
On Modeling of Self-organizing Systems∗

Richard Holzer
University of Passau

Innstrasse 43
94032 Passau

Germany
holzer@fim.uni-passau.de

Hermann de Meer
University of Passau

Innstrasse 43
94032 Passau

Germany
demeer@fim.uni-passau.de

ABSTRACT
A goal of computing and networking systems is to limit ad-
ministrative requirements for users and operators. A tech-
nical systems should be able to configure itself as much as
possible to increase the usability. This leads to the design
of self-organizing systems. Self-organizing systems emerge
as an increasingly important area of research, not only for
computer networks but also in many other fields. For ana-
lyzing properties of complex systems, a mathematical model
for these systems may be useful. Whether a model with dis-
crete time or with continuous time fits better, depends on
the properties of the system and which analysis should be
done in the model. In this paper we give a comparison be-
tween discrete and continuous models and we give a formal
definition for modeling continuous complex systems. Then
this theory is applied to model slot-synchronization in wire-
less networks.

Categories and Subject Descriptors
I.6.5 [Model Development]: Modeling methodologies

General Terms
Modeling Systems

Keywords
Self-Organization, Mathematical modeling, Systems

1. INTRODUCTION
In computing and networking systems, self-organization

becomes more and more important. Self-organization can-
not only reduce administrative requirements and configura-
tion work, but a self-organizing system should also be able

∗The presented work has been supported by the EU
projects Euro-NF (NoE, FP7, ICT-2007-1-216366) and Au-
toI (STREP, FP7, ICT-2007-1-216404).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008 September 23 - 25, 2008, Turin, Italy
Copyright 2008 ACM 978-963-9799-34-9 ...$5.00.

to detect and correct failures automatically if possible. An-
other trend in networked systems is to distribute the network
control and data among the entities of a network such that
the system becomes more independent of centralized servers
and control instances.

A non-technical overview of self-organizing systems can be
found in [6]. Self-organization can be seen as the increase
of coherence or as the decrease of statistical entropy. The
main properties of self-organization are:

• Autonomy: Nearly no external control is needed for
the system.

• Emergence: Local interactions induce the creation of
globally coherent patterns.

• Adaptivity: Changes in the environment have only a
small influence on the behavior of the system.

• Decentralization: The control of the system is not done
by a single entity or by just a small group of entities,
but by all entities of the system.

Other definitions and properties of self-organizing systems
can be found in thermodynamics [10], synergetics [5], infor-
mation theory [11] and cybernetics [13], [1], [2], [7]. A good
overview about modeling complex systems can be found in
[3]. For modeling discrete self-organizing systems see [8].

In this paper section 2 gives a comparison between con-
tinuous modeling and discrete modeling with respect to self-
organization. Section 3 proposes a formal method for the
modeling of continuous systems. In section 4 we apply the
definitions of section 3 to model the algorithm of [12] for
slot-synchronization in wireless networks. Section 5 con-
cludes this paper.

2. DISCRETE VERSUS CONTINUOUS
When we design a model for a complex system, then we

first have to check, which parts of the system should be
modeled discrete, and which parts should be modeled con-
tinuous. There are four major parts, where this decision
has a large impact on the design and on the behavior of
the model. They are: time, object set, states of objects,
interaction.

In a model with discrete time, we only consider a finite or
countable number of steps in time, so a model with discrete
time usually is used, when behavior is event driven, i.e. for
the time between two events there is no need to model any-
thing of the system, so only the (finite or countable) events
appear in the model. A model with continuous time usually

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUTONOMICS 2008, September 23-25, Turin, Italy
Copyright © 2008 ICST 978-963-9799-34-9
DOI 10.4108/ICST.AUTONOMICS2008.4671

is used, when changes in the system do not occur in form of
events, but every time.

In a model with a discrete object set, we only consider a
finite or countable number of objects, which are interacting
with each other. If the number of objects is uncountable,
a continuous object set can be used in the model. Also if
the number of objects is finite, but very large, such that an
analysis of a system with a discrete object set would be very
difficult (e.g. if the objects are the elementary magnets of
a metal plate), then it might be more convenient to use a
continuous object set.

In a model with discrete states of objects, at each point
of time each object is in one of a finite or countable set of
states. The future behavior of an object (change of state,
interaction to other objects) depends on the state of the ob-
ject. States can for example be used to store information
about the input, which the objects got from other objects
or from the environment in the past. Even if there are un-
countable many states of the object in the real world, it
might be better to use a discrete set of states if only finite
or countable information is needed to describe the behavior
of the object. Only if such a discrete set does not suffice
to store the needed information, a continuous set of states
might be the better choice for the model.

In a model with discrete interaction, each object can inter-
act at each point of time with only finite or countable many
other objects. If an interaction occurs not only between fi-
nite or countable many objects, but everywhere in the space
(e.g. gravitation force of a planet), then the interaction is
continuous. In a model with discrete interaction, the inter-
action can be seen as the usage of communication channels:
Each communication channel connects two objects, and an
interaction can be described as the transfer of data through
this channel. A continuous interaction can also be seen as a
force or an impression of one object to other objects.

While section 3 of this paper uses continuous methods
for modeling systems, [8] describes how discrete methods
can be used to model systems. In [8], graphs are used to
describe which objects can communicate with which other
objects. Each node in the graph represents one object and
each edge represents one communication channel. The be-
haviors of the objects are described by stochastic automa-
tons. Since the time is discrete in [8], each automaton has a
clock, which defines, when the successor state will be com-
puted. Modeling with discrete methods has the advantage
that a concept of the information theory can be used to
quantify the information of data: Entropy. For a discrete
random variable X taking values from a set W the entropy
[4] is H(X) = −

∑
w∈W

P (X = w) log2 P (X = w). The en-

tropy is a measure for the average number of bits, which
are needed for an optimal encoding of the information. The
entropy can also be seen as a measure of uncertainty: high
entropy for the system means that nearly no information is
known in advance and a low entropy means that nearly all
information is known in advance. With this concept, many
things of the systems can be measured:

• How much information is contained in the whole sys-
tem at time t?

• How much control data is needed from the environ-
ment to compute the next configuration during the
run of the system?

• How much information is processed by one object in a
single step?

• Which dependencies appear in the communication be-
tween the objects?

In discrete systems, the entropy can be used to answer these
questions. In [8], formal definitions of the level of autonomy
and level of emergence are given. Since the measurement of
information with the entropy can only be applied to discrete
systems, these definitions cannot be translated into the the-
ory of continuous modeling. On the other way, continuous
models are usually much smoother than the corresponding
discrete models, because in a continuous model the whole
behavior is described by differential equations, while in a
discrete model each single step of the automatons must be
described. It would also be very difficult to compute the
entropy of a large system.

Concerning the example in section 4, the definitions of [8]
also show that the system is autonomous and it has a high
level of emergence. Adaptivity and decentralization have
not been formally defined in [8].

3. MODELING CONTINUOUS SYSTEMS
In this section we give a mathematical definition for mod-

eling systems. The time and the state set are modeled con-
tinuously. For the object set and the interactions, it depends
on the system to be modeled, whether they should be mod-
eled discrete or not. The definitions in this section can be
applied for both cases. For modeling systems with discrete
time and discrete state sets see [8].

A system consists of a set of objects V , which can interact
with each other, i.e. at each point of time t ∈ R+

0 each object
v ∈ V can send information to other objects. These objects
can be of technical nature (e.g. computers connected by a
LAN), of biological nature (e.g. a colony of ants) or of other
kind. At each point of time t ∈ R+

0 each object v ∈ V of the
system has a current state, which can change over the time.
A state transition within an object depends on the current
object state and interactions with other objects.

To describe also nondeterministic behavior of objects, we
assume that we have a probability space Σ = (Ω,A, P),
where Ω is the set of all random events, A is a σ-algebra
and P : A → [0, 1] is a probability measure on A. This
probability space will be used to describe all random events
of the objects occurring during the time. If each object
v ∈ V has its own probability space Σv, which is independent
of the probability spaces of the other objects, then we can
use the product space Σ =

∏
v∈V

Σv. If there are independent

probability spaces Σv,t for each point of time t ∈ R+
0 , then

we can use the product space Σ =
∏

v∈V,t∈R+
0

Σv,t. A random

map between two sets A, B is a family g = (gω)ω∈Ω of maps
gω : A → B. We use also the notation g : A → B for random
maps, i.e. g is seen as a map, which depends on the random
event. Analogously, a random set C = (Cω)ω∈Ω is seen as
a set, which depends on the random event. Now we give a
formal definition of the mathematical model of systems.

Definition 1. Let Σ = (Ω,A, P) be a probability space.
A continuous system S = (V, S, A, λ, f, h) consists of

• a set V , where the elements of V are called objects of
the system;

• a family S = (Sv)v∈V of sets, where each set Sv is a
subset of a normed vector space; the elements of Sv are
called states of the object v;

• a set A, which is called alphabet;

• a family λ = (λv)v∈V of random maps λv : Sv × V →
A, where λv is called output map of the object v.

• a family f = (fv)v∈V of random maps fv : AV ×Sv →
Sv, where fv is called change map of the object v.

• a family h = (hv)v∈V of random maps hv : AV ×Sv →
Sv, where hv is called hop map of the object v.

An initialization of the system S is a random variable I =
(Iω)ω∈Ω with Iω = (Iω

v)v∈V ∈
∏

v∈V

Sv for all ω ∈ Ω.1

A family (sv)v∈V of random maps sv : R+
0 → Sv is called

behavior of S with respect to an initialization I ∈
∏

v∈V

Sv, if

for all v ∈ V

(B1) sv(0) = Iv,

(B2) sv is left-continuous,

(B3) {t ∈ R+
0 | sv is not differentiable in t } is a discrete

random set,

(B4) for each t ∈ R+
0 , for which sv(t) is differentiable, we

have ṡv(t) = fv((λw(sw(t), v))w∈V , sv(t)),

(B5) lim
p↘t

sv(p) = sv(t)+hv((λw(sw(t), v))w∈V , sv(t)) for t ∈

R+
0 .

The behavior of the system describes for each object v ∈ V
and each point of time t ∈ R+

0 the current state sv(t) of the
object v. The initialization defines the states at time t = 0.
The output map λv defines the value λv(s, w) that the object
v sends to the object w, when v is in the state s. The change
map fv describes how the state s ∈ Sv continuously changes
during the time. fv can be seen as the derivation ṡ of the
state with respect to the time in dependency of the local
inputs from other objects: For each object w ∈ V , the object
w can send some data xw ∈ A to the object v, so the object
v receives at the current point of time t ∈ R+

0 a family
x = (xw)w∈V ∈ AV of values. If the current state of the
object v is s, then f(x, s) describes the direction, in which
the state is currently moving: f(x, s) = ṡ. The hop map hv

describes the changes of the state, whenever the state is not
continuous, i.e. hv(x, s) can be seen as the value that has to
be added to s to get the new state after receiving the local
input x, so we have the new state snew = s + hv(x, s). Since
the time is not discrete, we have no “successor state” like in
the discrete case (see [8]), so snew is only the limit from the
right: snew = lim

p↘t
sv(p), where t is the current point of time.

Note that the output map λv cannot depend on the cur-
rent input of the other objects, because if we would define
λv as a random map from AV ×Sv×V to A, then this would
mean that the value that is sent from an object v ∈ V to
another object w ∈ V at time t ∈ R+

0 depends on the value
that is sent from the object w to v at the same time t and
vice versa. Obviously this would lead to problems, so λv

1We also use the notation I ∈
∏

v∈V

Sv.

can only depend on the current state but not on the current
input values from other objects. But it is still possible to
model the situation that v sends a new value b ∈ A to the
object w after it received a certain value a ∈ A from w by
changing the state with the hop map hv. Then the output
map λv can be used to send the new value to w, since λv

depends on the state.
It could also be possible to restrict the interactions, e.g.

if some objects in the real world are too far away, such that
a direct communication is not possible. This could be mod-
eled by a graph, where the edges describe the possible com-
munication channels. In [8] this has been done for discrete
modeling. But since many systems in the real world (e.g.
ant colonies) are not static, the graph could change during
the time. This is the reason why we do not use a graph
for the modeling. The problem of missing communication
channels can be solved by using a special symbol null ∈ A
for “no communication”.

From Definition 1, it can easily be seen from the hop map
hv, in which situations the behavior sv of the object v is not
continuous:

Lemma 2. Let S be a system, s be a behavior and t ∈ R+
0 .

The following conditions are equivalent:

• sv is continuous at time t.

• hv((λw(sw(t), v))w∈V , sv(t)) = 0

4. MODELING SLOT-SYNCHRONIZATION
In this section we apply the definitions of the previous sec-

tion to model an algorithm for self-organized slot-synchronization
in wireless networks [12]. In such a network, we have some
objects which can communicate with the other objects. For
this communication, the time is divided into time slots.
Since there is no central clock, which defines when a slot
begins, the objects need to apply a slot synchronization. An
algorithm for this slot synchronization is proposed in [12]. It
is based on the model of pulse-coupled oscillators by Mirollo
and Strogatz [9]. The clock of each object is described by a
phase function φ which starts at 0 and increases over time
until it reaches the threshold value φth = 1. The object
then sends a “firing pulse” to its neighbors for synchroniza-
tion. After receiving the firing pulse, the other objects ad-
just their own phase functions by adding ∆φ := (α−1)φ+β
to φ, where α > 1 and β > 0 are constants.

In [12] delays (e.g., transmission delay, decoding delay)
are introduced into this algorithm. Let T > 0 be a constant.
The duration of an uncoupled period (i.e. if no pulses are
received from other objects) is 2T . Now this period is di-
vided into four states (see Figure 1). Let γ ∈ [0, 2T] be a
time instant. Then the object is in a

• waiting state, if γ ∈ [0, Twait) =: Iwait

• transmission state, if γ ∈ [Twait, Twait + TTx) =: ITx

• refractory state, if γ ∈ [Twait + TTx, Twait + TTx +
Trefr) =: Irefr

• listening state, if γ ∈ [Twait + TTx + Trefr, 2T) =: IRx

where the constants are defined as follows:

• TTx: Delay for the transmission of a value.

Figure 1: State diagram

• Twait: Waiting delay after the phase function reached
the threshold. The transmission of the firing pulse
begins after this delay. The waiting delay is defined by
Twait = T − (TTx + Tdec), where Tdec is the decoding
delay, i.e. the time that an object needs to decode a
received value.

• Trefr: Refractory delay after the transmission of the
firing pulse to avoid an unstable behavior.

Define TRx = 2T − Twait − TTx − Trefr. Then TRx is the
duration of an uncoupled listening state. This is the only
state, in which firing pulses from the neighbors can be re-
ceived and decoded, and the phase function is changed only
during the listening state. We assume that each of these
durations Twait, TTx, Trefr, TRx is less than T .

The continuous system S = (V, S, A, λ, f, h) contains a
(finite) set V for the objects of the system. For the alphabet
we use A = {0, 1} to describe the firing pulses between the
objects (0 means not firing and 1 means firing).

For an object v ∈ V , we store the following data in the
current state s ∈ Sv:

• the current value of the phase function φ ∈ [0, 1],

• the position in the cycle γ ∈ [0, 2T],

• some information D = (Dw)w∈V about the decoding
delays for the received pulses. When a firing pulse is
received at the object v from another object w during
the interval IRx, then the value Dw is initialized with
Tdec. After the transmission of the pulse is finished,
Dw decreases during the time. When Dw reaches the
value 0, then the decoding of the pulse is finished, and
the phase function φ is adjusted by adding ∆φ = (α−
1)φ + β. Negative values for Dw are used to indicate
that the value is irrelevant, since the phase function
has already been adjusted according to the received
pulse of w. Also in the other intervals Iwait, ITx, Irefr

we use a negative value for Dw to indicate the irrele-
vance.

Therefore, a state s ∈ Sv is a triple s = (φ, γ, D).
Now let us consider the output map λv. Only the interval

ITx is used for the transmission, so during this interval, the
output value 1 is sent to all other objects w ∈ V . During
the intervals Iwait, IRx, Irefr there is no pulse, so the output
value 0 is sent to all other objects.

The change map fv describes the derivation ṡ of the state
s. Let us first consider the intervals Iwait, ITx, Irefr: Dur-
ing these intervals, the phase function stays constant 0, so
φ̇ = 0. Also the value Dw for w ∈ V can stay constant at a

negative value, so Ḋw = 0. Only the variable γ is changed.
Since γ is the time elapsed since the beginning of the cycle,
we have γ̇ = 1. During the interval IRx we have a differ-
ent change of the state: In this interval, the phase function
φ increases uniform (if no pulses arrive from other objects)
until the threshold is reached. For an uncoupled system, the
threshold φth should be reached at the end of the listening
period, so during the interval of length TRx the phase func-
tion φ grows linearly from 0 to 1, which implies φ̇ = 1

TRx
.

The value γ still grows with gradient γ̇ = 1 like above. Dur-
ing a pulse xw = 1 of another object w ∈ V , the value Dw

stays constant at Tdec, so we have Ḋw = 0. After the end of
this pulse, Dw decreases with the gradient Ḋw = −1.

The hop map hv describes the changes of the state, when-
ever the state is not continuous. In Iwait, ITx, Irefr, the val-
ues φ and Dw for w ∈ V are constant and γ is continuous,
so in this case the hop map is 0. Now consider the interval
IRx. The value γ is still continuous. For a pulse from an-
other object w, the value Dw must be set to Tdec. Since the
hop map describes only the value that has to be added to
the old state, this can be done by adding −Dw +Tdec to the
old value Dw to get the new value Tdec. After the decoding
delay also an adjustment of φ has to be done. If the thresh-
old is not reached by this adjustment, this is done by adding
∆φ to the current value of φ for each pulse that has been
decoded, i.e. for Dw = 0. For Dw > 0, the pulse has not
yet been decoded, so the adjustment of φ need not be done
yet. Dw < 0 indicates irrelevance (either the adjustment has
already been done or no pulse has been received from w), so
also in this case no adjustment to φ has to be done. After
reaching the threshold φth = 1, the phase function must be
set to 0, and also γ must be initialized to 0 to begin the new
cycle. In this case we use the hop map to get into the state
(0, 0, (−1)w∈V).

Now we give a formal definition of these maps λv, fv, hv.
Let Sv = [0, 1]× [0, 2T]× (−∞, Tdec]

V and (φ, γ, D) ∈ Sv.
Definition of the output map λv:

• For γ ∈ Iwait ∪ Irefr ∪ IRx define λv(φ, γ, D, w) = 0.

• For γ ∈ ITx define λv(φ, γ, D, w) = 1.

Definition of the change map fv:

• For γ ∈ Iwait ∪ ITx ∪ Irefr define fv(x, φ, γ, D) =
(0, 1, (0)w∈V).

• For γ ∈ IRx define fv(x, φ, γ, D) = (1
TRx

, 1, (xw −
1)w∈V).

Definition of the hop map hv:

• For γ ∈ Iwait ∪ ITx ∪ Irefr define hv(x, φ, γ, D) =
(0, 0, 0).

• For γ ∈ IRx let φ′ = ∆φ · |{w ∈ V \ {v} | Dw = 0}|
with ∆φ := (α − 1)φ + β. For w ∈ V let D′

w =
−Dw + Tdec for xw = 1 and D′

w = 0 for xw = 0.
Let hv(x, φ, γ, D) = (φ′, 0, D′) for φ + φ′ < 1 and
hv(x, φ, γ, D) = (−φ,−γ, (−Dw − 1)w∈V) for φ + φ′ ≥
1.

The following Theorem shows that we have successfully
modeled the system of [12].

Theorem 3. For each initialization I, the system described
above has exactly one behavior s = (sv)v∈V . The value γ of

the current state sv(t) for an object v runs cyclic through
the intervals Iwait, ITx, Irefr, IRx. After the end of the first
cycle, the states (φ, γ, D) = sv(t) of the behavior have the
following properties:2

1. In each cycle, γ starts at 0 and grows linearly with
γ̇ = 1 until the end of the cycle and then restarts at 0.

2. During the intervals Iwait, IRx, Irefr, the object v does
not send a pulse.

3. During the interval ITx, the object v sends a pulse.

4. During the intervals Iwait, ITx, Irefr, the phase func-
tion φ is constant 0.

5. During the intervals Iwait, ITx, Irefr, the value Dw is
constant −1.

6. If the interval IRx starts at time t (i.e. γ = Twait +
TTx + Trefr) then φ is continuous in t.

7. During the interval IRx, if φ = 1, then the current
cycle ends and the next cycle starts.

8. During the interval IRx with 0 < φ < 1, the phase
function φ is not differentiable at time t iff sv(t−Tdec)
was a listening state and a pulse from another object
w ended at time t− Tdec.

9. During the interval IRx, if the phase function φ is dif-
ferentiable, then φ̇ = 1

TRx
.

10. If a pulse from another object w ∈ V ends during the
interval IRx of the object v and sv(t+Tdec) is still in the
listening state, then the phase function φ is adjusted by
adding ∆φ to φ (if the new value is smaller than 1) at
time t + Tdec. This is done for each object w 6= v,
for which the pulse ends at time t. If the new value is
greater or equal to 1, then the current cycle ends and
the next cycle starts.

11. During the interval IRx the value Dw decreases lin-
early with gradient −1 during the time, where no pulse
arrives from w.

12. During the interval IRx the value Dw is constant Tdec

during the time, where a pulse arrives from w.

Proof. A formal proof of this theorem would be out of
scope of this paper, but it is straight forward to check the
following conditions:

• Every behavior of S satisfies the properties 1-12, be-
cause of the definitions of λv, fv and hv of S.

• The random maps sv for v ∈ V are uniquely deter-
mined by the initialization and the properties 1-12,
i.e. for a given initialization, there is only one family
of random maps s = (sv)v∈V satisfying 1-12, because
these properties describe the whole course of the ran-
dom maps.

• For each random map sv that satisfies 1-12, the prop-
erties (B2)-(B5) of Definition 1 are also satisfied.

After verifying these conditions, the assertion of this theo-
rem can be easily deduced.
2If we assume a meaningful initialization, these properties
are also satisfied during the first cycle.

The simulation results in [12] show that during the run of
the system, groups of synchronizations are built, i.e. inside
each group we have good synchronization (each object of the
group fires at nearly the same time like the other objects of
the group), and if we wait long enough, then there are only
two groups left firing T time units apart from each other.

This system satisfies the four main properties of self-or-
ganization:

• The system is autonomic, because no external control
is needed.

• The synchronization of the objects is emergence, since
this is a global property of the system, which is induced
by the local interactions.

• The system is adaptive to small changes in the envi-
ronment (adding more objects, removing some existing
objects, etc.).

• The control of the system is completely decentralized.

5. CONCLUSION AND FUTURE WORK
For analyzing properties of complex systems, the real world

system can be transformed into a mathematical model. In
this paper we compared continuous modeling with discrete
modeling and we gave a formal definition for modeling con-
tinuous complex systems. Then this theory has been applied
to model the slot-synchronization algorithm of [12].

While a level of autonomy and the level of emergence can
be defined formally in discrete systems (see [8]) with the
concept of entropy, it is still an open problem, how they can
be defined formally for continuous systems. Also a formal
definition of the level of adaptivity and the level of decen-
tralization is left for future work.

6. REFERENCES
[1] W. R. Ashby. Principles of Self-organization, chapter

Principles of the Self-organizing System, pages
255–278. Pergamon, 1962.

[2] S. Beer. Decision and Control: The Meaning of
Operational Research and Management Cybernetics.
John Wiley & Sons, Inc., 1966.

[3] N. Boccara. Modeling Complex Systems.
Springer-Verlag, 2004.

[4] T. M. Cover and J. A. Thomas. Elements of
Information Theory. Wiley, 2nd edition, 2006.

[5] H. Haken. Self-organizing Systems: An
Interdisciplinary Approach, chapter Synergetics and
the Problem of Selforganization, pages 9–13. Campus
Verlag, 1981.

[6] F. Heylighen. The science of self-organization and
adaptivity. In in: Knowledge Management,
Organizational Intelligence and Learning, and
Complexity, in: The Encyclopedia of Life Support
Systems, EOLSS, pages 253–280. Publishers Co. Ltd,
2003.

[7] F. Heylighen and C. Joslyn. Cybernetics and second
order cybernetics. Encyclopaedia of Physical Science &
Technology, 4:155–170, 2001.

[8] R. Holzer, H. de Meer, and C. Bettstetter. On
autonomy and emergence in self-organizing systems.
In IWSOS 2008. Springer, 2008. Submitted.

[9] R. Mirollo and S. Strogatz. Synchronization of
pulse-coupled biological oscillators. SIAM Journal of
Applied Mathematics, 50:1645–1662, 1990.

[10] G. Nicolis and I. Prigogine. Self-Organization in
Non-Equilibrium Systems: From Dissipative Structures
to Order Through Fluctuations. Wiley, 1977.

[11] C. R. Shalizi. Causal Architecture, Complexity and
Self-Organization in Time Series and Cellular
Automata. PhD thesis, University of
Wisconsin-Madison, 2001.

[12] A. Tyrrell, G. Auer, and C. Bettstetter. Biologically
inspired synchronization for wireless networks. In
F. Dressler and I. Carreras, editors, Advances in
Biologically Inspired Information Systems: Models,
Methods, and Tools, volume 69 of Studies in
Computational Intelligence, pages 47–62. Springer,
2007.

[13] H. von Foerster. Self-Organizing Systems, chapter On
Self-Organizing Systems and their Environments,
pages 31–50. Pergamon, 1960.

