted as an arrow from a
tail t(e) to the set H(e) of heads ®. In this definition, we
allow multi-hyperarcs, i.e. there can be more than one dis-
tinct hyperarcs with the same heads and a tail. For a vertex
v, a hyperarc e such that v = t(e) (v € H(e)) is called an
outgoing (entering) hyperarc of v. For a vertex v, by vout
(vin), we denote the set of outgoing (entering) hyperarcs of
v. For a set W of vertices, we define Wour = Upew Vout
and Win = Uvew vin- By Vo and V}, we denote the set of
vertices v € V such that vy, = 0 and voyut = 0, respectively.
Elements of Vp and V; are called initial vertices and final
vertices, respectively.

A path from s tou in G is a sequence s = vy, €1, V2, €2, ..., €q,
Ug+1 = u of vertices v; (i = 1,...,q¢ + 1) and hyperarcs e;
(i = 1,...,q) such that v; = t(e;) and v;y1 € H(e;) for
i =1,..,q. If s € H(eq) holds, the path is called a cycle.
We say that G is acyclic if it contains no cycles.

A hypergraph G’ = (V', Eg’) is called a sub-hypergraph of
G = (V,Eg) if V' CV and Eg’ C Eg hold. Let = be an
element of V U Eg. For a sub-hypergraph G’ = (V', Eg’),
we write z € G’ if x € V' U Eg’ holds. For a subset W of
V U Eg, we write W C G’ if z € G’ holds for every z € W.

Let r € V and S C V. A hyperpath of G from the root
to the sink set S is a minimal acyclic sub-hypergraph v of
G such that r and S are contained in v and every vertex of
v, except for those in S has exactly one outgoing hyperarc.
A hyperpath is said to be empty if it contains only one ver-
tex and no arcs (i.e., S = {r}). A hyperpath is said to be
elementary if every vertex, except for r, has exactly one en-
tering hyperarc. For a hypergraph G = (V, Eg), by PT(G),
we denote the set of all hyperpaths from some root r € V5 to
some sink set S with § C Vy. The hypergraph G is said to
be elementary if every hyperpath in P1'(G) is elementary.
We say that G is reduced if every hyperpath in PT(G) is not
an empty hyperpath.

Let ¢ be an injective and surjective mapping from V U Eg
to V U Eg such that ¢(V) = V and ¢(Eg) = Eg hold *.
If ¢ satisfies ¢(t(e)) = t(¢(e)) and ¢(H(e)) = H(¢(e)) for
any e € Eg, ¢ is called a proper isomorphism of G. On the
other hand, if ¢ satisfies {@(t(e))} = H(¢p(e)) and ¢(H (e)) =
{t(¢(e))} for any e € Eg, ¢ is called an anti-isomorphism
of G. Note that only ordinary graph, i.e., a hypergraph
such that |H(e)| = 1 for every e € Eg, can have an anti-
isomorphism. We say that ¢ is an isomorphism of G if it
is either a proper or an anti- isomorphism of G. Note that
Vo = ¢(Vo) and Vy = ¢(Vy) hold for a proper isomorphism ¢
of G. In case that ¢ is anti-isomorphism, we have Vo = ¢(Vy)
and Vy = ¢(Vp). For a subgraph G' = (V', Eg’) of G and
an isomorphism ¢ of G, by ¢(G’) we denote the subgraph

3In its original definition, a hyperarc has a head and a set
of tails.

4We need a mapping from V U Eg to V U Eg to define the
concept isomorphism, because we allow multi-hyperarcs in

(6(V"), 6(Eg").-

3.2 Locality of HRS

Let P = (M, A, #,R, E,[]o) be an HRS and consider a
reduced acyclic elementary hypergraph G = (V, Eg) associ-
ated with two functions E : Eg — Rand # : MxEqg — Z..
An isomorphism ¢ of G is said to be symmetric if the fol-
lowing conditions are satisfied: (1) E(e) = E(¢(e)) for all
e € Eg, (2) #(x,e) = #(z, ¢(e)), for all z € M and e € Eg.

Let 3 be a surjective function from PT(G) to A. Then,
we say that a triple S = (P, G, %) is an enumeration scheme
if the functions E and # satisfy the following conditions for
each v € PT'(G) and x € M:

Bwm) = Y. E),

ecEgS.t.ecy

Y Fe.

ecEgS.t.ecy

#(z,9() =

Let S = (P, G,v) be an enumeration scheme. The rank
n, of v € PT(G) is defined as n, = [¢"*(¢(7))|- The rank
set ns of S is defined as ns = {n, | v € PT(G)}.

An enumeration scheme S = (P, G, ) is said to be sym-
metric if:

(1) for any e € Eg and any v1,v2 € PT(G) with e € v1,72,
Ny, = Ny, holds, and

(2) for any k € ngs, there exist symmetric isomorphisms
@1, ..., pp—1 of G such that for any v € PT(G) with
n, =k,

{'Y, ¢1(’Y)7 ey ¢k—1(’7)} = ¢71(¢(V))
holds.

We can construct symmetric enumeration schemes for var-
ious HRSs dealing with one dimensional tile assembly, as-
sembly of tree-like structures, RNA/DNA hybridization re-
actions, etc. In particular, the application to DNA/RNA
secondary structures consisting of multiple sequences is im-
portant in DNA computing. For example, consider a class of
linear secondary structures of multiple sequences ([5]) con-
sisting of hairpin, internal, bulge loops and stacked base
pairs. Each linear secondary structure can be determined by
a sequence of base pairs ((ai, ki), (B:,1:)) i = 1, ...,n, where
«; and f; are sequences, and k; and I; are the base positions
of a; and S, respectively. A pair ((ou, ki), (3s,1:)) indicates
a base pair between k;th base of «; and [;th base of ;.
If we regard a pair ((«i, ki), (3s,1:)) as a symbol, then the
enumeration of linear secondary structure is accomplished
by the enumeration of strings over such a base pair alpha-
bet, although we need to consider symmetric property of
such enumeration scheme. This idea can also be extended to
pseudoknot free secondary structures consisting of multiple
sequences. But, in this case, we need impose some restriction
on the number of branches of multiloop substructures. In
this way, we can apply the framework of symmetric enumer-
ation sckem to various hybridization reaction systems, but
because of space constraint, the details will be presented at
the workshop.

4. REDUCING NUMBER OF VARIABLES

The difficulty for solving FEMP1 is that the cardinality
of A is very large in real applications. In this paper, we will



give a novel method to reduce the number of variables of
FEMP1 in case that the following assumptions hold:

(A1) An HRS P to be investigated has an enumeration
scheme § = (P, G, v).

(A2) The enumeration scheme S = (P,G,v¢) in (Al) is
symmetric.

Let P = (M, A, #,R,E,[]o) be an HRS, G = (V, Eg)
be a reduced acyclic elementary hypergraph associated with
two functions E and #, and ¢ be a mapping from PT(G)
to A such that S = (P,G,v) is a symmetric enumeration
scheme. For k € ns with k& > 2, by O, we denote the
set of all symmetric isomorphisms of G' which are used to
guarantee that S is symmetric with respect to the set of
hyperpaths of rank k. By Oy, we denote the minimal set
of symmetric isomorphisms of G containing ©; and closed
under composition and inverse. Define ® = U;,0; and
e= UZigék-

For convenience, we often write X, instead of (). For
X € A, we define PT(X) = ¢~ '(X) and nx = |PT(X)|.
For e € Eg, we define ne = n, for some « such that e € .
For v € V —Vp — V}, we define n, = n, for some  such that
v € 7. These definitions are well defined since the condition
(1) holds in the definition of symmetric enumeration scheme.

Let [] be a distribution of A. For a vertex v and a hyperarc
e of G, we define:

H déf Z [XV] ’

Ny
vyEPT(G)S.t. ecy

— def [X4]
TR S

5
~ePT(G)S.t.vey

Intuitively speaking, [e] represents the concentration of the
local structure corresponding to e.

PROPOSITION 1. Assume (A1l). Let [] be a distribution

of A. Then, we have [v] = 3 [e] forveV —Vy, and

eCVout

[’U]:ZeEvin [6] fOT’UGV*Vb, D

PROPOSITION 2. Assume (A1) and (A2). Let [] be a
distribution of A. We have [0(e)] = [e] for every e € Eg and
0 € O withne=%k. O

For distributions []; and []2, we say that they are locally

l
equivalent, written []; = []2, if for any hyperarc e of G,

[e]1 = [e]2 holds.

l
PROPOSITION 3. Assume (A1). The relation = over the
distributions of A is an equivalence relation. [

PROPOSITION 4. Assume (A1). It holds that ) . 4 E(X)-

(X] = ecpy Ele)-le]. O

PROPOSITION 5. Assume (A1). If [|1 L []2 holds, then
Yxea B(X) - [ X1 =X e 4 E(X) - [X]2 holds. O

We have interests in solving a subproblem of FEMP1, i.e.,
to find an optimal distribution for FEMP1 among distribu-

. . . lc
tions in an equivalence class w.r.t. =.

l
Let us consider an equivalence class w.r.t. =. That is, let

us consider a set of distributions [] such that [e] = we for
any hyperarc e of GG, where w,’s are specified constant reals

in Ry4. We assume here that the constants w,’s satisfy the
following condition:

(C1) Yo eV — Vo — Vy, Z We = Z We.
eCV;n eCvout
(C2) V0 € O Ve € Eg s.t. ne =k, We = Wo(e)

For a vertex v of G, for convenience, we define w, =

PROPOSITION 6. Assume (A1) and (A2) and that we’s
satisfy (C1) and (C2). Foranyf € O andv € V-V —V;
such that n, =k, wy = we(y) holds. [

Define a distribution []+ of PT(G) as follows:

1w

ecy

M+ = ———, (5)
I =

vEY, vg€ Vo, v€Vy

where Vp and V; are sets of initial and final vertices of G,
respectively. In case that G is clear from the context, we
simply write []; instead of []+ . Furthermore, define a
distribution [].« of A based on the distribution []+ of PT(G)

as follows:
> M+ (6)

YEPT(X)

Xl =

PROPOSITION 7. Assume (A1) and that we’s satisfy (C1).
For any e € Eg andv € V — V¢, we have:

S bl oad Y

~ePT(G) S.t.ecy ~ePT(G) S.t.vey

O

[V]+ = wo.

PROPOSITION 8. Assume (A1) and (A2) and that we’s
satisfy (C1l) and (C2). For any X € A and y1,72 €
PT(X), [n1]+ = [ra]+ holds. [

PROPOSITION 9. Assume (A1) and (A2) and that we’s
satisfy (C1) and (C2). For any vertex v € V — Vy and any
hyperarc e of G, we have [v]. = wy and [e]. = we. O

Consider the following minimization problem:

Free Energy Minimization Problem 2 (FEMP2)

minimize :

FEy(P) Z

subject to :

D R

~EPT(G)S.t.ecy

(for each hyperarc e of G)

xX] > o. (VX € A)

Note that in FEMP2 the values [X]’s (X € A) are the
variables.

PROPOSITION 10. FEx(P) is twice differentiable and con-
vex over the domain R . [



THEOREM 2. Assume (A1) and (A2) and that we’s sat-
isfy (C1) and (C2). Furthermore, we assume that we €
R+ for every hyperarc e of G and that there exists a strictly
feasible point of FEMP2. The distribution []. defined by (5)
and (6) gives an optimal distribution for FEMP2.

PROOF. We first note that by the assumption of this the-
orem, FEMPZ2 satisfies Slater’s constraint qualification, i.e.,
there exists a strictly feasible point (i.e., a point satisfying all
equality constraints such that [X]| > 0 for all X € A). Fur-
thermore, by Proposition 10, the objective function F Ea(P)
is twice differentiable and convex over the domain R, .
Therefore, Karush-Kuhn-Tucker (KKT') conditions provide
necessary and sufficient conditions for optimality of FEMP2.
KKT conditions of FEMP2 are given by:

(X] = 0, (vXeA) (7)

s Bl o veeng s
VEPT(G), cey °

Ax

—Ax - [X]

log [X] — Ax + Z ZZ_:

yeEPT(X) e€y

v

0, (VXeA (9
0, (VX € A) (10)

0. (VX € A) (11)

Define Ax =0 for all X € A and
—logwe - ne if t(e) € Vo,
fie = .
W (e)

—log otherwise.

Then, it is straightforward to see by Proposition 9 that []«,
Ax (X € A), and fie (e € Eg) satisfy KKT conditions.
Therefore, []« gives an optimal solution of FEMP2. [

Consider the following minimization problem:

Free Energy Minimization Problem 3 (FEMP3)
minimize :

de
FEs(P, (we | ¢ € Eg)) <

Z E(e) - we + Z we(logwe — 1) —

[y

ecEg ecEg
Z wy (logwy, — 1) + Z We - log ne
veV-Vo—Vy e€(Vo)out
subject to :
> Fwe) we = [a]o, (Vo € M)

ecEg
(MveV —=Vo—V¢})

Sueo= Y e

eCVin eCVout
We = Wy(e), (Ve € Eg Vo € @ne)
We 2 0. (Ve S Eg)

Note that the variables of FEMP3 are we’s (e € FEg)
and recall that w,’s are sums of variables we’s, i.e., w, =
> ecw,,, We- Therefore, the number of variables are reduced
from |A| in FEMP1 (FEMP2) to |Eg| in FEMP3. We often
omit the second argument of FFE3(P,(w. | e € Eg)), and
simply write F' F3(P) if the context allows.

PROPOSITION 11. Assume (A1l). Every minimizer (we |
e € Eq) of FEMPS satisfies we > 0 for each e € Eg. [

LEMMA 1. Assume (A1l). Let us consider a distribution
[] and we’s (e € Eg) such that [e] = we. Then, we have:

o #@ X) [X] = > F(ze) we (Vz € M)
XeA ecEg
O

LEMMA 2. Assume (Al) and (A2) and consider con-
stants we ’s which satisfy (C1) and (C2). Consider a dis-
tribution [+ of PT(G) and a distribution []« of A defined
by (5) and (6), respectively. Then, we have:

> E(X)-[X]. =) Ele) - we,

XeA ecEg
> [X].(log[X]. = 1) = Y we(logwe — 1) —
XeA ecEg

Z We - log ne.

e€(Vo)out

Z wy (logwy — 1) +

vEV—Vo-V;

Furthermore, FE1(P,[]+) = FE3(P, (we | e € Eg)) holds. O

As will be shown in Theorem 4, the objective function
of FEMP3 is convex. Therefore, FEMP3 have an optimal
solution.

THEOREM 3. Assume (A1) and (A2). Let (W. | e €
Eg) be a minimizer of FEMP3. Then, the distribution [].
defined by (5) and (6) based on . ’s is a minimizer of FEMP1.

PROOF. Let []1 be a minimizer of FEMP1 and ET be an
optimal value of FE\(P). We know that [X]1 > 0 holds for

every X € A. Let we = |e]1 for every e € Eg. Consider an
optimization problem FEMPZ2 with these we’s.

Note that we > 0 holds for every e € Eg. By Proposition
2, we have [0(e)]1 = [e]1 for any e € Eg and any 6 € Oy
with ne = k. Therefore, the values we’s satisfy the condition
(C2). By Proposition 1, we’s satisfy the condition (C1).
Furthermore, []1 clearly satisfies the constraints of FEMP2.
Thus, []1 gives a strictly feasible point of this FEMP2. So,
we can apply Theorem 2.

Let E5 be the optimal value of the objective function of
FEMP2. By Theorem 2, a minimizer [|2 of FEMP2 can be

given by:

[T

[’Y]+ = ﬁa (12)

vEY, vEVo, v¢Vy

> bl (13)

~EPT(X)

=
I

Since []2 is a minimizer of FEMP2 and []1 gives a feasible
point of FEMP2, it is clear that Ef > E3 + 3 . 4 E(X) -



[X]1 holds. Furthermore, we have:
Ef > Eij+ Y E(X)-[Xh
XecA

= By + Y BE(X)-[X]
XecA

(By []1 L []2 and Proposition 5)
= Y [(Xl(log[X]e — 1) + Y E(X)-[X]2

XcA XcA
= Z we(logwe — 1) — Z wy(logwy, — 1) +
ecEg veV, vg€Vy,vgVy

Z we log ne + Z E(e) -we. (By Lemma 2)

e€(Vo)out ecEg

Let F' be the last_expression of the above transformation.

We have we = [e]1 (e € Eg) by the definition of we’s. By
Lemma 1,

S F,e)-we = 3 #(@, X) - [X]h = [elo,

ecEg XeA
holds. Recall that we’s satisfy (C1) and (C2). Thus, (we |
e € Eg) is a feasible point of FEMP3. Let E3 be the optimal
value of the objective function of FEMPS3. Then, F > E3
holds, which implies E7 > E3.

On the other hand, let (W. | e € Eg) be a minimizer of

FEMPS. By Proposition 11, we > 0 holds for every e € Eg.
Let []« be a distribution of A defined by:

1w

ecy

N = ——
H Wy
vEY, vE Vo, vEF
Xl = > W,
~EPT(X)
where i, = Ze@wt We .

By Proposition 9 and Lemma 1, we can say that [ ]« satis-
fies the equality constraints of FEMP1. By . >0 (e € Eg),
we have [X]« > 0 for every X € A. Therefore, []« gives
a feasible point of FEMP1. By Lemma 2, FE1(P,[]s) =
FEs3(P,(we | e € Eqg)) = E3. Thus, we have E3 > ET.

In conclusion, we have EY = E3, which implies the claim.

THEOREM 4. The objective function of FEMP3 is convex
over RT',, where m = |Eg|. O

Therefore, we can solve FEMP1 by solving FEMP3 with
a convex programming method([7]). Note that the number
of variables are drastically reduced from |A| to |Eg|. The
sizes of |A| and |Eg| are problem-dependent. For example,
in a simple 1-dimensional DNA tile assembly system, |.A| is
O(m™) and |Eg| is O(m?n), where m = |M| (number of
tiles) and n is the maximum length of tile assemblies.

5. RELATED WORKS

Adleman’s work ([2]) on the equilibrium state analysis of
linear tile assembly is related to our work. There are two
main and important different points between these works:
(1) although Adleman’s analysis is based on a probabilistic
model of chemical reactions, we rely on the concentration

based model, and (2) although Adleman’s analysis focuses
on linear tile assembly alone, we aim to establish a general
theory of equilibrium state analysis of HRSs, which can be
applied to various HRSs.

Quite recently, Dirks, et al([3]) proposed a method for
computing an equilibrium state of interacting RNA molecules
based on statistical physics. They nicely extended Mack-
askill’s partition function computation algorithm for a single
RNA molecule to the case of multiple strands, and furthe-
more succeeded in computing the equilibrium state of inter-
acting RNA molecules by using convex programming after
computing partition functions of all strand complexies. The
current paper proposes a new method totally different from
theirs in the following senses: (1) this paper proposes a gen-
eral theory for the computation of equilibrium state, (2) al-
though their work assumed the RNA strands interaction in
a dilute solution so that the interaction does not happen in
an equilibrium state, the current paper assumes the interac-
tion in an equilibrium state among all possible combinations
of assemblies and computes exact solutions.

6. CONCLUSIONS

We discussed mathematically on the problem of comput-
ing equilibrium state of a combinatorially complex hybridiza-
tion reaction system in which tremendously many assem-
blies of molecules are generated from a small number of
molecules. In such systems, combinatorial explosion of the
number of assemblies makes this problem intractable. In this
paper, surprisingly enough, we proposed a novel theoretical
framework, in which we can overcome such combinatorial
explosion problem when computing equilibrium state. The
framework is based on the key concept of locality of reaction
systems. We formulate this concept using hypergraph the-
ory, and reach to the conclusion that based on some reason-
able assumptions, we can efficiently compute the equilibrium
state of an HRS by convex programming method.
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