
Particle Swarm Optimization Algorithm Based on

Divided-interval Chaotic Search
Qiushi Xu

Shenyang University of Technology
No.58 South Xinghua Street, Tiexi Dist.

Shenyang, 110023, P.R.China
wlss198089@sohu.com

Xiangdong Wang
Shenyang University of Technology,

No.58 South Xinghua Street, Tiexi Dist.
Shenyang, 110023, P.R.China
wangxd2007@163.com

ABSTRACT
Though chaotic particle swarm optimization algorithm lets
particles search in the whole variable space, the search scale is too
large and the high precision of solution is hard to achieve. This
paper proposes a particle swarm optimization algorithm based on
divide-interval chaotic search, it lets the particles search in the
selected interval, reduces the scope of the search space, and makes
the solution more approximate to the global optimum. And the
comparable experiment shows that the algorithm has preferable
results.

Keywords
Chaos; particle swarm optimization; divided-interval

1. INTRODUCTION
Due to the elicitation of the birds social behavior simulation in
artificial intelligence, Kennedy and Eberhart presented a
metaheuristic global optimization algorithm － particle swarm
optimization(PSO)[1]. PSO algorithm is a stochastic optimiza -tion
method based on swarm intelligence[2]. Its basic idea is that first
initialize a flock of stochastic particles, each particle is a feasible
solution of the optimization problem, and has a fitness value
determined by the objective function, and also has a velocity
vector to determine its flight direction and distance, then the
particles follow the current best particle to search in solution space,
the optimum is found through iteration. Based on the above work,
Shi and Eberhart presented a particle swarm optimization with
inertia weight[3], and introduced the inertia weight coefficient , it
made the exploration and exploitation ability reasonably
allocated. They also found dynamic inertia weight has better
search results than the fixed weight, and they used the linear
decrease inertia weight.

w

If any particle finds a better solution in PSO algorithm , all
particles update towards the best particle with the iteration formula

of velocity and position. Once the PSO algorithm finds an
optimum, it converges very fast, and is easy to be trapped in local
optimum, even increase the iteration number, the precision of
solution doesn’t increase. The PSO system has no mechanism to
definitely find the global optimum, because the particles search
randomly, then other particles follow the best particle. Therefore,
PSO needs improving and adding other factors to make the
particles find the solution more approximate to global
optimum Many authors presented methods to improve it, one
of them is to add the chaos method[4].

Because of the pseudo-randomness and ergodicity of chaos,
chaotic particle swarm optimization(CPSO) algorithm[5,6] should
make the particles jump out of the local optimum, and find a better
solution. However the existing CPSO algorithms are searching
in the whole space of the variable, the search scale is too large,
and the high precision of the solution is hard to achieve, so this
paper presents a particle swarm optimization algorithm based on
divided-interval chaotic search.

2 . ALGORITHM DESCRIPTION
2.1 Description of PSO
Each particle is treated as a point in a D-dimensional space, the
position of the ith particle is represented as 1 2(, ,...,)I i i iDX x x x= ;
The best previous position (the position giving the best fitness
value) of any particle is represented as 1 2(, ,...,)I i i iDP p p p= .The
index of the best particle among all the particles is represented by
the symbol g. The velocity of particle is represented as i

1 2(, ,...,)I i i iDV v v v= . The particles update their velocity and
position according to the following equations[7]:

1
1 1 2 2() (t t t t

id id id id gd idv v c r P x c r P x+ = + − + −)
1

 (1)
1t t t

id id idx x v+ += + (2)
Where and are 2 positive constants, and are 2
random numbers in the range [0,1].

1c 2c 1r 2r

Velocity equation of PSO with inertia weight[3] is:
1

1 1 2 2() (t t t
id id id id gd idv wv c r P x c r P x+ = + − + −)t (3)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Bionetics’07, Dec.10–13, 2007, Budapest, Hungary.
Copyright 2007 ICST 978-963-9799-11-0

Where is the inertia weight. w

This paper is supported by Science and Technology research key project of
Chinese Ministry of Education (205032).

Linear decrease inertia weight formula[3] is:
max min

max
max

w ww w T
T
−

= − (4)

Where , is respectively the minimum , maximum of ;
and are the current iteration, the maximal iteration.

maxw minw w
T maxT

2.2 Chaotic Search Description
1) Give the maximal chaotic variable iteration number M: give x
an initial value 0 0 0

0 1 2(, ,...,)nx x x x= , [,]i i ix a b∈ , calculate the

optimized function *
0()f f x= , and use

0 0() /(i i i i it x a b a= − −) to transfer x ’s range from the original

range to the chaotic variable’s range [0,1], let k＝0,i= 1…n , k

is the chaotic variable iteration number, n is the dimension of

variable x ; 2)This paper takes Logistics chaos equation as an
example to use chaos iteration ; 3) Use 1 4 (1)k k

i it t t+ = − k
i

11 ()k k
i i i i ix a b a t+ += + − to transfer x ’s range from [0,1] to the

original range; 4) While , if k M< 1()k *f x + < f , let * 1kx x += ,
; (* 1()kf f x += f is the corresponding best function value of

chaotic variable); if 1 *()kf x f+ ≥ , *x and *f aren’t changed;
and let k＝k+1, turn to step 2.

2.3 Description of CPSO
Cpso1 algorithm[5] introduces a chaotic variable x in PSO, using
chaos iteration to update each particle’s position. Compare the
function value of chaos iteration with each particle’s
corresponding function value

1()c kf x +

*f , if 1()c k *f x + < f , then turn the
variable of chaos iteration to the variable range, take the variable
value and function value of chaos iteration to replace *x and *f ;
If 1 *()c kf x f+ ≥ ， *x and *f don’t change. Then continue the chaos
iteration until reach the max loop number. And cpso2
algorithm[6] uses chaos iteration to optimize the global best
particle after introducing the variable x .

Cpso1 uses chaos iteration to all particles rulelessly, only to find a
better solution, while cpso2 uses chaotic search to update the
global best position directly, then use the velocity iteration
formula to make all particles move to the global best position,
which could make the particles find the optimum more quickly.
The chaotic search is used in the whole variable space, so it should
make the algorithm jump out of the local optimum, and make the
particles move towards the optimum.

2.4 Description of PSO Algorithm Based on
Divided-interval Chaotic Search
As the CPSO algorithm is stochastic, the local optimum the
particle swarm gets may already be near the optimum, but chaos
makes the particles search in the whole space of variable, the
condition that the particles may be near the optimum hasn’t been
used, the search scale is too large and also prolongs the
convergence time, so the precision of the solution is too low.
Therefore, this paper presents a particle swarm optimization

algorithm based on divided-interval chaotic search: dacpso
(particle swarm optimization based on divided-interval chaotic
research to all particles’ position) and dbcpso(particle swarm
optimization based on divided-interval chaotic research to best
particle’s position). They can make CPSO algorithm search in the
selected interval, exclude the intervals with no optimum, decrease
the search scale, which makes the cpso algorithm find the solution
more approximate to the global best position.

Description of dacpso(and dbcpso) algorithm:
1)Divide the range of the variable into several intervals. If the
number of intervals is too big, the time will be increased. If the
number of intervals is too small, the high precision of the solutions
is hard to achieve. This paper chooses 11 intervals; 2) In each
interval use the cpso1(cpso2) algorithm, loop 100 times to get the
minimum of the optimized function; 3) In step 2’s results, choose
the interval in which the optimized function is minimal; 4) Use
cpso1 (cpso2) algorithm to get minimum in the selected interval,
loop 2000 times.

Pseudo-code of dbcpso:
initialize;
for i=1:iter %loop of cpso
{calculate the fitness of each particle;
update pbest and gbest according to postion of each particle;

for j=1:D {T(j,1)=(gbest(j)-xmin)/(xmax-xmin);}
for k=1:o %chaos begin

{for j=1:D
{T(j,k+1)=4*T(j,k)*(1-T(j,k));
xc(j)=xmin+(xmax-xmin)*T(j,k+1);}

 fc(k+1)=Rosenbrock(xc); %call function Rosenbrock
% to calculate the fitness of function

 if (fc(k+1)<gbestval) {gbest=xc;gbestval=fc(k+1);}
 } %chaos end

update velocity and position with the fomula;}%end of cpso

Wherein, iter is the iteration number of particle swarm, o is the
iteration number of chaos, D is the dimension of variable, T is the
chaos variable, [xmin,xmax] is the range of the variable，xc is the
chaos variable, fc is the fitness value of xc, gbest is the global best
position, gbestval is the fitness value of gbest.

3. ALGORITHM COMPARISON
3.1 Experiment Design
This paper chooses 5 benchmark functions to optimize, the
dimensions, search ranges, and theoretic minimums of these
functions are shown in Table 1.

Table 1. Dimension, range and optimum of benchmark
functions

Function Dim Range Variable Min

f1：Rosenbrock 30 [-100,100] Xi=1 0

f2：Griewank 30 [-600,600] Xi=0 0

f3：Rastrigin 30 [-5.12,5.12] Xi=0 0

f4：Ackley 30 [-32,32] Xi=0 0

f5：DeJong_f4 30 [-100,100] Xi=0 0

Their equations are：
1

2 2 2
1

1
1 (100() (1))

n

i i i
i

f x x x
−

+
=

= − +∑ − (5)

2

1 1

2 1 (/ 4000) cos(/)
nn

i
i i

if x
= =

= + −∑ ∏ x i

i

 (6)

2

1
3 (10 10cos(2))

n

i
i

f x π
=

= + −∑ x (7)

2

1 1

1 14 20exp(0.2) exp(cos(2))

20 exp(1)

n n

i i
i i

f x x
n n

π
= =

= − − −

+ +

∑ ∑ (8)

4

1
5

n

i
i

f ix
=

= ∑ (9)

3.2 Experiment Results and Analysis
We did 50 experiments for each algorithm on computer of
P4(2.67GHz)， 256MB memory to obtain the results of table 2-6.
Take maximal, minimal and mean value of every algorithm.
Where functions f1-f3 use the data from references [8-12] to
compare with the data this paper obtained, functions f4, f5 have no
reference to compare. The simulation environment is matlab7[13].

Pso algorithm adopts the PSO method with inertia weight[14].
8bpso denotes bpso[8], 9cpso denotes cpso[9], the rest may be
deduced by analogy.

The experiment parameters in this paper are: 2000 times PSO
iteration, population size is 30, 2000 times chaos iteration, the
inertia weight is:

min max max

min

(() /(1))* (1) ,
,

e e

e

i for i
for i

ω ω ω ω ω
ω

ω ω
− − − + ≤⎧

= ⎨ >⎩
where is the iteration number, i eω =1500, maxω =0.9, minω =0.4,

c1=c2=2, =maxv maxx /25, maxx is the maximum of the variable
range.

Table 2. Results and comparison of f1
Algo Time Min Max Mean Algo Mean

pso# 2.017 6.4 156.8 47.50 8spso* 140

cpso1# 2506 7.5 80.8 54.07 8tspso* 48

cpso2# 169 1.3 127.4 37.25 9spso* 51

dacpso 3915 4.7 85 39.16 9cpso* 42

dbcpso 1753 9.3 84.9 37.75 10apso* 96

 (* means the data are obtained from the references directly, # means the data are from the
self-made programs according to the references. The unit of time is second.)

Table 3: Results and comparison of f2
Algo Time Min Max Mean Algo Mean

pso# 3.187 0 0.099 0.0164 8bpso* 150

cpso1# 2510 0 0.061 0.0188 8tspso* 12

cpso2# 192 0 0.064 0.0145 10spso* 0.0182

dacpso 4735 0 0.047 0.0134 10apso* 0.0232

dbcpso 1808 0 0.071 0.0182 11cpso* 0.0554

Table 4. Results and comparison of f3
Algo Time Min Max Mean Algo Mean

pso# 3.359 16.9 51.7 36.63 8bpso* 150

cpso1# 2344 19.9 42.8 29.64 8tpso* 24

cpso2# 180 17.9 64.7 33.64 8tspso* 18

dacpso 4006 0 2.13*10^-14 4.26*10^-15 10apso* 24

dbcpso 1780 0 1.6*10^-14 4.57*10^-15 12cpso* 0.00025

Table 5. Results and comparison of f4
Algo Time Min Max Mean

pso# 2.235 8.4*10^-12 4.34*10^-9 2.49*10^-10

cpso1# 2403 1.72*10^-11 5.7*10^-10 1.82*10^-10

cpso2# 181 3.41*10^-12 8.4*10^-10 1.19*10^-10

dacpso 3619 2.35*10^-11 4.78*10^-10 1.54*10^-10

dbcpso 1795 1.2*10^-11 1.1*10^-9 1.76*10^-10

Table 6. Results and comparison of f5
Algo Time Min Max Mean

pso# 2.332 2.19*10^-27 1.35*10^-21 6.03*10^-23

cpso1# 2483 1.02*10^-27 3.7*10^-22 3*10^-23

cpso2# 165 6.96*10^-27 1.01*10^-20 3.15*10^-22

dacpso 3927 6.15*10^-27 2*10^-22 2.64*10^-23

dbcpso 1826 2.1*10^-27 1.11*10^-21 4.12*10^-23

Known from the above results: (1)About computational time,
although the time of dacpso and dbcpso increases with regards to
the previous algorithms, they get better optimization results in
Tables 2-6. Dacpso uses chaos iteration to all particles in the
population, while dbcpso only uses chaos iteration to the particle
with global best position, so dbcpso is faster than dacpso;
(2)About optimization effect, for function f1, the results of dacpso
and dbcpso algorithms are respectively 39.16 and 37.75, which are
better than those of the references; for f2, the mean value of
dacpso—0.0134 is smaller than the data of the references; for f3,
dacpso and dbcpso have notable solutions, their maximums and
minimums are notably reduced from pso, cpso1 and cpso2. Their
minimums reach theoretical optimum 0, and the order of
magnitude of their mean value reaches 10^-15, which is much
smaller than the best result of the references—0.00025; for f4, all
the algorithms in tables are approximate; for f5, dacspo has better
solutions than those of all the citing references. (3)About stability,
for f1, the mean of cpso2 is approximate to dacpso and dbcpso, but
the optimum range of cpso2 [1.3,127.4] is broader than those of
dacpso and dbcpso, which indicates cpso2 algorithm has bigger

randomness, and dacpso and dbcpso have better stability; for f2,
the maximum of dacpso is smaller than those of cpso1 and cpso2,
which means dacpso has higher stability; for f3, since the
optimization effect of dacpso and dbcpso are much better than pso,
cpso1 and cpso2, there is no need to compare the stability; for f4
and f5, all the results of the tables are good. In short, for f1-f5, ,
there is at least one of dacpso and dbcpso better than the data of
the citing references.

4. CONCLUSIONS
This paper analyzed the reason why pso can’t find the global best
optimum and why the high precision of solution of cpso algorithm
is hard to achieve, then proposes PSO algorithm based on
divided-interval chaotic search—dacpso and dbcpso. They search
purposely by dividing variable range to several intervals, and
increase the precision of the solution. The experiment proves this
algorithm is a more effective algorithm.

5. REFERENCES
[1] Kennedy, J., Eberhart, R. Particle Swarm Optimization [C].

In： IEEE Int Conf on Neural Network. Perth.Australia.
1995：1942-1948.

[2] Lu Kezhong,Wang Ruchuan,Shuai Xiaoying. Improving
Particle Swarm Optimization by keeping particles activity.
Computer Engineering and Applications[J], 2007,43(11): 35-
38.

[3] Shi Y, Eberhart RC. A modified particle swarm optimizer.
In:Proc. Of the IEEE Int Conf of Evolutionary Computation.
Piscataway:IEEE Press,1998:69-73.

[4] Li Bing, Jiang Weisun, Chaos optimization method and its
application, Control Theory and Applications[J], 1997,14 (4):
613-615.

[5] Dai Dongxue, Wang Qi, Ruan Yongshun etc. Chaos-based
particle swarm optimiztion algorithm and its application,
Huazhong Univ. of Sci.&Tech.(Nature Science Edition)[J],
2005,33(10):53-55,82.

[6] Zhang Jinsong, Li Qiqiang, Wang Zhaoxia. Hybrid particle
swarm optimization based on chaos search, Journal of
Shandong University (Engineering Science) [J],2007,37(1):
47-50.

[7]Yuhui Shi, Russell Eberhart, A modified particle swarm
optimizer, Proceedings of the IEEE Conference on
Evolutionary Computation, ICEC, 1998 :69-73

[8] Hu Wang, Li Zhishu. A more simple and effective particle
swarm optimization algorithm, Journal of Software[J],
2006,18(4):861-868.

[9] Meng Hongji, Zheng Peng, Mei Guohui. Particle swarm
optimization algorithm based on chaotic series, Control and
Decision[J], 2006,21(3):263-266.

[10] Xiao-Feng Xie,Wen-Jun Zhang, Zhi-Lian Yang. Adaptive
Particle Swarm Optimization on Individual Level, Proceedings
of IEEE ICSP’02 2002:1215-1218

[11] Keiji Tatsumi, Syuhei Sasaki, Tetsuzo Tanino.Chaotic
Particle Swarm Optimization Method Exploiting Sinusoidal
Perturbations, SICE-ICASE International Joint
Conference,2006:6013-6016.

[12] Yang Junjie, Zhou Jianzhong, Yu Jing. Particle swarm
optimization algorithm based on chaos searching, Computer
Engineering and Applications[J],2005(16): 69-71.

[13] Zhang Zhiyong etc.,Master matlab6.5[M], Bei Hang
University press, 2003.

[14] Brian Birge, PSOt-a Particle Swarm Optimization Toolbox
for use with Matlab.IEEE Swarm Intelligence Symposium
Proceedings, 2003:182-186.

