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ABSTRACT 
Though chaotic particle swarm optimization algorithm lets 
particles search in the whole variable space, the search scale is too 
large and the high precision of solution is hard to achieve. This 
paper proposes a particle swarm optimization algorithm based on 
divide-interval chaotic search, it lets the particles search in the 
selected interval, reduces the scope of the search space, and makes 
the solution more approximate to the global optimum. And the 
comparable experiment shows that the algorithm has preferable 
results. 
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1. INTRODUCTION 
Due to the elicitation of the birds social behavior simulation in 
artificial intelligence, Kennedy and Eberhart presented a 
metaheuristic global optimization algorithm － particle swarm 
optimization(PSO)[1]. PSO algorithm is a stochastic optimiza -tion 
method based on swarm intelligence[2]. Its basic idea is that first 
initialize a flock of stochastic particles, each particle is a feasible 
solution of the optimization problem, and has a fitness value 
determined by the objective function, and also has a velocity 
vector to determine its flight direction and distance, then the 
particles follow the current best particle to search in solution space, 
the optimum is found through iteration. Based on the above work, 
Shi and Eberhart presented a particle swarm optimization with 
inertia weight[3], and introduced the inertia weight coefficient , it 
made the exploration and exploitation  ability reasonably 
allocated. They also found dynamic inertia weight has better 
search results than the fixed weight, and they used the linear 
decrease inertia weight. 

w

If any particle finds a better solution in  PSO  algorithm , all 
particles update towards the best particle with the iteration formula  
 
 
 

of  velocity  and  position.  Once the PSO algorithm finds an  
optimum, it converges very fast, and is easy to be trapped in local  
optimum, even increase the iteration number, the precision of 
solution doesn’t increase. The PSO system has no mechanism to  
definitely find the global optimum, because the particles search 
randomly, then other particles follow the best particle. Therefore, 
PSO needs improving and adding other factors to make the 
particles find the solution more approximate to  global  
optimum  Many authors  presented  methods to improve it, one 
of them is to add the chaos method[4].  

Because of the  pseudo-randomness and ergodicity of chaos,  
chaotic particle swarm optimization(CPSO) algorithm[5,6] should 
make the particles jump out of the local optimum, and find a better 
solution. However the existing CPSO algorithms  are searching 
in the whole space of the variable, the search scale is too large, 
and the high precision of the solution is hard to achieve, so this 
paper presents a particle swarm optimization algorithm based on 
divided-interval chaotic search. 

2 . ALGORITHM DESCRIPTION 
2.1 Description of PSO 
Each particle is treated as a point in a D-dimensional space, the 
position of the ith particle is represented as 1 2( , ,..., )I i i iDX x x x= ; 
The best previous position (the position giving the best fitness 
value) of any particle is represented as 1 2( , ,..., )I i i iDP p p p= .The 
index of the best particle among all the particles is represented by 
the symbol g. The velocity of particle is represented as i

1 2( , ,..., )I i i iDV v v v= . The particles update their velocity and 
position according to the following equations[7]: 

1
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Where and are 2 positive constants, and are 2 
random numbers in the range [0,1]. 
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Velocity equation of PSO with inertia weight[3] is:  
1

1 1 2 2( ) (t t t
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Where is the inertia weight. w

 
__________________________________ 

This paper is supported by Science and Technology research key project of 
Chinese Ministry of Education (205032). 

   



Linear decrease inertia weight formula[3] is: 
max min

max
max

w ww w T
T
−

= −                    (4)     

Where , is respectively the minimum , maximum of ; 
and are the current iteration, the maximal iteration. 
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2.2 Chaotic Search Description  
1) Give the maximal chaotic variable iteration number M: give x  
an initial value 0 0 0

0 1 2( , ,..., )nx x x x= ,  [ , ]i i ix a b∈ , calculate the   

optimized   function   *
0( )f f x=   ,   and   use  

0 0( ) /(i i i i it x a b a= − − )  to transfer x ’s range from the original  

range to the chaotic variable’s range [0,1], let k＝0,i= 1…n , k  

is the chaotic variable iteration number, n is the dimension of  

variable x ; 2)This paper takes Logistics chaos equation as an 
example to use chaos iteration ;  3) Use 1 4 (1 )k k

i it t t+ = − k
i

11 ( )k k
i i i i ix a b a t+ += + −  to transfer x ’s range from [0,1] to the 

original range; 4) While , if  k M< 1( )k *f x + < f , let * 1kx x += , 
; (* 1( )kf f x += f  is the corresponding best function value of 

chaotic variable); if 1 *( )kf x f+ ≥ , *x  and *f  aren’t changed; 
and let k＝k+1, turn to step 2. 

2.3 Description of CPSO 
Cpso1 algorithm[5] introduces a chaotic variable x  in PSO, using 
chaos iteration to update each particle’s position. Compare the 
function value of chaos iteration  with each particle’s 
corresponding function value 

1( )c kf x +

*f , if 1( )c k *f x + < f , then turn the 
variable of chaos iteration to the variable range, take the variable 
value and function value of chaos iteration to replace *x and *f ; 
If 1 *( )c kf x f+ ≥ ， *x and *f don’t change. Then continue the chaos 
iteration until reach the max loop number. And  cpso2 
algorithm[6]  uses chaos iteration to optimize the global best 
particle after introducing the variable x .                         

Cpso1 uses chaos iteration to all particles rulelessly, only to find a 
better solution, while cpso2 uses chaotic search to update the 
global best position directly, then use the velocity iteration 
formula to make all particles move to the global best position, 
which could make the particles find the optimum more quickly. 
The chaotic search is used in the whole variable space, so it should 
make the algorithm jump out of the local optimum, and make the 
particles move towards the optimum. 

2.4 Description of PSO Algorithm Based on 
Divided-interval Chaotic Search  
As the CPSO algorithm is stochastic, the local optimum the 
particle swarm gets may already be near the optimum, but chaos 
makes the particles search in the whole space of variable, the 
condition that the particles may be near the optimum hasn’t been 
used,  the search scale is too large and also prolongs the 
convergence time, so the precision of the solution is too low. 
Therefore, this paper presents a particle swarm optimization 

algorithm based on divided-interval chaotic search: dacpso 
(particle swarm optimization based on divided-interval chaotic 
research to all particles’ position) and dbcpso(particle swarm 
optimization based on divided-interval chaotic research to best 
particle’s position). They can make CPSO algorithm search in the 
selected interval, exclude the intervals with no optimum, decrease 
the search scale, which makes the cpso algorithm find the solution 
more approximate to the global best position. 

Description of dacpso(and dbcpso) algorithm: 
1)Divide the range of the variable into several intervals. If the 
number of intervals is too big, the time will be increased. If the 
number of intervals is too small, the high precision of the solutions 
is hard to achieve. This paper chooses 11 intervals; 2) In each 
interval use the cpso1(cpso2) algorithm, loop 100 times to get the 
minimum of the optimized function; 3) In step 2’s results, choose 
the interval in which the optimized function is minimal; 4) Use 
cpso1 (cpso2) algorithm to get minimum in the selected interval, 
loop 2000 times. 

Pseudo-code of dbcpso:  
initialize; 
for i=1:iter  %loop of cpso 
{calculate the fitness of each particle; 
update pbest and gbest according to postion of each particle;  

for j=1:D  {T(j,1)=(gbest(j)-xmin)/(xmax-xmin);}   
for k=1:o  %chaos begin 

{for j=1:D    
{T(j,k+1)=4*T(j,k)*(1-T(j,k)); 
xc(j)=xmin+(xmax-xmin)*T(j,k+1);} 

   fc(k+1)=Rosenbrock(xc); %call function Rosenbrock  
% to calculate the fitness of function  

    if (fc(k+1)<gbestval) {gbest=xc;gbestval=fc(k+1);} 
   } %chaos end 

update velocity and position with the fomula;}%end of cpso 

Wherein, iter is the iteration number of particle swarm, o is the 
iteration number of chaos, D is the dimension of variable, T is the 
chaos variable, [xmin,xmax] is the range of the variable，xc is the 
chaos variable, fc is the fitness value of xc, gbest is the global best 
position, gbestval is the fitness value of gbest.  

3. ALGORITHM COMPARISON 
3.1 Experiment Design 
This paper chooses 5 benchmark functions to optimize, the 
dimensions, search ranges, and theoretic minimums of these 
functions are shown in Table 1. 

Table 1. Dimension, range and optimum of benchmark 
functions 

Function Dim Range Variable Min

f1：Rosenbrock 30 [-100,100] Xi=1 0 

f2：Griewank 30 [-600,600] Xi=0 0 

f3：Rastrigin 30 [-5.12,5.12] Xi=0 0 

f4：Ackley 30 [-32,32] Xi=0 0 

f5：DeJong_f4 30 [-100,100] Xi=0 0 

   



Their equations are：   
1
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3.2 Experiment Results and Analysis 
We did 50 experiments for each algorithm on computer of 
P4(2.67GHz)， 256MB memory to obtain the results of table 2-6. 
Take maximal, minimal and mean value of every algorithm. 
Where functions f1-f3 use the data from  references [8-12] to 
compare with the data this paper obtained, functions f4, f5 have no 
reference to compare. The simulation environment is matlab7[13]. 

Pso algorithm adopts the PSO method with inertia weight[14]. 
8bpso denotes bpso[8], 9cpso denotes cpso[9], the rest may be 
deduced by analogy.  

The experiment parameters in this paper are: 2000 times PSO 
iteration, population size is 30, 2000 times chaos iteration, the 
inertia weight is: 

min max max

min

(( ) /( 1))* ( 1) ,
,

e e

e

i for i
for i

ω ω ω ω ω
ω

ω ω
− − − + ≤⎧

= ⎨ >⎩  
where  is the iteration number, i eω =1500, maxω =0.9, minω =0.4, 

c1=c2=2, =maxv maxx /25, maxx  is the maximum of the variable 
range. 

Table 2. Results and comparison of f1 
Algo Time Min Max Mean Algo Mean 

pso# 2.017 6.4 156.8 47.50 8spso* 140 

cpso1# 2506 7.5 80.8 54.07 8tspso* 48 

cpso2# 169 1.3 127.4 37.25 9spso* 51 

dacpso 3915 4.7 85 39.16 9cpso* 42 

dbcpso 1753 9.3 84.9 37.75 10apso* 96 

 (* means the data are obtained from the references directly, # means the data are from the 
self-made programs according to the references. The unit of time is second.) 

Table 3: Results and comparison of f2 
Algo Time Min Max Mean Algo Mean

pso# 3.187 0 0.099 0.0164 8bpso* 150 

cpso1# 2510 0 0.061 0.0188 8tspso* 12 

cpso2# 192 0 0.064 0.0145 10spso* 0.0182

dacpso 4735 0 0.047 0.0134 10apso* 0.0232

dbcpso 1808 0 0.071 0.0182 11cpso* 0.0554

Table 4. Results and comparison of f3 
Algo Time Min Max Mean Algo Mean 

pso# 3.359 16.9 51.7 36.63 8bpso* 150 

cpso1# 2344 19.9 42.8 29.64 8tpso* 24 

cpso2# 180 17.9 64.7 33.64 8tspso* 18 

dacpso 4006 0 2.13*10^-14 4.26*10^-15 10apso* 24 

dbcpso 1780 0 1.6*10^-14 4.57*10^-15 12cpso* 0.00025

Table 5. Results and comparison of f4 
Algo Time Min Max Mean 

pso# 2.235 8.4*10^-12 4.34*10^-9 2.49*10^-10 

cpso1# 2403 1.72*10^-11 5.7*10^-10 1.82*10^-10 

cpso2# 181 3.41*10^-12 8.4*10^-10 1.19*10^-10 

dacpso 3619 2.35*10^-11 4.78*10^-10 1.54*10^-10 

dbcpso 1795 1.2*10^-11 1.1*10^-9 1.76*10^-10 

Table 6. Results and comparison of f5 
Algo Time Min Max Mean 

pso# 2.332 2.19*10^-27 1.35*10^-21 6.03*10^-23 

cpso1# 2483 1.02*10^-27 3.7*10^-22 3*10^-23 

cpso2# 165 6.96*10^-27 1.01*10^-20 3.15*10^-22 

dacpso 3927 6.15*10^-27 2*10^-22 2.64*10^-23 

dbcpso 1826 2.1*10^-27 1.11*10^-21 4.12*10^-23 

Known from the above results: (1)About computational time, 
although the time of dacpso and dbcpso increases with regards to 
the previous algorithms, they get better optimization results in 
Tables 2-6. Dacpso uses chaos iteration to all particles in the 
population, while dbcpso only uses chaos iteration to the particle 
with global best position, so dbcpso is faster than dacpso; 
(2)About optimization effect, for function f1, the results of dacpso 
and dbcpso algorithms are respectively 39.16 and 37.75, which are 
better than those of the references; for f2, the mean value of 
dacpso—0.0134 is smaller than the data of the references; for f3, 
dacpso and dbcpso  have notable solutions, their maximums and 
minimums are notably reduced from pso, cpso1 and cpso2. Their 
minimums reach theoretical optimum 0, and the order of 
magnitude of their mean value reaches 10^-15, which is much 
smaller than the best result of the references—0.00025; for f4, all 
the algorithms in tables are approximate; for f5, dacspo has better 
solutions than those of all the citing references. (3)About stability, 
for f1, the mean of cpso2 is approximate to dacpso and dbcpso, but 
the optimum range of cpso2 [1.3,127.4] is broader than those of 
dacpso and dbcpso, which indicates cpso2 algorithm has bigger 

   



randomness, and dacpso and dbcpso have better stability; for f2, 
the maximum of dacpso is smaller than those of cpso1 and cpso2, 
which means dacpso has higher stability; for f3, since the 
optimization effect of dacpso and dbcpso are much better than pso, 
cpso1 and cpso2, there is no need to compare the stability; for f4 
and f5, all the results of the tables are good. In short, for f1-f5, , 
there is at least one of dacpso and dbcpso better than the data of 
the citing references. 

4. CONCLUSIONS 
This paper analyzed the reason why pso can’t find the global best 
optimum and why the high precision of solution of cpso algorithm 
is hard to achieve, then proposes PSO algorithm based on 
divided-interval chaotic search—dacpso and dbcpso. They search 
purposely by dividing variable range to several intervals, and 
increase the precision of the solution. The experiment proves this 
algorithm is a more effective algorithm. 
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