
Grouping Algorithms for Scalable Self-Monitoring
Distributed Systems

Benjamin Satzger and Theo Ungerer
Department of Computer Science

University of Augsburg
86159 Augsburg, Germany

{satzger, ungerer}@informatik.uni-augsburg.de

ABSTRACT

The growing complexity of distributed systems demands for
new ways of control. Future systems should be able to
adapt dynamically to the current conditions of their environ-
ment. They should be characterised by so-called self-x prop-
erties like self-configuring, self-healing, self-optimising, self-
protecting, and context-aware. For the incorporation of such
features typically monitoring components provide the neces-
sary information about the system’s state. In this paper we
propose three algorithms which allow a distributed system
to install monitoring relations among its components. This
serves as a basis to build scalable distributed systems with
self-x features and to achieve a self-monitoring capability.
Evaluation measurements have been conducted to compare
the proposed algorithms.

Categories and Subject Descriptors

C.2 [Computer-Communication Networks]: Distributed
Systems

General Terms

Algorithms

Keywords

grouping, failure detection, scalable, distributed system, al-
gorithm, self-monitoring

1. INTRODUCTION
The initiatives Organic Computing (OC) [20] and Auto-

nomic Computing (AC) [12, 13] both identify the exploding
complexity as a major threat for future computer systems
and postulate so-called self-x properties for these systems.
To achieve these goals both the OC [15] and the AC commu-
nity [13] regard monitoring information as a basis for organic
or autonomic systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics 2008 , September 23 - 25, 2008, Turin, Italy
Copyright 2008 ICST ISBN # 978-963-9799-34-9 .

This paper proposes and compares three algorithms which
establish monitoring relations within a distributed system.
These algorithms are tailored to work very fast and au-
tonomously in complex distributed environments. Based on
the installed relations, monitoring services can be used for
mutual monitoring of nodes. An instance for such a moni-
toring component is a failure detection service. Failure de-
tectors generally provide information on failures of compo-
nents of distributed systems. Typically distributed systems
consisting of a finite set of processes or nodes are considered
with a local failure detector attached to each process, see for
example [4]. Failure detectors return a list of processes they
are suspecting to have crashed. Obviously, within complex
distributed systems, for scalability reasons it is not practica-
ble that any two nodes are monitoring each other. Therefore
strategies are needed to install monitoring relations among
the components of a distributed system what can be seen as
a self-monitoring capability.

The paper is organised in six sections. Section 2 gives
a short overview of related work. In Section 3 the prob-
lem of establishing monitoring relations within a distributed
system is stated. Then, Section 4 describes the proposed
algorithms while Section 5 presents the evaluation results.
Finally, Section 6 concludes the paper.

2. RELATEDWORK
To supply adequate support for large scale systems, hier-

archical failure detectors define some hierarchical organisa-
tion. Bertier et al. [3] introduce a hierarchy with two levels:
a local and a global one, based on the underlying network
topology. The local groups are LANs, bound together by
a global group. Within each group any member monitors
all other members. Different from Bertier et al. [3], in this
work the existence of some classifying concept like a LAN is
not required. Monitoring groups can be built also within a
network of equal nodes. A hierarchy as proposed in [3] is not
further investigated in this work, but could be easily built
upon the monitoring groups which are introduced later on.
Another hierarchical failure detector is presented by Felber
et al. [7]. They emphasise the importance of well defined in-
terfaces for failure detectors being able to e.g. reuse existing
failure detectors.

Gossipping is a method of information dissemination within
a distributed system by information exchange with randomly
chosen communication partners. In 1972, Baker and Shostak
[2] discussed a gossipping system with ladies and telephones.
They investigated the problem of n ladies, each of them
knows some item of gossip not known to the others. They

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AUTONOMICS 2008, September 23-25, Turin, Italy
Copyright © 2008 ICST 978-963-9799-34-9
DOI 10.4108/ICST.AUTONOMICS2008.4476

use telephones to communicate, whereas the ladies tell ev-
erything they know at that time whenever one lady calls
another. The problem statement was “How many calls are
required before each lady knows everything?”. Demers et al.
[6] pioneered gossipping in computer science as a way to up-
date and ensure consistent replicas for distributed databases.

Van Renesse et al. [14] have been the first using gossipping
for failure detection to cope with the problem of scalability.
In their basic algorithm each process maintains a list with a
heartbeat counter for each known process. At certain inter-
vals every process increments its own counter and selects a
random process to send its list to. Upon receipt of a gossip
message the received list is merged with its own list. Each
process also maintains the last time the heartbeat counter
has increased for any node. If this counter is increased for
a certain time then the process is considered to have failed.
Additionally to this basic gossipping, the authors specify a
multi-level gossipping algorithm that does not choose the
communication partners completely randomly but depen-
dent on the underlying network. Basically, they try to con-
centrate the traffic within subnets and to decrease it across
them. Thus the scalability can be further improved. A dis-
advantage is that the size of gossip messages grows with
the size of processes what causes a relatively high network
traffic. Furthermore the timeout to prevent false detections
has to be rather high and since every process checks failures
of processes by its own, false detections cause inconsistent
information.

The SWIM protocol, based on the work of Gupta et al.
[10] and described in a paper of Das et al. [5], faces the men-
tioned drawbacks as it uses a separate failure detector and
failure dissemination component. The failure detector com-
ponent detects failures while the dissemination component
distributes information about processes that have recently
either left, or joined, or failed. Each process periodically
sends a ping message to some randomly chosen process and
waits for it to request. In this way failures can be detected
and are then disseminated by a separate gossip protocol.
The separation of failure detection and further components
as proposed in [5] is taken up in this work. While the pre-
vious chapter introduces the failure detection component,
here the dissemination component is proposed.

Horita et al. [11] present a scalable failure detector that
creates dispersed monitoring relations among participating
processes. Each process is intended to be monitored by a
small number of other processes. In almost the same manner
as in systems mentioned above, a separate failure detection
and information propagation is used. Their protocol tries
to maintain each process being monitored by k other pro-
cesses. As a typical number for k they declare 4 or 5. When
a process crashes, one of the monitoring processes will de-
tect the failure and propagate this information across the
whole system. In addition to the description of their failure
detector, Horita et al. compare the overheads of different
failure detection organisations in their paper. The group-
ing mechanism of Horita et al. [11] is based on a random
construction of monitoring relations. Each node selects a
certain amount of randomly chosen nodes which then serve
as its surveillants. Hence, it is not taken into account how
well a node is suited to monitor another. One motivation
for this chapter is to take such an optimality criterion into
account.

Graph partitioning represents a fundamental problem aris-

ing in many scientific and technical areas. In particular, un-
derstanding the graph as a network, it is a problem closely
related to the problem approached in this work. Consider
each partition of a network as a group of nodes which mon-
itor each other. A k-way partition of a weighted graph is
the partitioning of the node set into k disjoint subsets, so
as to minimise the weight of edges connecting nodes in dif-
ferent partitions. This problem is known to be NP-hard
[9] while many heuristics and approximation algorithms are
known which aim at producing solutions close to the opti-
mum. However, most of these techniques are not applicable
to distributed environments and are therefore unsuitable to
form monitoring groups.

An algorithm capable of solving a slightly modified k-way
partition problem in a distributed way is presented by Roy
et al. [16]. It is based on a stochastic automaton called in-
fluence model [1]. An influence model consists of a network
of nodes which can take one of a finite number of statuses at
discrete time steps. At each time steps the algorithm pro-
posed in [16] performs the following: Each node picks a node
as determining node with a certain probability and copies
its status. By recursively performing these steps, partitions
emerge. They argue that, under some constraints, their al-
gorithm finds partitions which pass to the optimal partition
with probability 1.

In this work two algorithms to partition a network into
groups are introduced which is a problem very similar to
graph partitioning. However, the problem investigated here
is adapted to the needs of complex distributed systems.

The contribution of this work is the introduction and eval-
uation of algorithms to form monitoring relations and mon-
itoring groups respectively. The grouping component is in-
dependent from the used monitoring component. The latter
could for instance be a failure detector as introduced in [17,
18] or any other mutual monitoring task. The separation
of the monitoring itself and the group formation allows to
create generic monitoring and grouping services. As clari-
fied in the previous section, the separation of information
propagation and monitoring has been identified as an im-
portant characteristic by many researchers. In the area of
scalable failure detectors, the consideration of the suitabil-
ity of monitoring relations has been neglected so far. For
instance, the work of Horita et al. [11] proposes to choose
surveillants randomly. Taking suitability information into
account can improve the performance and reduce the over-
head of monitoring components like failure detectors. Re-
lated methods from graph partitioning, which in fact search
for optimal relations, are too complex and slow for an appli-
cation in complex systems. Furthermore, graph partitioning
algorithms normally need global knowledge and are not de-
signed to work in a distributed environment. For reliable
systems a fast installation of monitoring relations is more
important than to find an optimal solution eventually. Es-
pecially from the point of view that a network can be subject
to changes what means an optimal solution could become
obsolete faster than finding it. To cover a wide range of
different requirements and applications, dispersed monitor-
ing relations, as arising if each node chooses its surveillants
individually [11], as well as closed monitoring groups which
result from e.g. network partitioning, are studied.

In the following, a precise formal definition of the stated
problem is given.

3. PROBLEM STATEMENT
A monitoring network Net, a network of monitoring re-

lations, is represented as a triple (N, M, s), where N is the
set of nodes/processes of a network, M ⊆ N × N is the
monitoring relation, and s is a function from N × N to a
real value within [0, 1]. For each tuple (u, v) ∈ N × N ,
s(u, v) is the suitability of node u to monitor node v. This
suitability can depend on different aspects like the latency
of a connection, the reliability of a node, its load and so
on. If a node u is not able to monitor another node v at
all, s(u, v) should output 0. The monitoring relation defines
which monitoring relations are established, i.e. (u, v) ∈ M

means node u is currently monitoring node v. (u, v) ∈ M

is also denoted with u → v. The relation M is irreflex-
ive, i.e. it is not allowed that a node is monitoring itself.

The term
∗
→ v is defined as all nodes monitoring v, i.e.

∗
→ v := {u ∈ N | u → v}. Similar, u

∗
→ outputs all nodes u

is monitoring, i.e. u
∗
→:= {v ∈ N | u → v}.

The task of a grouping algorithm is basically, given a
monitoring network Net = (N, M, s) and a positive inte-
ger m < |N |, to establish monitoring relations such that
every node of the network is monitored by at least m nodes.
In this work two flavours of this problem are distinguished,
namely individual monitoring relations also called dispersed
monitoring relations and closed monitoring groups. In the
former, monitoring relations can be set for each node indi-
vidually while in the latter nodes form groups with mutual
monitoring relations. The number m of surveillants for each
node can be defined by the user. Typically, a higher number
of surveillants provides a higher reliability but also causes
a higher overhead. In Figure 1(a) an instance of individual
monitoring relations of a monitoring network is illustrated
with m = 3. Thereby, the illustration of the suitability infor-
mation has been omitted. Figure 1(b) shows a corresponding
partition of a network into monitoring groups.

(a) Individual monitoring
relations

(b) Monitoring groups

Figure 1: Types of monitoring relations

In the following, problem definitions of establishing indi-
vidual monitoring relations and monitoring groups are given.

3.1 Individual monitoring relations
Given a positive integer m, where m < |N |, establish mon-

itoring relations M where ∀n ∈ N holds |
∗
→ n| = m. This

means each node is monitored by m other nodes. Further-
more, the algorithm should maximise the suitability of the
grouping to establish adequate monitoring relations. There-

fore the term
X

v∈N

X

u∈
∗

→v

s(u, v)

should be maximised by the grouping algorithm. The opti-
misation of the suitability is a quality criterion for grouping
algorithms, but it is not postulated that the algorithms out-
put an optimal solution as it is more important to find so-
lutions in all cases as fast as possible. The term monitoring
group or simply group in the context of individual monitor-
ing relations can be understood as all nodes monitoring one
particular node, whereas the latter is the leader of the group.
Thus, in a network of n nodes there are also n groups: each

node v ∈ N is the leader of the group {v} ∪
∗
→ v.

3.2 Closed monitoring groups
Different from the dispersed individual monitoring rela-

tions, a closed monitoring group is a group of nodes where
all members monitor each other. This problem is very simi-
lar to a graph partitioning problem. In addition to the indi-
vidual monitoring relations, constraints regarding the mon-
itoring relations M are holding: M must be symmetric and
transitive in order to produce closed monitoring groups. In
another point, the problem of finding monitoring groups is
relaxed, compared to individual monitoring relations, as it is
not always possible to find groups of the size m+1 resulting
in m surveillants per node in the group. If for instance a net-
work has three nodes and monitoring groups of size 2 need
to be established, this leads to an unsolvable problem. For
such cases, also closed monitoring groups of bigger sizes are

allowed. In detail, the problem ∀n ∈ N holds |
∗
→ n| = m

is relaxed to ∀n ∈ N holds |
∗
→ n| ≥ m. A very simple

solution to this problem is to combine the whole network

into one group. This is a valid solution as just |
∗
→ n| ≥ m

is postulated. However, the number of surveillants per node
should be as close as possible to m. This represents a soft
constraint similar to the maximisation of the suitability cri-
terion.

Two nodes are in the same closed monitoring group if
they are monitoring each other. An additional requirement
for such monitoring groups is that each group has one node
which is declared as leader. Such a role is needed by many
possible applications based upon grouped nodes, e.g. to
have one coordinator or contact for each group. An instance
where one leader per group is necessary is the formation of
hierarchical groups. Whether individual monitoring rela-
tions or monitoring groups are more adequate depends on
the environment and the monitoring task. Furthermore, the
installed groups can also be used for many other purposes
beyond monitoring, like e.g. cooperative failure recovery. In
[19] groups of nodes are formed which are planning together
using an automated planning engine in order to recover the
system. Such planning groups can also be established using
the concepts introduced in this paper. Hence, many appli-
cations beyond monitoring are possible.

4. GROUPING ALGORITHMS
In this section three grouping algorithms are introduced,

one to establish individual monitoring relations, two to form
closed monitoring groups. The algorithms are tailored to
solve these problems in a distributed manner. Furthermore,
it is not assumed that all nodes have information about all

other nodes what would simplify the problem significantly.
The nodes of a self-monitoring network Net = (N, M, s) do
not know about the suitability s, i.e. how suitable other
nodes are to monitor it, until they receive a message from
a node with information about that. The suitability also
might change over time. In the following the usage and rel-
evance of suitability metrics for monitoring relations is dis-
cussed. Then, three algorithms are presented which provide
the desired grouping capabilities. Being able to establish
suitable monitoring relations the nodes of a network need
information about each other. Such information might be
the quality of the network connection of two nodes, the re-
liability of a node, and so on. Each node is holding relevant
information about a number of other nodes allowing to com-
pute suitability information.

The establishment of monitoring relations within a net-
work Net = (N, M, s) can be based on different aspects.
Therefore the suitability function s has to be defined ac-
cordingly. Note that the suitability information typically is
not computable before nodes receive information from other
nodes. If it is for instance desired that nodes should be
monitored by nodes with a similar hardware equipment and
a fast network connection, the suitability function could be

set to s(u, v) = h(u,v)+n(u,v)
2

where h(u, v) returns a value
within [0, 1] indicating the similarity of the hardware equip-
ment of u and v and n(u, v) returns a value within [0, 1]
indicating the performance of the network connection. Such
a scenario would make sense if a fast network connection im-
proves the monitoring quality and in the case of an outage
of a node, another node with similar hardware equipment
is likely to have the ability to inherit the tasks of the failed
node. Thus, the setting of the suitability function influences
the establishment of monitoring relations. The definition of
a suitability function should reflect the requirements of a
monitoring system. All relevant factors should be included
and weighted according to its importance.

Now three algorithms to establish monitoring relations in
an autonomous distributed way are presented: Individual,
which constructs individual monitoring relations, Merge

and Species which install monitoring groups.
The idea of Individual is very simple: each node tries to

identify the m most suitable nodes and asks them to monitor
it.

In the initial state of the algorithm Merge, each node
forms a group consisting of one node which it is leader of.
Groups merge successively until they reach a size greater
than m.

Species distinguishes between the two species leader and
non-leader. The specificity of a node is random-driven. Non-
leaders try to join a group whereas each group is controlled
by one leader. In the case of an inadequate ratio of leaders
to non-leaders, nodes can change its specificity.

4.1 Individual
Individual monitoring relations denote monitoring respon-

sibilities set individually for each node. Using the suitability
function, nodes can identify suitable surveillants. The most
suitable ones are asked to monitor it. Therefore, nodes send
monitoring requests to other nodes and wait for their ac-
knowledgement. This process is repeated until the node has
established m acknowledged monitoring relations. In Al-
gorithm 1, the above described algorithm is formalised as
pseudocode.

Algorithm 1 Individual

1: id ⊲ the id of this node
2: m ⊲ number of surveillants
3: N ⊲ set of known nodes
4: id

∗
→= ∅ ⊲ set of monitored nodes

5:
∗
→ id = ∅ ⊲ set of surveillants

6:
7: loop
8: if received message msg from n then
9: if type of msg is ’request’ then

10: id
∗
→ = id

∗
→ ∪{n}

11: send(’ack’, id) to n
12: end if
13: if type of msg is ’ack’ then

14:
∗
→ id =

∗
→ id ∪ {n}

15: end if
16: else
17: if |

∗
→ id| < m then

18: select most suitable node n out of N \
∗
→ id

19: send(’request’, id) to n

20: end if
21: end if
22: end loop

A further requirement for individual grouping algorithms
which is omitted here could be that each node u monitoring
a node v needs to know all other nodes also monitoring v,

i.e. if u → v then u needs to know the set
∗
→ v. This might

be necessary as in the case of a failure of v, all monitoring
nodes could e.g. have to hold some kind of vote to gather
a consistent view and to plan repairing actions respectively.
This feature of closed monitoring groups could easily be in-
tegrated into Individual. This has not been done in order
to investigate the more general algorithm as stated here.

4.2 Merge
In this section the Merge algorithm is discussed which

establishes closed monitoring groups. Within these groups
all nodes monitor each other. Every group has a group
leader. Typically, the initial situation is a monitoring net-
work Net = (N, S, ∅) without monitoring relations and a
number m which determines the desired number of surveil-
lants. During the grouping of the nodes into monitoring
groups, existing groups smaller than m+1 merge with other
groups until the resulting group has enough members. Due
to this mechanism the maximal size can be limited by 2·(m+
1)−1. If there exists e.g. a group of size 2 · (m+1) it can be
splitted into two groups of valid size m+1. The group leaders
which belong to a monitoring group smaller than m+1, ask
suitable other group leaders to merge their groups. If this
request is accepted the groups merge whereas the request-
ing group leader must give off its leadership. The requested
group leader is the leader of the newly formed group. After
such a merging process the group leader informs all members
about the new group. Nodes which lost the leadership adopt
a completely passive role in the further grouping process and
are not allowed to accept merging request from other leaders
anymore.

Let us consider an example where m is 2, i.e. groups of
minimum size 3 are formed. In Figure 2(a) two groups are
examined, one consisting of Nodes 1 and 2 whereas Node

1 is leader and the other group consisting only of Node 3.
Node 3 is requesting the group of Node 1 to merge. After
the merge process a new group is formed with exactly 3
members and node 1 is leader of that group. Merge requests
are never denied by leaders. Thus, as you can see in Figure
2(b), it is possible that groups emerge which have more than
the desired m + 1 members.

GFED@ABC?>=<89:;1 ?>=<89:;2 GFED@ABC?>=<89:;3

⇓ ⇓

GFED@ABC?>=<89:;1

>>
>>

>

?>=<89:;2 ?>=<89:;3

(a) Merge process re-
sulting in desired group
size

GFED@ABC?>=<89:;1 ?>=<89:;2 GFED@ABC?>=<89:;3 ?>=<89:;4

⇓ ⇓ ⇓

GFED@ABC?>=<89:;1

>>
>>

>
?>=<89:;2

?>=<89:;3

������
?>=<89:;4

(b) Merge process resulting in
oversized group

Figure 2: Merge scenarios

If groups become greater or equal to 2 · (m + 1), as illus-
trated in Figure 3, a splitting is performed resulting in two
monitoring groups which both have at least m + 1 mem-
bers, what is enough to stop active merging activities. Thus
the resulting group sizes of the Merge algorithm are always
between m + 1 and 2 · (m + 1) − 1.

GFED@ABC?>=<89:;1

>>
>>

>>
?>=<89:;2 GFED@ABC?>=<89:;5 ?>=<89:;6

?>=<89:;3

�������
?>=<89:;4

⇓ ⇓ ⇓

GFED@ABC?>=<89:;1

>>
>>

>>
GFED@ABC?>=<89:;5

>>
>>

>>

?>=<89:;2 ?>=<89:;3 ?>=<89:;4 ?>=<89:;6

Figure 3: Merge and consecutive split

In Algorithm 2, the described grouping algorithm is for-
malised as pseudocode. Please note that only the most in-
teresting parts of the algorithm are presented, due to space
limitations. For instance, the notification of group members
when the group has changed has been omitted.

4.3 Species
Like the Merge algorithm, Species also installs closed

monitoring groups. It is based on the existence of two species:
leader and non-leader. Leaders are group manager and each
group contains exactly one leader. Non-leaders contact the
most suitable leader trying to join its group. The specificity
of a node is random-driven and dependent on the value of

Algorithm 2 Merge

1: id ⊲ the id of this node
2: m ⊲ minimum number of surveillants
3: N ⊲ set of known nodes
4: G = {id} ⊲ set of group members
5: l = id ⊲ leader, initially set to node id
6: wr = F ⊲ is the node is waiting for a response
7:
8: loop
9: if received message msg from n then

10: if type of msg is ’request’ then
11: if id = l then
12: if wr then send (’waiting’, id) to n

13: else
14: if |G| + |msg.G| ≥ 2 · (m + 1) then

15: H = choose ⌊ |G|+|msg.G|
2

⌋− |msg.G|
16: group members to handover
17: send (’handover’, H) to n

18: else
19: G = G ∪ msg.G
20: send (’ack’,G) to all G \ {id}
21: end if
22: end if
23: else
24: send (’non-leader’, G) to n

25: end if
26: else if type of msg is ’ack’ then
27: l = n

28: G = msg.G
29: wr = F

30: else if type of msg is ’handover’ then
31: G = G ∪ msg.H

32: wr = F

33: else if type of msg is ’non-leader’ then
34: store information that n is no leader
35: wr = F

36: else if type of msg is ’waiting’ then
37: affects the selection of most suitable node
38: wr = F

39: end if
40: else
41: if id = l ∧ |G| < m + 1 then

42: select most suitable node n out of N \
∗
→ id

43: send(’req’, G) to n

44: wr = T

45: end if
46: end if
47: end loop

m. Consider a network consisting of n nodes. The optimal
number of leaders is n

m+1
as the following example illus-

trates: Within a small network of 12 nodes, closed monitor-
ing groups need to be installed with m = 2, i.e. two surveil-
lants per node or groups of size three. The optimal case for
that are four groups of size three. Thus n

m+1
= 12

3
= 4 lead-

ers are needed which the non-leaders can join. Therefore, the
Species algorithm selects every node as leader with proba-
bility 1

m+1
and non-leaders otherwise. As it is worse to have

too many leaders than too few, the probability of a node to
become a leader can be adjusted to e.g. 0.8

m+1
. However, the

random assignment of species to nodes does not guarantee
a valid distribution into leaders and non-leaders. Thus, if a
leader recognises that there are too many of them, they can
toggle their species and transform into a non-leader. Vice
versa, if nodes cannot find leaders to join they transform
into a leader with a certain probability.

The network shown in Figure 4(a) contains too many lead-
ers. In this case m is 3 which means groups of sizes of at
least 4 need to be formed. However, this is not possible in
this example. If no non-leader joins the groups smaller than
4, their leaders try to contact other leaders in order to find
groups with enough members to poach some non-leaders. If
this also fails, leaders then transform to non-leaders with a
certain probability. This happens with Node 7 in this exam-
ple. After that transformation a valid grouping is possible.

Figure 4(b) shows the contrary situation as above, where
too few leaders are available, in this case even none. If non-
leaders are unable to find any leader, they become leader
with a certain probability.

GFED@ABC?>=<89:;1

<<
<<

<<
<

?>=<89:;2 GFED@ABC?>=<89:;5 ?>=<89:;6

?>=<89:;3

�������
?>=<89:;4 GFED@ABC?>=<89:;7 ?>=<89:;8

⇓ ⇓ ⇓

GFED@ABC?>=<89:;1

>>
>>

>>
?>=<89:;2 GFED@ABC?>=<89:;5

>>
>>

>>
?>=<89:;6

?>=<89:;3

�������
?>=<89:;4 ?>=<89:;7

�������
?>=<89:;8

(a) Change species from leader to
non-leader

?>=<89:;1 ?>=<89:;2

?>=<89:;3 ?>=<89:;4

⇓ ⇓

?>=<89:;1

>>
>>

>>
>

GFED@ABC?>=<89:;2

?>=<89:;3

������
?>=<89:;4

(b) Change
species from
non-leader to
leader

Figure 4: Species scenarios

There are two cases how non-leaders join a group. If they
do not belong to a group yet, they themselves care to find a
group and join it. Leaders controlling an undersized group
try to find oversized groups and ask their leaders to handover
non needed members.

In Algorithm 3, the most important parts of Species are
formalised as pseudocode.

After the introduction of the proposed grouping algorithms,
an evaluation is provided in the following section.

Algorithm 3 Species

1: id ⊲ the id of this node
2: m ⊲ minimum number of surveillants
3: N ⊲ set of known nodes
4: G = {id} ⊲ set of group members

5: l =

(

id with probability 0.8
m+1

undefined otherwise

6: wr = F ⊲ is the node waiting for a response
7:
8: loop
9: if received message msg from n then

10: if type of msg is ’request’ then
11: if id = l then
12: G = G ∪ {n}
13: end if
14: else if type of msg is ’handover-request’ then
15: if id = l then
16: if wr then
17: send (’waiting’, id) to n

18: else
19: x = min(⌊ |G|+|msg.G|

2
⌋ − |msg.G|,

20: |G| − (m + 1))
21: H = choose x group members
22: to handover
23: send (’handover’, H) to n

24: end if
25: else
26: Forward message to random node
27: end if
28: else if type of msg is ’handover’ then
29: G = G ∪ msg.H

30: wr = F

31: else if type of msg is ’chgspecies’ then
32: if id = l then
33: G = msg.G
34: else
35: Forward message to random node
36: end if
37: else if type of msg is ’waiting’ then
38: affects the selection of most suitable node
39: wr = F

40: else
41: if id 6= l ∧ |G| ≤ 1 then
42: select most suitable node n out of N
43: send(’req’, G) to n

44: l = n

45: end if
46: if id = l ∧ |G| < m + 1∧ with probability of

25% then
47: if other suitable leader n is known then
48: send(’handover-request’, G) to n

49: else if no leader can handover nodes then
50: change species to non-leader
51: l = undefined
52: send(’chgspecies’, G) to random node
53: end if
54: end if
55: if id = l∧ no leader is known ∧ with proba-

bility of 25% then
56: change species to leader
57: l = id

58: end if
59: end if
60: end if
61: end loop

5. EVALUATION
In this section an evaluation for the above introduced al-

gorithms is provided. For the purpose of evaluating and
testing, a toolkit has been implemented which is able to sim-
ulate distributed algorithms based on message passing. It
is written in Java and allows the construction of networks
consisting basically of nodes, channels which connect two
nodes, and algorithms running on nodes. As the simulation
runs on one single computer, a random strategy selects the
next node whose algorithm is executed partially. Thus, the
asynchronous behaviour of distributed systems is covered.
It is assumed that the communication channels do not drop
messages and deliver them in the correct order.

The nodes of the monitoring network Net = (N, M, s)
used for the evaluation are theoretically arranged as a grid,
as shown in Figure 5 for an example network consisting of
100 nodes. The nodes of the network are labelled with nat-
ural numbers which represent their ID. Note that the al-
gorithms are neither based on that fact nor they take any
advantage of that. The distance of two nodes u, v within
the grid determines their mutual monitoring ability. Thus,
the suitability has been set to the reciprocal value of the
Euclidean distance of the nodes within the grid.

?>=<89:;0 ?>=<89:;1 . . . ?>=<89:;9

?>=<89:;10 ?>=<89:;11 . . . ?>=<89:;19

.

?>=<89:;90 ?>=<89:;91 . . . ?>=<89:;99

Figure 5: Evaluation network of 100 nodes

The evaluation network consists of 1000 nodes1, where all
nodes are able to communicate with each other. However,
in most evaluation scenarios the nodes only have sufficient
information about a certain number of nodes to compute
a suitability value. This models the concept that in many
networks nodes do not know everything but have a limited
view.

The introduced grouping algorithms are evaluated within
different scenarios. The evaluation focuses on the scalabil-
ity of the establishment of monitoring relations, the opti-
mality of the relations regarding the suitability metric, and
the failure tolerance of a system if failure detectors are used
together with the grouping approach. The evaluations have
been conducted using different sets of parameters like the
values for the desired number of surveillants m and the
amount of information about other nodes. Each evaluation
scenario has been replayed 1000 times whereas the results
have been averaged.

Recall, a monitoring network Net is represented as (N, M, s),
where N is the set of nodes of a network, M ⊆ N × N is
the monitoring relation, and s is a function from N × N to

1Except for the measurements of the scalability regarding
the network size where the number of nodes have been var-
ied.

a real value within [0, 1]. The task of a grouping algorithm
is, given a positive integer m < |N |, to establish monitoring
relations such that every node of the network is monitored
by at least m nodes.

As suitability function s(u, v), the reciprocal value of the
Euclidean distance of the nodes u and v is used. At the be-
ginning, the monitoring relation is empty, i.e. M = ∅. This
means that the network is in a state where no monitoring
relations are established yet. To model the fact that nodes
usually do not have a complete view of the whole network,
the value κ describes the part of the network each node is
aware of. A value of κ = 10 means that each node has
information about 10 randomly chosen nodes.

In the following the results of the conducted evaluations
are presented.

5.1 Scalability
To establish monitoring relations, messages need to be

sent. In the following this overhead is evaluated for the
proposed grouping algorithms. All experiments have been
conducted according to the description given above.

First the scalability regarding the network size is eval-
uated. In this experiment the number of desired surveil-
lants m is set to 5 while each node knows 50 other nodes,
i.e. κ = 50. Figure 6 shows the results of this experiment,
whereas the values on the x-axis stand for the network size
and the average number of messages sent by each node is
depicted on the y-axis.

 0

 2

 4

 6

 8

 10

 12

 200 400 600 800 1000 1200 1400 1600 1800 2000

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s
 s

e
n

t
p

e
r

n
o

d
e

Network size

Individual
Merge

Species

Figure 6: Scalability of grouping algorithms regard-
ing network size (κ = 50)

As m is 5, each node executing the Individual algorithm
needs 10 messages, 5 monitoring requests and 5 responses.
Merge needs less than 6 messages, Species less than 4. The
results indicate that all three algorithms can be classified as
being independent from the network size, as the nodes ba-
sically do not send more messages within a bigger network.
The algorithm Species performs even better in bigger net-
works. The reason for this behaviour is the random-driven
determination of the specificities. The aim of that process
is to achieve a division into leaders and non-leaders of a de-
fined ratio. In general, the bigger the network the better
this ratio is met.

Thanks to the independence of the overhead caused by the

grouping algorithms from the network size, all introduced
algorithms seem suitable to be applied within complex dis-
tributed systems.

All following evaluations are conducted with a network
size of 1000 nodes.

To evaluate the overhead with regard to the sizes of the
formed groups, the message sending behaviour of the algo-
rithms is compared using different values for the minimum
group size m within [3, 4, . . . , 20], whereas κ = 100.

Figures 7 shows the results of that experiment. It depicts
the average number of sent messages on the y-axis. The
x-axis stands for the different values of m.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2 4 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s
 s

e
n

t
p

e
r

n
o

d
e

m

Individual
Merge

Species

Figure 7: Scalability of grouping algorithms regard-
ing group size (κ = 100)

The Species algorithm manages to group with the least
messages of the three algorithms. The number of sent mes-
sages is totally independent from the number of surveillants.
Individual scales linearly with the number of surveillants.
The number of messages for Merge is strictly increasing,
but it performs better than linear.

The three algorithms differ in the way they are able to
meet the desired number of surveillants m. As it is manda-
tory to install at least m monitoring relations per node, only
greater or equal values for the actually resulting group sizes
are possible. Figure 8 shows the resulting number of surveil-
lants in comparison to the value of m. Individual manages
to installs exactly m surveillants per node. For closed mon-
itoring groups it is a much harder problem to exactly meet
this condition. Merge and Species typically form slightly
larger groups in order to allow for a fast and robust grouping
process.

The next section examines the monitoring relations with
respect to their suitability according to the suitability func-
tion.

5.2 Suitability
As stated in the specification, the algorithms are supposed

to take the suitability of the nodes into account. This means
the term

X

v∈N

X

u∈
∗

→v

s(u, v) (1)

should be maximised. The average suitability within the
evaluation network is about 0.09. This means a random

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16 18 20

A
v
e

ra
g

e
 n

u
m

b
e

r
o

f
s
u

rv
e

ill
a

n
ts

 p
e

r
n

o
d

e

m

Individual
Merge

Species

Figure 8: Resulting group sizes caused by different
values for m

grouping produces monitoring relations of about that value.
Figures 9 and 11 show the results of the experiments con-

cerning the suitability of the algorithms for different values
of κ (10 and 100). This parameter represents the size of the
nodes’ view on the network. The x-axis represents the num-
ber of surveillants per node, the y-axis depicts the average
suitability of the formed groups based on Equation 1.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35

A
v
e

ra
g

e
 g

ro
u

p
 s

u
it
a

b
ili

ty

Average number of surveillants per node

Individual
Merge

Species

Figure 9: Suitability of grouping algorithms (κ = 10)

For all algorithms holds that bigger group sizes cause lower
values for the suitability. Species and especially Merge

handle grouping with limited information very well, while
Individual performs optimal in the case of full information
(κ = 1000) about the network.

5.3 Failure tolerance
In this section, the gain of applying the proposed group-

ing techniques with respect to failure tolerance is investi-
gated. To evaluate the failure tolerance of the monitoring
relations, the following methodology is used: It is assumed
that a certain percentage of randomly chosen nodes within
the network fail simultaneously, i.e. they crash and do not
recover. Using failure detectors, nodes monitor each other
according to the installed monitoring relations by a group-

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0 5 10 15 20 25 30

A
v
e

ra
g

e
 g

ro
u

p
 s

u
it
a

b
ili

ty

Average number of surveillants per node

Individual
Merge

Species

Figure 10: Suitability of grouping algorithms (κ =
100)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35

A
v
e

ra
g

e
 g

ro
u

p
 s

u
it
a

b
ili

ty

Average number of surveillants per node

Individual
Merge

Species

Figure 11: Suitability of grouping algorithms (κ =
1000)

ing algorithm. It is assumed that failure detectors eventually
detect the failure of a node. An undetected failure means
the failure of a node which remains undetected. In this set-
ting this is only possible if a node and all its surveillants fail
simultaneously.

The detection of a failure is the prerequisite of a subse-
quent repair or self-healing respectively. If a node has no
surveillant, its failure equals an undetected failure. If in a
network any node monitors all other nodes, only the com-
plete failure of the whole network results in undetected fail-
ures. However, for more complex systems, the latter mon-
itoring strategy typically introduces an excessive overhead.
Before the evaluation results are presented, a short view on
failure tolerance motivated by probability theory is given.

Let X be the number of elements within a set, Y ≤ X

the number of elements within this set possessing a feature
F , and x ≤ X the number of elements which are randomly
chosen from the set. The probability of k elements with
feature F being in the randomly chosen set is then

Y

k

!

X − Y

x − k

!

X

x

! ,

according to the hypergeometric distribution [8].
Considering a network Net = (N, M, s) and a number of

surveillants per node of m < |N |. If φ random nodes of the
network fail, where m+1 ≤ φ ≤ |N |, the probability for the
undetected failure of a certain node is

m + 1

m + 1

!

|N | − m + 1

φ − m + 1

!

|N |

φ

! =

|N | − m + 1

φ − m + 1

!

|N |

φ

! .

If φ is lower than m+1, the probability for an undetected
failure is obviously 0. If for instance φ = 10% of the nodes
of a network Net = (N, M, s) consisting of 100 nodes fail,
whereas each node is monitored by m = 3 nodes, then the
probability for a certain node η ∈ N to fail undetectedly is:

|N | − m + 1

φ − m + 1

!

|N |

φ

! =

100 − 4

10 − 4

!

100

10

! ≈ 5 · 10−5
.

The following simulations have been conducted as before
with a network Net = (N, M, s) of 1000 nodes. Monitoring
relations are established with all three proposed grouping
algorithms and different values for m. It is measured how
many undetected failures occur if a certain percentage φ of
random nodes fail.

Figure 12 presents the results for φ = 50%. The x-axis
shows the average number of surveillants per node, the y-
axis the number of undetected failures.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

u
n

d
e

te
c
te

d
 f

a
ilu

re
s

Average number of surveillants per node

Individual
Merge

Species

Figure 12: Failure tolerance of grouping algorithms
(50% failure)

In all cases the number of undetected node failures de-
crease with a higher number of surveillants. As you can see,

with a number of surveillants of 15, a failure of every second
node in the network does not result in any undetected node
failures. These results can be used as a utility to choose
an adequate value for m, which is a balancing act between
overhead and failure tolerance.

The algorithm Individual performs best because it has
no variance in the number of surveillants. The parameter m

exactly determines the resulting group size, i.e. the number
of surveillants. For closed monitoring groups this number
varies. The value for m only determines the minimum num-
ber of surveillants. Thus an average number of surveillants
of e.g. 10 does not exclude groups of lower sizes. Con-
sider for example a network of 10 nodes, arranged in two
monitoring groups. In the first case two groups of sizes 5
(no variance), in the second case one group of size 4 and
one group of size 6 (variance of 2). If for example only 4
nodes fail in the latter case undetected failures are possible,
in the former not. The variance of the group sizes impacts
the number of undetected failures, while a low variance is
better. Individual has no variance, Species has the high-
est variance, and Merge’s lies in between. The evaluation
results reflect this fact.

6. CONCLUSIONS
In this work, the requirements for self-monitoring dis-

tributed systems are presented. The task is to autonomously
install monitoring relations to enable self-monitoring dis-
tributed systems. The given formal problem statement is
novel and takes suitability information into account. Three
algorithms solving that problem are introduced and com-
pared regarding their scalability, suitability, and the failure
tolerance they are providing. The algorithms are tailored to
install monitoring relations very fast what is important for
reliable distributed systems.

7. REFERENCES
[1] C. Asavathiratham, S. Roy, B. Lesieutre, and

G. Verghese. The influence model. Control Systems
Magazine, IEEE, 21(6):52–64, Dec 2001.

[2] B. S. Baker and R. Shostak. Gossips and telephones.
Discrete Math., 2(3):191–193, June 1972.

[3] M. Bertier, O. Marin, and P. Sens. Performance
analysis of a hierarchical failure detector. In
Proceedings 2003 International Conference on
Dependable Systems and Networks (DSN 2003), pages
635–644, San Francisco, CA, USA, June 2003. IEEE
Computer Society.

[4] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, 1996.

[5] A. Das, I. Gupta, and A. Motivala. SWIM: Scalable
weakly-consistent infection-style process group
membership protocol. In DSN, pages 303–312. IEEE
Computer Society, 2002.

[6] A. J. Demers, D. H. Greene, C. Hauser, W. Irish, and
J. Larson. Epidemic algorithms for replicated database
maintenance. In 6th ACM Symposium on Principles of
Distributed Computing, pages 1–12, Vancouver, British
Columbia, Canada, 10–12 Aug. 1987.

[7] P. Felber, X. Défago, R. Guerraoui, and P. Oser.
Failure detectors as first class objects. In Proceedings
of the International Symposium on Distributed Objects

and Applications (DOA’99), pages 132–141,
Edinburgh, Scotland, 1999.

[8] W. Feller. An Introduction to Probability Theory and
its Application, Vol. 1. John Wiley and Sons, New
York, 1970.

[9] M. R. Garey and D. S. Johnson. Computers and
Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[10] Gupta, Chandra, and Goldszmidt. On scalable and
efficient distributed failure detectors. In PODC: 20th
ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, 2001.

[11] Y. Horita, K. Taura, and T. Chikayama. A scalable
and efficient self-organizing failure detector for grid
applications. In SC’05: Proc. The 6th IEEE/ACM
International Workshop on Grid Computing CD,
pages 202–210, Seattle, Washington, USA, Nov. 2005.
IEEE/ACM.

[12] P. Horn. Autonomic computing: Ibm’s perspective on
the state of information technology.
http://www.research.ibm.com/autonomic/, 2001.

[13] J. O. Kephart. Research challenges of autonomic
computing. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering,
pages 15–22, 2005.

[14] R. V. Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. Technical Report
TR98-1687, Cornell University, Computer Science,
May 28, 1998.

[15] U. Richter, M. Mnif, J. Branke, C. Müller-Schloer, and
H. Schmeck. Towards a generic observer/controller
architecture for organic computing. In C. Hochberger
and R. Liskowsky, editors, INFORMATIK 2006 –
Informatik für Menschen, volume P-93 of GI-Edition –
Lecture Notes in Informatics, pages 112–119, Bonn,
Germany, Sept. 2006. Köllen Verlag.

[16] S. Roy, Y. Wan, and A. Saberi. Algorithmic Aspects of
Wireless Sensor Networks, volume 4240/2006 of
LNCS, chapter A Flexible Algorithm for Sensor
Network Partitioning and Self-partitioning Problems,
pages 152–163. Springer Berlin / Heidelberg, 2006.

[17] B. Satzger, A. Pietzowski, W. Trumler, and
T. Ungerer. A new adaptive accrual failure detector
for dependable distributed systems. In SAC ’07: 22nd
ACM symposium on Applied computing, pages
551–555, New York, NY, USA, 2007. ACM.

[18] B. Satzger, A. Pietzowski, W. Trumler, and
T. Ungerer. Variations and evaluations of an adaptive
accrual failure detector to enable self-healing
properties in distributed systems. In ARCS 2007, 20th
International Conference, Zurich, Switzerland, March
12-15, 2007, volume 4415 of LNCS, pages 171–184.
Springer, 2007.

[19] B. Satzger, A. Pietzowski, W. Trumler, and
T. Ungerer. Using automated planning for trusted
self-organising organic computing systems. In 5th
International Conference on Autonomic and Trusted
Computing (ATC 2008), pages 60-72, Oslo, Norway,
June 23-25, 2008, LNCS. Springer, 2008.

[20] H. Schmeck. Organic computing. Künstliche
Intelligenz, 05(3):68–69, July 2005.

