

David Linner†, Heiko Pfeffer†, Carsten Jacob*, Anna Kress*, Steffen Krüssel*, Stephan Steglich†
†Technische Universität Berlin,

Sekr. FR 5-14, Franklinstrasse 28/29, 10587 Berlin, Germany
{ david.linner|heiko.pfeffer|stephan.steglich}@tu-berlin
*Fraunhofer Institute for Open Communication Systems (FOKUS),

Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
{carsten.jacob| anna.kress|steffen.kruessel|}@fokus.fraunhofer.de

ABSTRACT
The combination of mobile and embedded computing devices
holds potential for a novel landscape of application and services in
the direct surrounding of the user. The realization of such a
landscape requires solutions to cope with the volatile nature of the
environment composition, the absence of central management
infrastructure, and the heterogeneity of resources. To unburden
developers of application services from searching these solutions
themselves, we started developing a generic software framework
called SmartWare. SmartWare is a collection of principles and
tools that are intended to simplify and accelerate the development
of application services at the edge of the Internet and beyond. In
this paper we describe the features of SmartWare, a prototype
implementation and a test application we realized with the
framework prototype.

Categories and Subject Descriptors
D.2.11 [SOFTWARE ENGINEERING]: Software Architecture
- domain-specific architectures, Patterns (e.g., client/server,
pipeline, blackboard), Data abstraction

General Terms
Management, Design, Reliability, Experimentation

Keywords
Autonomic Communication, Application Services, Service-
oriented Architecture, Distributed Systems

1 INTRODUCTION
Small, wireless sensing and terminal devices change the face of
computing environments. Their ubiquity, their richness in
resources and function, and their configurability in purpose and
behavior opens new ways for the design of distributed systems
and services. We investigate the challenges and opportunities of
service platform architectures at the edge of the internet, being
neither always connected to global networking infrastructures nor

completely detached in physical and intentional terms. In this
context, wanted and unwanted disconnections of single devices or
groups of devices from major management infrastructures
represent the central problem to be solved. Creating a platform for
intelligent, goal-driven user services, which tolerates the transient
absence of a central control, means to give all constituting host
devices the capability to autonomically cope with changes in the
computing environment and user needs. With SmartWare we
designed a platform to experiment with principles of autonomic
communication at application level.

The description of SmartWare comprises two major parts, a model
that describes a set of generic components, their purposes, and
interworking, as well as a runtime environment for services
compliant with the component model. In this regard, the definition
the concept ‘service’ follows the definition of the Service-oriented
Architecture (SOA) community. The SOA service pattern and the
loose coupling of service consumer and provider have proven as
appropriate for dynamic environments.

The remainder of this paper is organized as follows. Section 2
defines a number of requirements that were particular important
for the definition of our SmartWare approach. An overview and
the basic concepts of SmartWare are introduced in Section 3.
Section 4 details the realization of SmartWare. Section 5 covers
the show case “Pong Reloaded” that serves as an illustration of
the depicted concepts. Related middleware approaches are
described in Section 5 and a conclusion and an outlook are given
in Section 7.

2 REQUIREMENTS
Looking at the topology of today’s networks, neither a pure
infrastructure based model nor a pure ad hoc model seems to be
an appropriate assumption. On the one hand, the rapid emergence
of small and portable computing devices entails highly dynamic
network structures, where mobile devices meet spontaneously and
establish ephemeral groups. On the other hand, wireless internet
connections are increasingly spanning crowded places while the
respective costs for accessing the Web are descending. In the
following, those fluently merging networks we face today are
referred to as hybrid networks, characterized by an increasing
device availability and heterogeneity. Moreover, dynamic as well
as infrastructure based device interaction has to be covered, while
mobile devices should nevertheless be able to profit from phases
of connectivity to infrastructure-based networks.

Thus, for developing the core of the SmartWare framework, four
key requirements have been derived:

SmartWare – Framework for Autonomic
Application Services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
This work was supported by the EU within the framework of the
BIONETS project EU-IST-FET-SAC-FP6-027748, www.bionets.eu
Conference: Autonomics 2008, September 23 - 25, 2008, Turin, Italy
Copyright © 2008 ICST ISBN # 978-963-9799-34-9.

create-net
Typewritten Text

create-net
Typewritten Text

create-net
Typewritten Text

fezzardi
Text Box

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUTONOMICS 2008, September 23-25, Turin, Italy
Copyright © 2008 ICST 978-963-9799-34-9
DOI 10.4108/ICST.AUTONOMICS2008.4618

First, the framework has to be extensible to make it adaptable to
changing requirements. Some functionality is supposed to be
provided by the middleware on-top, e.g., state management as
mentioned above, but the need for additional features depends on
the particular application domain. Furthermore, requirements will
change due to new developments making new functionality
available or existing functionality redundant.

Second, a lightweight solution and the regard for device resources
to ensure support for multiple hardware platforms is an important
requirement. Special attention needs to be put on resource-
constrained devices.

Third, the support for the autonomic behavior of the devices is
important in terms of accessing the own device and service state,
bootstrapping mechanisms, or the full control of services and
components.

Fourth, in the realization process standardized communication
protocols need to be preferred to ease the connection to existing
technologies and also benefit from future developments.
Furthermore, addressing local and remote resources is to be
supported in a uniform and unique manner also minimizing the
communication overhead.

3 ARCHITECTURE
The architecture is described from two points of view, one is
focused on basic components, the SmartWare Component Model,
and the other explains the runtime system, the SmartWare
Runtime Environment. The model introduces the basic framework
elements application developers should use to design their
applications and services. The Runtime Environment describes in
detail which functions application developers can make use of
when implementing their applications.

3.1 SmartWare Component Model
The SmartWare is built on the notion of abstracting physical and
virtual devices by nodes. This abstraction is given in two
configurations, the standard node configuration and the tiny node
configuration. Latter is tailored to physically limited hardware
equipment, i.e., it comprises less features. However, devices with
standard node configuration may proxy advanced features for
devices with tiny node configuration. The component model,
which is depicted in Figure 1, describes the SmartWare
framework from a structural point of view by introducing the
kinds of active entities and their basic interrelation.

SmartWare distinguishes between three basic component types
and respective containers: Services, management entities referred
to as Mediators, and Interaction Models. While the Services
realize application functionality, Mediators implement all
environment-related organization tasks. According to the
traditional service pattern, Services are utilized in an on-demand
fashion. Thus, processes within Services are only triggered from
outside and supposed to terminate when delivering a response.
Basically, we distinguish between two kinds of Services, device-
dependent and device-independent Services. Device-dependent
Services are supposed to wrap functions particular to the
underlying hardware platform. Device-independent Services are
self-contained. Nonetheless, the same Service can be present on
multiple nodes. The structure of the architecture benefits the on-
the-fly deployment of Service to nodes and the migration of
Services among several nodes. For this purpose, each Service is
associated with a dynamic description, which outlines, e.g., its
interface and functionality. This description can be regarded as a
blackboard-like document, which can be flexibly modified or
extended with updated information.

Furthermore, an important objective for the development of
SmartWare was to provide maximum freedom in reconfiguration
of Services. Therefore, the code base of device-independent

Figure 1: Overview of node components

E
le

m
en

ts
 s

up
po

rte
d

in
 th

e
Ti

ny
N

od
e

co
nf

ig
ur

at
io

n

Services is accessible for reading and writing to all Mediators.
These aspects are explained more in detail in the next section.

Service Mediators are autonomic management components. They
take care for the fluent functioning of the entire environment
while controlling the Service life-cycle including provision,
discovery, selection, and execution. Additionally, Mediators may
monitor the environment and make situation-based decisions with
regard to Service reconfiguration or migration. Since most self-
organization tasks need to be handled cooperatively in a
distributed setting, an instance of a Mediator needs to be present
on each node which is required to support a distributed
management task. For example, to provide the environment-wide
capability to discover or migrate Services, respective Mediators
are required on each node. Mediators do not implement service-
related application logic; they rather summarize basic
management functions that are required by all Services.

The Interaction Framework is as container for communication
middleware systems, which implement predefined patterns, the
so-called interaction models such as Publish/Subscribe, DHT, or
Semantic Data Space (SDS) [1]. The Interaction Framework is
only available to Service Mediators and consequently not included
in the service architecture configuration for tiny nodes. An
instance of the Interaction Model is required on each node, in
order to enable the usage of this Interaction Model by Mediators.
The Interaction Framework allows abstracting the implementation
of Interaction Models form the upper components like the
Mediators, so that for each situation the most appropriate
implementation can be chosen. The Network Interface enables
the access to other nodes over the network.

3.2 SmartWare Runtime Environment
The SmartWare Runtime Environment realizes an extendable
runtime framework for Services and Mediators. The Runtime
Environment is build around an interpreter for only one
programming language. For the concept explanation the actual
syntax of this exclusively supported programming language does
not matter. However, Mediators can be utilized to extend the
Execution Environment with interpreters for other programming
languages if required. The interpretable language supported by
the Runtime Environment is supposed to be used for the
implementation of Services and Mediators. Utilizing an interpreter
for the execution of Service and Mediators simplifies the
realization of platform-independence, benefits the integration of
security models, and enables a flexible runtime management of
Services (start, terminate and ship to other Nodes).

Figure 2: State model of Mediator

Mediators are initialized during the startup of the SmartWare
node and usually remain active until the node is terminated. In
contrast to Services they self-reliantly monitor their environment,

i.e., the hosting node, co-located Mediators and Services, as well
as Mediators and Services at neighboring nodes. In situations that
require intervention, the Mediator autonomically interacts with its
environment. For instance, if a node is going to run out of battery
power while the user consumes one of its Services, a Mediator co-
located on the same node may agree with a Mediator from a
neighboring node to migrate this Service.

Figure 3: State model of Service

Services are also initialized during the startup of the SmartWare
node and terminated on node shutdown. However, to enable
dynamic migration of Services between nodes, the Runtime
Environment also supports their ad hoc initialization and
termination at runtime. After the initialization Services wait for
requests. If a request is completed, the Service returns to standby
state again. Services can migrate from one node to another, but
the decision for migration is made by one or multiple Mediators.
Hence, in contrast to mobile agents Services are not able to
migrate themselves. SmartWare supports four kinds of Service
migration:

1. Copy code base, description, and state; move copy
2. Copy code base and description; move copy
3. Move code base, description and state
4. Move code base and description; discard state

Device-independent Services expose their code base to Mediators
for read and limited write access. Thus, Mediators can transfer a
Service into a certain state for changing the Service’s code base.
By supporting code manipulation, SmartWare benefits advanced
methods for adaption and improvement of Services at runtime.
Moreover, the open code base is mandatory for the flexible
extension of the Runtime Environment. A Mediator can perceive
if the code base of a Service is not interpretable by the standard
interpreter included with the Runtime Environment and care for
the Service execution itself. For example, such a Mediator could
implement another interpreter or ask for the required capabilities
at neighboring nodes.

This aspect of SmartWare is, for example, utilized for the
distributed execution of Service compositions. The code base of
the composite Service is given as workflow-like description that
refers to several types of Services. Mediators from different nodes
coordinately analyze the composition description and broker co-
located Services for the corporate execution.

 The Execution Environment offers two sets of functions. The
first function set grants access to most capabilities of the
SmartWare node framework and is intended for usage by
Mediators. The second function set is limited to the minimal set of
capabilities required to realize a distributed user Service. Table 1
summarizes the functions accessible by Mediator and Services.

Monitoring Acting

Table 1: Matrix of functions available for Services (column S)
and Mediators (column M)

Function S M

User Interface Access enables the presentation of
information to the user, while the means of presentation
(e.g. text, graphical, audio) depend on the output
capabilities of the node. Furthermore, this function allows
obtaining data from input devices (e.g. keyboard, mouse).

x x

Network Access supports interactions among multiple
SmartWare nodes. The function realizes four basic
operations on resources, namely create resource, read
resource, update resource, and delete resource. This model
is also well-known as CRUD.

x x

Persistent Storage Access enables uniform, exclusive
access to persistent storage of finite capacity in the
SmartWare node. Services and Mediators may use this
storage to file their state.

x x

Service Life-Cycle Monitoring allows Services and
Mediators to obtain information about activities affecting
their life-cycle. If the SmartWare node is shutting down or
a Mediator is going to migrate a Service, the affected
entity gets this information in advance and may, e.g.,
persist its state, inform the user, or role back transactions.

x x

Interaction Framework Access supports Mediators in
the coordination of task among multiple SmartWare
nodes. For this purpose the function offers access to
various interaction models, which can be utilized
according to the needs of the Mediators.

- x

Service Life-Cycle Control allows Mediators to actively
affect the life-cycle of Services through transferring them
from one state to another.

- x

Service Description Access grants read and write access
to the description of Services. Mediators may append,
rewrite, or delete parts of the Service description.

- x

Service Code Base Access enables Mediators to read and
manipulate the implementation of Services as needed.

- x

4 REALIZATION
SmartWare was implemented for Java Standard Edition 6 and and
a version for mobile, resource restricted devices (equivalent to
Java SE 1.4). The network interface for this implementation bases
on the Hypertext Transfer Protocol (HTTP). The system design
follows the principles of the architectural style Representational
State Transfer (REST) [12]. Thus, the SmartWare implementation
is modeled with uniquely addressable resources that can be
created, read, updated, or deleted through a standardized HTTP
interface.

The implementation details of the underlying basic entities Nodes,
Services, Mediators and Interaction Models, are given in the next
subsections.

4.1 Nodes
As we already described in section 3.1, in the conceptual model of
SmartWare nodes represent the basic abstraction from the

underlying devices and are given in two configurations: Nodes,
which represent the standard, fully-featured node configuration,
and Tiny Nodes, which represent limited hardware equipment and
therefore support only a subset of the SmartWare functionality.

Independently of the configuration type, each given individual
node can be queried for information describing its current
configuration. The query is executed by sending an HTTP GET
request to the URI of that node. The available information
includes the configuration type of the Node and the components
currently deployed, that is, available Services (including their
endpoints), Mediators and Interaction Models. Services can
further be queried for their service descriptions; this procedure is
described in more detail in the next subsection.

Tiny Nodes, which implement only a subset of the SmartWare
functionality, are only capable of hosting Services. They do not
support a Mediators or an Interaction Models directly. Instead, a
proxy mechanism is applied, which allows fully-featured Nodes to
integrate Tiny Nodes in their surroundings into the SmartWare
infrastructure. Here, integration means that the Services hosted on
the Tiny Node are made manageable by the Mediators available
on the managing Node. For example, they can be made accessible
to other nodes through a Mediator acting as a naming directory for
Service lookups, or can be bound to a distributed execution of
Services through a state management Mediator.

For this purpose, each Node periodically sends announcement
messages including its identifier in its communication range. A
Tiny Node receiving such an announcement message responds to
its sender with a list of its hosted Services and stores the sender’s
identifier locally. The stored identifier is used to determine
whether the Tiny Node is already managed by another Node, in
which case the announcement message is ignored. Additional
heartbeat and time-out mechanisms are applied to make sure that
the information on managed Tiny Nodes and their respective
managers is kept up to date in the network.

For interworking with other entities in a network, Nodes offer an
HTTP interface that supports the operations summarized in the
following table.

Table 2: HTTP interface of nodes

HTTP Request Address Returns
HTTP GET Node URI in

the form:
http://ip:port

An HTML representation of the
node’s configuration type and
components currently deployed,
i.e., available Services,
Mediators and Interaction
Models

4.2 Services and Mediators
While in the conceptual model of SmartWare Services realize
application functionality and are executed only on demand,
Mediators are active components which implement and execute
all environment-related organization tasks.

For both, Services and Mediators, a hot deployment/
undeployment mechanism is provided by the SmartWare Runtime
Environment. The mechanism is invoked during the start up or
shutdown of a node or during uptime of a node when a Java jar
archive containing a Service or Mediator implementation is added
to a reserved directory.

To support that mechanism, Services and Mediators have to
provide the methods initService(), shutdownService() and
initMediator(), shutdownMediator() respectively, where a proper
initialization and finalization of deployed or undeployed
components should be implemented. These methods are then
automatically invoked by the SmartWare Runtime Environment.

Figure 4: Mediator and Service interfaces

The SmartWare Runtime Environment does not only support
queries for additional information about individual nodes, but also
about individual services deployed on a particular node. For this
purpose, service descriptions can be accessed through an HTTP
GET request to the appropriate URI containing the identifier of
the Service and the identifier of the description (as several service
descriptions may be attached to a particular Service). So far, XML
and text representations for service descriptions are supported. In
the same manner descriptions can be changed or deleted or new
descriptions can be added by issuing HTTP PUT, POST or
DELETE requests accordingly.

Furthermore it is possible to access and manipulate the source
code of a Service. The full HTTP interface supported by Services
is summarized in the following table.

Table 3: HTTP interface of Services

HTTP Request Address Returns
HTTP GET [Node URI]/Services/

[Service ID]/Descriptions?
[xml | txt]

Xml or txt
representation of
all available
descriptions of
this Service

HTTP GET,
DELETE,
PUT, POST

[Node URI]/Services/
[Service
ID]/Descriptions/[Description
ID]

Read, delete,
create or modify
this description

HTTP GET,
POST

[Node URI]/Services/
[Service ID]/Descriptions?
Code

Get or modify
the Service byte
code

HTTP GET [Node URI]/Services/
[Service ID]/Descriptions?
Codebase

Get Service code
base (only Java
is supported so
far)

SmartWare imposes no restrictions on the communication
paradigm of implemented Services, though a REST framework
developed by Fraunhofer FOKUS is integrated with SmartWare.
The REST framework named RESTAC [14] is implemented in
Java and aims at the rapid implementation of peer-to-peer
applications by following a layered approach.

The basic layer of RESTAC is a communication layer based on
HTTP which provides TCP-based HTTP unicast messaging and
UDP-based HTTP unicast and multicast messaging. On top of this
layer, RESTAC includes a layer for management of resources. In
the cases of SmartWare these resources are all entities that are
required for interworking across several nodes, for example

Services and Service Mediators, but also service description and
Service code base. An object wrapping model helps to make any
Java object (entity implementations) quickly available as a REST-
conform resource. RESTAC is released by Fraunhofer FOKUS to
the public under the GNU Lesser Public License.

4.3 Interaction Models
Interaction models represent predefined interaction patterns

provided by communication middleware systems such as for
example Publish/Subscribe, DHT or Semantic Data Space (SDS).
Interaction models are only available to SmartWare Mediators and
consequently not included in the service architecture subset for
tiny nodes.

The number of Interaction Models supported by a SmartWare
node is not restricted. To manage the available models, an
Interaction Model Framework is provided. A particular model is
accessed by getting an instance of the Interaction Model
Framework and calling the method lookupInteractionModel()
which takes the name of the Interaction Model class as a
parameter.

Each supported interaction model has to implement the
methods initModel() and getModel(), where the first method is
called automatically during the bootstrapping process of the node
and instantiates the model, and the latter method should return a
reference to the communication controller of the model. Figure 5
illustrates the basic interaction model interface.

A new model can be added to the SmartWare framework
straightforward and with little effort. So far a distributed variant
of the Semantic Data Space [1] was integrated into SmartWare.

Figure 5: Interaction Model Interface

5 SHOW CASE: COLLABORATIVE
SERVICE EXECUTION

The following scenario illustrates how the conceptual components
of the framework can be utilized to control a cooperative Service
execution across several devices:

Pong Reloaded is a distributed version of the popular game Pong,
whereby parts of the game are provided by different Services
running on different devices (Figure 6). In our implementation, 16
tablet PCs fixed into a rack collaboratively provide the gaming
field, whereas two mobile phones act as remote controls to move
the paddles for playing the ball. If one of the tablets is removed
from the rack or switched off during the game, the gaming field
adapts to the new conditions, i.e., the ball bounces off a cleared
rack position or – in case that the ball is located on the removed
device – the ball is “snatched away” from the game. By
reinserting the tablet into an empty rack position the ball is
“released” back into the gaming field. In terms of collaborative
Service execution “snatching away” the ball means here that the
focus of the Service execution has moved, and therefore an
adaptation to the changed environment is necessary. Accordingly,
a “released ball” represents the additional incorporation of devices
that have become available.

To play Pong Reloaded, appropriate Services spread over
different devices have to be found (like “displaying part of the
gaming field” or “acting as remote control”), executed and
supervised for runtime failures as for example caused by a
removed device. Therefore two Mediators were realized which are
reusable for other scenarios as well: a Discovery Mediator listing
available Services and acting as a naming directory for Service
lookups and a State Management Mediator controlling the
execution flow of application related Services and signaling
runtime failures or new detected devices to the application level
by utilizing information provided by the Discovery Mediator.

Figure 6: Pong Reloaded

For the implementation of Pong Reloaded we assumed that the
description of the execution flow of the application is predefined
as Service by the application programmer and thus available for
the State Management Mediator. Envisioned extensions of the
implementation are, for example, a Composition Mediator able to
build Service compositions dynamically by mapping abstract user
requests, such as “Playing Pong”, to available Services, or an
extension of the Discovery Mediator using semantic annotations
of Services to enhance the discovery mechanism.

Furthermore, a recovery mechanism for replacing lost Services by
equivalent ones, such as replacing a lost remote control by another
one, is part of future work.

6 RELATED WORK
The area of autonomic communication attracted the attention of
many researchers; accordingly the efforts for SmartWare are not
the sole in this area.

A method for hardware abstraction has been presented by
Seshasayee et al.[9], who introduced a middleware for self-
management and reconfiguration of nodes in an ad-hoc
environment. They approach aims on the provisioning of a
network that reliably reacts on physical changes as well as
distributes load to accessible nodes.

However, in service-oriented environments, higher abstraction
levels have been explored in order to support application
developers. Within [2] an agent-based middleware has been
developed that provides a transparent view on distributed sensor
nodes. The middleware allows for cooperative data mining, self-
organization and administration of sensor nodes providing an
abstraction layer of the physical network for high-level
application development. There have been many efforts in the
field of sensor network abstraction, with some approaches aiming

for high-level context provisioning [3][4] and other attempts
tending to allow easy access to sensor data by covering the
underlying physical network topology [5].

The intend to abstract the physical network layer and provide a
simple application layer is also followed by [6], but with a slightly
different view on composing network topologies to transparently
use services beyond network borders. Therefore, so called
composition agreements are formulated with the help of policies
describing the requirements for the composed networks and the
actual services running on top of them (e.g. QoS or security
issues). A similar approach that includes context information into
the self-organization process within the network layer has been
developed by Malatras and Pavlou [7][8].

7 CONCLUSION AND OUTLOOK
In this paper we introduced a software framework called
SmartWare for experimenting with autonomic communication
principles. Here, the architectural entity Mediators encapsulates
management functionality to control the life cycle of a Node’s
Services. Additionally, an Interaction Framework enables the
utilization of multiple interaction models to facilitate realization
of a collaborative and autonomic behavior for Nodes. The
explained concepts are illustrated by a show case called “Pong
Reloaded”, a distributed version of “Pong” using 16 tablet PCs
and two mobile phones as controlling devices.

Within the UST+ [13] project, the core framework of SmartWare
is further advanced to support, for example, sophisticated service
recovery mechanisms or the collaborative processing of user
requests. Here, a middleware based on SmartWare is proposed for
the distributed and autonomic service composition and provision
with the help of service communities. Such communities are
groups of services on different mobile or fixed devices that are
characterized by:

• The sharing of complementary information or
functionality,

• The common work towards a user-defined goal,

• The active information exchange,

• The interaction in a loosely coupled manner.

Here, multiple modules fulfilling a particular purpose such as state
management or event processing where defined as a set of
Mediators.

REFERENCES
[1] D. Linner, I. Radusch, S. Steglich, and C. Jacob, "The

Semantic Data Space for Loosely Coupled Service
Provisioning," in Eighth International Symposium on
Autonomous Decentralized Systems, pp.97-104, 21-23 March
2007

[2] P. K. Biswas, and S. Phoha. A Middleware-Driven
Architecture for Information Dissemination in Distributed
Sensor Networks. 2004.

[3] H. Q. Ngo, A. Shehzad, S. Liaquat, M. Riaz, S. Lee.
Developing Context-Aware Ubiquitous Computing Systems
with a Unified Middleware Framework. 2004.

[4] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda,
A. Friday, H. Duran-Limon. A Context-Aware Middleware
for Applications in Mobile Ad-Hoc Environments. 2004.

[5] Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in
Designing Middleware for Wireless Sensor Networks.

[6] C. Kappler, P. Mendes, C. Prehofer, P. Pöyhönen, and D.
Zhou. A Framework for Self-Organized Network
Composition. 2005.

[7] A. Malatras, and G. Pavlou. A Practical Framework to
Enable the Self-Management of Mobile Ad-Hoc Networks.
2007.

[8] A. Malatras, and G. Pavlou. Context-Driven Self-
Configuration of Mobile Ad-Hoc Networks. 2006.

[9] B. Seshasayee, and K. Schwan. Mobile Service Overlays:
Reconfigurable Middleware for MANETs. 2006.

[10] Z. Li, and M. Parashar. A Decentralized Agent Framework
for Dynamic Composition and Coordination for Autonomic
Applications. 2005

[11] S. Kern, P. Braun, and W. Rossak. MobiSoft: An Agent-
Based Middleware for Social-Mobile Applications. 2006.

[12] R. T. Fielding, R. N. Taylor, “Principled design of the
modern Web architecture,” in Proceedings of the 22nd
International Conference on Software Engineering,
Limerick, Ireland, pp. 407-416, 2000.

[13] C. Jacob, H. Pfeffer, L. Zhang, and S. Steglich: Establishing
Service Communities in Peer-to-Peer Networks. 1st IEEE
International Peer-to-Peer for Handheld Devices Workshop
CCNC 2008, Las Vegas, NV, USA, January 10-12, 2008.

[14] RESTAC. [Online] Available:
http://developer.berlios.de/projects/restac. [Accessed: July
27, 2008].

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

