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ABSTRACT

Flexibility, robustness and adaptivity are key concepts in de-
veloping today‘s technical systems. Nowadays, systems that
are developed with conventional design methodologies do
not sufficiently meet the requirements of these concepts. An
increasing number of system elements, their complexity and
a dynamically changing environment often lead to an unex-
pected system behaviour, although all system elements are
available and work correctly. The Organic Computing (OC)
initiative deals with new design concepts, which facilitate
developing technical systems with life-like properties such
as self-organisation, self-optimisation and self-configuration
in order to make them robust, flexible and adaptive. In this
context, a generic observer/controller architecture® has been
proposed in order to establish controlled self-organisation in
technical systems. In this paper, we investigate different
distribution possibilities of the generic o/c architecture and
the resulting collaboration and communication patterns in
a traffic scenario.
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n the rest of the paper we use the abbreviation "o/c archi-
tecture”.
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1. INTRODUCTION

Modern technical systems consist of a large number of el-
ements that interact with each other in order to accomplish
a given task. The state and configuration spaces of such sys-
tems become increasingly larger due to the growing number
of system elements and their complexity. Thus, a system
developer cannot design the behaviour of each system ele-
ment for every arising state explicitly. This kind of design
complexity often leads either to an unexpected system be-
haviour or to a system crash in runtime. The vision of OC is
to endow technical systems with life-like properties such as
self-organisation, self-optimisation and self-configuration to
address this complexity. Self-organising systems can tolerate
disturbances either from inside the system, e.g. in case of
defective system elements, or from outside the system, e.g.
in case of a dynamic environment, and continue working
properly while adapting to changes in their environment.
In order to design self-organising systems some degrees of
freedom must be given to system elements so that they can
adapt their behaviour and/or structure to new environmen-
tal situations. The self-organisation process on its own may
lead a system to an undesirable state that does not conform
with a system goal given by the developer. Hence, this pro-
cess must be controlled in some way so that the system can
adapt to its dynamically changing environment and work
towards a predefined goal at the same time.

We proposed the generic o/c architecture in [12, 1]. The
observer monitors the system state and dynamics, quantifies
them and aggregates its observations as a vector of situation
parameters. These parameters are sent to the controller.
The controller evaluates the situation parameters and in-
fluences the system under observation and control (SuOC)
with respect to the given goal by the user. An abstract
illustration of the architecture can be seen in Fig. 1.

organic
system

Figure 1: The observer/controller architecture
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Figure 2: System without an o/c (SuOC) and some distribution possibilities of the generic observer/controller

architecture on the SuOC

There are many distribution possibilities of the proposed
architecture varying from fully central to fully distributed.
In the former case, there is only one observer and one con-
troller for the whole system (see Fig. 2(b)), whereas in the
latter case there is one observer and one controller for each
agent in the system (see Fig. 2(c)). The fully central and the
fully distributed architectures define the two extreme points
in the design space. So, there are also many other distri-
bution possibilities like a multi-level architecture between
these extreme points (see Fig. 2(d)).

In this paper, we investigate different distribution possi-
bilities of the generic o/c architecture. As a test scenario
we consider a resource sharing problem presented through
an intersection without traffic lights. We first implement
the intersection and the cars without an o/c (see Fig. 2(a)).
A car without an o/c tries to maximize only its own gain
by crossing over the intersection as soon as possible. This
type of behaviour produces competition situations, since two
(or more) cars may want to occupy the same position at the
same time. Thus, the competition-based behaviour of agents
leads to a traffic jam where cars with orthogonal driving
directions block each other in the middle of the intersec-
tion. We implement a central (see Fig. 2(b)) and a fully
distributed (see Fig. 2(c)) o/c architecture to create a col-
laborative group behaviour in order to avoid traffic jams.
The realisation of the collaboration on different distribution
levels should produce different system behaviours with cor-
responding collaboration and communication patterns. So,
we expect an advantage of a centralized architecture in case
of a low-conflict scenario whereas a distributed architecture
should perform better in more complex scenarios. There-
fore, we argue that the optimum collaboration strategy can
be realised neither on the central nor on the fully distributed
level, but rather somewhere in between those extremes.

This paper is organized as follows: Section 2 summarizes
some related work concerning the architectures used in col-
laborative problem solving in multi-agent systems. Section
3 presents the experimental setup and describes the prob-
lem occuring in the system without an o/c together with the
technique that is to be used to cope with the problem. Sec-
tion 4 introduces different o/c architectures that implement
the technique given in section 3. A classification of met-
rics, which can be used to measure the system performance,
is discussed in section 5. Experimental results are given in
section 6, followed by the conclusion and outlook in section
7.

2. STATE OF THE ART

There are different architectures proposed in the litera-
ture, which are applied to complex technical systems. An
application of the generic o/c architecture to a robot swarm
is proposed in [10]. In this scenario, the observer imple-
ments a technique based on Shannon’s information theory,
which is used to measure the unwanted emergent clustering
behaviour of robots. The controller prevents this emergent
behaviour by changing the environment and influencing the
system indirectly.

The Swarm-Intelligent Systems (SWIS) group of the EPFL
(Swiss Federal Institute of Technology) investigates new mod-
elling, control and design methodologies for distributed and
collectively intelligent systems. They proposed a distributed
control architecture [2], which exploits principles based on
swarm intelligence like redundancy and autonomy.

Distributed and collaborative problem solving is also in-
vestigated in the Swarm-bots project, which is funded by the
Future and Emerging Technologies programme of the Euro-
pean Commission. A context specific control architecture is
proposed in [13] that allows a group of robots to collaborate
with each other in order to accomplish a given task, which
originally cannot be accomplished by a single robot.

The Centibots project also aims at developing new method-
ologies, which facilitate a group of agents to solve a given
problem collaboratively. Large-scale, fault-tolerant and adap-
tive robot systems are investigated in this context. A dis-
tributed, multi-level control architecture is proposed in order
to produce an intended collaborative behaviour in a group
of robots [7].

NASA investigates new techniques and methods for de-
veloping multi-agent systems for space missions. The au-
tonomous nano-technology swarm (ANTS) architecture is
proposed in this context, which is based on the principles of
social insect colonies. The architecture supports task spe-
cialisation for the agents in the system and allows them to
accomplish a given task collectively [6, 3, 4].

The distributed field robot architecture (DFRA), which is
an extension of the Sensor Fusion Effects (SFX) architecture
[11], is introduced in [8]. DFRA allows for a dynamic dis-
covery and acquisition of robot resources and the integration
of human and artificial agents in robot teams. The access
to capabilities of a team of robots is realised in form of Jini
services. An application of DFRA to a simulated demining
task on a team of ground and aerial robots is presented in



[8].

Architectures presented above exhibit promising results in
collaborative problem solving in multi-agent systems. How-
ever, they are either specialized in solving specific problems
[2, 13, 7] or are used in specific problem domains [6, 4, §].
Generic concepts and methodologies related to the obser-
vation and control of collaborative systems are investigated
only in [12, 1, 10]. The investigation of the generic o/c
architecture promises to provide a basic understanding for
creating adaptive, flexible, robust and self-organising sys-
tems.

3. EXPERIMENTAL SETUP AND
PROBLEM DESCRIPTION

We use the agent-based modeling and simulation toolkit
“RePast” [9] to implement our scenario. RePast provides a
scheduler, which triggers agents to perform their predefined
behaviour in each time step. A time step in a RePast simu-
lation is called a “Tick”. In our experiments, we also use the
notion of ticks in producing experimental results presented
in section 6.

A grid-based layout is used to model the intersection (see
Fig. 3). Each car in the intersection is created with a ran-
dom size and a random speed. There are three sizes defined
for cars: A small size car covers one cell, a medium size car
two cells and a large size car three cells in the grid environ-
ment. Each car obtains one of two predefined speeds. Slow
cars can only make one move in a single time step (tick)
whereas fast cars can make two moves in the same length
of simulation time. A car without an o/c has a basic be-
haviour, which allows it to avoid collisions with other cars
in the intersection. So, a car (C1) moves forward, if there is
no car in front of it. Otherwise, if the position is occupied by
another car (C2), C1 tries to overtake C2 on the right. If the
intended position is occupied by another car (C3), C1 tries
to overtake C2 on the left this time. C1 doesn’t change its
position in the case where all intended positions are already
occupied. Each car has an internal counter to keep track
of its own delay time while crossing over the intersection.
The counter is increased each time the car cannot move and
remains unchanged otherwise.

We use a Poisson distributed number generator to deter-
mine the number of cars, which enter the intersection at the
same time in the appropriate direction. As can be seen in
figure 3, we have two traffic flows with orthogonal directions.
Yellow cars drive in west-east and red cars in south-north
direction into the critical area. On average 4 cars enter the
intersection at each tick in each direction. The dimensions
of the environment are defined so that a maximum of 8 cars
can drive into the intersection in one direction at the same
time. Unless stated otherwise, we use the same environment
and same parameters in all our experiments presented in the
next sections.

We first ran the system without an o/c architecture (see
Fig. 2(a)) to identify the system performance without an
intervention. We observed that cars with different driving
directions block each other in the intersection. We call the
part of the intersection, where this happens, the “critical
area”. Some cars in the critical area either need much more
time than others to cross over the intersection or in the worst
case, they remain blocked in a large cluster over the whole
simulation time (see Fig. 3).

The critical
area

Figure 3: The clustering behaviour in the critical
area. This is the system without an o/c illustrated
in Fig. 2(a)

The problem presented here is very close to the scheduling
problem known from operating system theory. In this con-
text, cars in the intersection can be considered as different
processes running on the same machine and the critical area
can be considered as a shared resource, e.g. the CPU, for
which processes compete. We use a priority-based algorithm
to create a collaborative behaviour between agents and to
cope with the clustering problem in the critical area. We
determine here priorities for cars with respect to their delay
times in the intersection. A car (or a group of cars) with
a higher delay time gets a higher priority. In our work we
use this priority allocation mechanism on different distribu-
tion levels of the generic o/c architecture. According to the
implemented o/c architecture, the priority allocation takes
place on different abstraction levels, i.e. on a macro level
and a micro level.

4. OBSERVER/CONTROLLER ARCHITEC-
TURES

We first implemented the fully distributed o/c architec-
ture (see Fig. 2(c)), where each car is endowed with a pair
of an observer and a controller. The view of each observer
and controller is limited to the direct neighborhood of the
corresponding car. As depicted in Fig. 4, only Car2, Car3
and Car4 are in the direct neighborhood of Carl. Consider-
ing this type of neighborhood, local rules are defined for the
observer and controller, which determine the behaviour of a
car in the next simulation step. In the following, these local
rules are explained in the sample situation given in Fig. 4.

The observer creates a list of situation parameters con-
sidering the neighborhood of its corresponding car. These
parameters include cars in the direct neighborhood, their
delay times and their positions relative to the car, to which
the observer belongs. In the example given in Fig. 4, the
parameters created by the observer of Carl look like [Car2
- W2 - On_the_left], [Car3 - W3 - Conflict] and [Car4 - W4
- Behind]. The observer of Car2 creates only the param-
eter [Carl - W1 - On_the_Right], since there is only one
car (Carl) in its direct neighborhood. The word “Conflict”
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Figure 4: The direct neighborhood of Carl. The
observer and the controller can only notice other
cars in the direct neighborhood

in the parameter list of Carl indicates that either Carl or
Car3 can move forward in the next simulation step. After
creating all situation parameters, the observer sends them to
the controller. According to parameters from the observer,
the controller sends either a “Stop” or a “Go” signal to its
corresponding car.

In order to take a decision, the controller checks relative
positions in the parameter list. If it encounters one of the
relative positions “On_the_Right”, “On_the_Left” or “Con-
flict”, it compares the delay time of its corresponding car
with the delay time of the car in the encountered relative
position. In case of Carl, the controller sends a stop signal
to Carl, if W3 > W1. That means Car3 has a higher prior-
ity than Carl and Carl yields right of way to Car3. In case
of Car2, the controller sends a stop signal to Car2, if W1 >
W2 and Carl is stopped by its own controller. That means
there is a car (Car3), which is not in the neighborhood of
Car2, but has a higher delay time than Car2 so that the
right neighbor (Carl) stopped and yielded right of way to
that car. So, Car2 makes a decision based on the behaviour
of its right neighbor. The controller sends a go signal to its
corresponding car, if it has stopped in the previous simula-
tion step and the reason for the stop signal does not exist
in the current step. If none of previously mentioned cases
occurs, the controller does nothing and waits for the next
simulation step.

The implementation of these rules in each o/c instance
prevents the development of clusters in the critical area al-
lowing cars with higher delay times first cross over the inter-
section. This leads to a lower traffic density in the critical
area (see Fig. b).

We also implemented the priority allocation mechanism
presented in section 3 on the central level (see Fig. 2(b)).
The central observer and the central controller can interact
with all cars in the intersection, i.e. their view is not limited.
In general, systems with a single controller instance, where
the controller influences the behaviour of each agent explic-
itly, cannot scale with the increasing number of agents, if the
controller has limited resources like for example the cpu or
the memory that cannot be expanded accordingly. This type
of limitation would after some time prevent the controller to

Figure 5: Two traffic flows with orthogonal direc-
tions passing through each other. This is the system
with the distributed o/c illustrated in Fig. 2(c)

influence the system as necessary so that the overall system
could produce an unwanted behaviour. Thus, in such large-
scale multi-agent systems the behaviour of each agent cannot
be explicitly determined by a central controller. In such a
case, a system developer can either implement a distributed
control mechanism or modify the central controller so that it
works on a higher abstraction level determining (or influenc-
ing) the behaviour of agent groups instead of the behaviour
of every single agent. In this way, the controller can save
resources and is able to work with a large number of agents.
We have presented a distributed control mechanism above.
In the following, we present the central approach using the
priority allocation mechanism to determine the priority for
a group of cars on the central level.

Since we have the advantage of a non-limited view, we
assign priorities to cars in each traffic low with respect to
their cumulative delay times (see Fig. 6).

Cumulative "'}
waiting time: w1

Figure 6: The cumulative delay times of cars wl
and w2. This is the system with the central o/c
illustrated in Fig. 2(b)



On the central level, the observer interacts with cars,
which have not entered the critical area (cars in red and
blue circles in Fig. 6) in determining priorities for each traf-
fic flow. After collecting delay times, the observer calculates
cumulative delay times for each group of cars. This is the
first parameter sent to the controller. The second param-
eter is related to cars, which could enter the critical area
in the next time step. These are actually cars, which get
a stop/go signal from the controller. That means, if the
controller decides to stop a traffic flow, it only sends a stop
signal to those cars, which could enter the critical area in the
next time step, but did not enter yet. After getting cumula-
tive delay times and a list of cars, the controller determines
priorities for traffic flows and sends stop or go signals to
corresponding cars.

The o/c here adapts itself to particular changes in a given
traffic scenario due to the dynamic priority allocation mech-
anism presented above. Since we have no fixed green and
red light phases, an increase in the arrival rate of cars in
one traffic flow (A) and a decrease in the arrival rate of cars
in the other traffic flow (B) with orthogonal direction would
cause the controller to award the “green light” to traffic low
A more often than to traffic flow B.

5. SYSTEM PERFORMANCE METRICS

Before we compare the system performances resulting from
the application of implemented architectures to the system,
we first have to define the right metric to measure the system
performance. In a system where agents compete for limited
resources each agent maximizes its own profit. Thus, only its
own gain is relevant for a competing agent but not the gain
of the group. Since there is no collaboration between agents,
the overall system performance depends alone on how effec-
tive an agent on average prevails in different encountered
competing situations. Thus, we need to make an assessment
on the agent level in order to determine the system perfor-
mance. This can be done by calculating the average gain
(or loss) of an agent in the system. For example, the success
of a scheduling algorithm in an operating system is always
measured with the average waiting time of a process on the
system.

On the other hand, in a system where agents collaborate
with each other, the gain of the overall group is relevant
but not the gain of every single agent. Thus, we need a
different approach to measure the system performance, since
the average gain of an agent in the system doesn’t really
show how successful the ”group“ is. In such a case, some
agents may temporarily abstain from increasing their own
profit in behalf of the overall group. Thus, we cannot define
here a utility function for an agent without considering the
rest of the agents. Therefore, we define a utility function for
the whole group, since the agents collaborate and the actions
of agents are all linked with each other. This kind of utility
function defines the gain of the group, which is composed of
the contribution of every single agent, and can therefore be
calculated using an accumulated value. So, to measure the
system performance in collaborative agent groups and make
an assessment on the group level, we use an accumulated
value instead of an average. As an example consider the case
where the number of agents increases more rapidly than the
gain of the overall group. This would decrease the system
performance measured with the average value, although the
system increases its gain.
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53.4% Competition
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Figure 7: The change of the group behaviour with
an increasing number of agents with o/c (\) where
the total number of agents is 10.

Since we want to facilitate a collaborative group behaviour
in our scenario, we used an accumulated value instead of an
average (e.g. the average delay of cars) to measure the sys-
tem performance as the total amount of cars that leave the
intersection, i.e. the traffic flow-rate. In the intersection,
the competitive behaviour of cars leads to a traffic jam in
the critical area and we get a poor system performance. The
application of o/c architectures to the system facilitates the
collaboration between the cars. According to the classifica-
tion above we can define the goal of the implemented o/c
arhitectures as minimizing the competition and maximizing
the collaboration between the agents.

We can also calculate the degree of collaboration occurring
in the system through the number of agents with an o/c. To
demonstrate an example calculation assume that we have a
system S with n agents where each agent interacts with all
other agents for a given point of time. Let an interaction [
be either a competition or a collaboration. The number of all
interactions w is then the sum of the number of competitions
and the number of collaborations between agents. Let ~y
be the number of competing agents and A the number of
collaborating agents. Two agents can only collaborate with
each other iff both parts have an observer and a controller.
w can easily be calculated through (Z) so that we have:

n=A+7vy

SCRCROE

To exemplify the formula given above we consider a sys-
tem with 10 agents where only 7 of them have an o/c. So,
nis 10, A is 7 and v is 3. In this case the number of all

interactions w would be () = 45. The number of all col-

laborations is then 21, which can be calculated through (7).
The number of all competitions would be (3) + 3% 7 = 24.
So, we have only (21 <+ 45) x 100= 46,6% collaboration in
the system. Fig. 7 demonstrates the change of the collab-
oration ratio with an increasing number of agents with o/c
(M) according to the formula given above.

Note that, in the example above, a static degree of col-
laboration is given assuming that each agent interacts with



all other agents in each time step. So, we determine the
maximum possible (upper bound) number of competitions
and collaborations and calculate accordingly the degree of
collaboration. We also can determine the dynamic degree
of collaboration where the number of all interactions and
the number of agents with and without o/c that participate
in these interactions change over time. We can then use the
formula given above to determine the degree of collaboration
for each sequential time step.

We give here a quantitative definition of collaboration, the
quality of the collaboration is not considered. This approach
can also be adapted to different types of systems where the
behaviour of agents can be defined either as competitive or
as collaborative. Until now we didn’t measure the degree of
collaboration occurring in our system. Our future work will
investigate the effects of different degrees of collaboration on
the system performance.

6. EXPERIMENTAL RESULTS

We used different test scenarios to measure and compare
system performances, which result from the application of
each o/c architecture to the system. We first implemented
the basic configuration (see scenario I) that presents a low
complexity situation in the intersection. We then used this
configuration and increased the complexity in the system
step by step in order to determine and compare the sys-
tem behaviour with the particular o/c architecture in differ-
ent scenarios. In order to avoid the possible side effects of
the experimental setup on our assessment, we implemented
three different test scenarios with increased complexity and
evaluated the corresponding experimental results. In the
following we introduce our test scenarios.

6.1 Scenariol

We demonstrate in this scenario the basic configuration
that is used to explore the effects of central and distributed
o/c architectures on the system. Here, we create cars only
in south-north and west-east directions, which cross over the
intersection without changing their driving directions. That
means, for example, if a car drives in south-north direction
into the intersection, it leaves the intersection in the same
direction. A car can change from lane to lane on its trip
depending on the particular traffic situation in its driving
direction (see sec. 3 for the behaviour of a car). In this
scenario, the system with the central o/c architecture pro-
vides a better system performance (flow-rate) than the sys-
tem with the distributed architecture achieving a flow-rate
of 3821 cars after 10.000 iterations. Only 3570 cars can leave
the intersection in the distributed case in the same length
of simulation time.

6.2 Scenario I1

Scenario I is modified into the second scenario so that
we have a specific subset of created cars that change their
driving directions after they get into the critical area. In
this scenario, a car in south-north direction can turn to the
right changing its driving direction to west-east and a car in
west-east direction can turn to the left changing its driving
direction to south-north. We measure the system perfor-
mance for the cases where 10%, 20%, 30% and 40% of all
cars change their driving directions. Fig. 8 shows the system
performances for each case with the central and distributed
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Figure 8: The traffic flow-rate after 10.000 ticks
where cars change their driving directions in sce-
nario II
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Figure 9: The traffic flow-rate after 10.000 ticks
where cars temporarily stop moving in scenario III

o/c architectures. Note that the system performances for
0% correspond to the performances measured in scenario I.

6.3 Scenario II1

Scenario I is modified into this scenario so that we can
simulate a temporary deficiency of the system elements. In
scenario III we have a number of defective cars, which tem-
porarily stop moving and block other cars that come after-
wards. A car on its trip can stop moving at a random po-
sition in the intersection. Since we want to simulate only
a temporary deficiency, a defective car continues moving
again after some time. This scenario demonstrates an in-
ternal disturbance in the basic system presented in scenario
I. We investigate the effects of implemented architectures on
the system for the cases where 10%, 20%, 30% and 40% of
cars temporarily stop moving. The resulting performances
can be seen in Fig. 9.

6.4 Scenario IV

After we demonstrate the effects of an internal disturbance
on the system, we investigate here the system performance
in the case of an external disturbance. In this scenario, our
system consists of cars in south-north and west-east direc-
tions and the corresponding observers and controllers. As an
external disturbance we create two additional traffic flows in



north-south and east-west directions so that we have a two-
way traffic in both directions. Cars in new traffic flows don’t
have an o/c so that they do not collaborate with other cars.
They only consider their own gain and try to cross over the
intersection as soon as possible. Due to the aggressive and
non-collaborative driving behaviour of cars in north-south
and east-west directions, cars in south-north and west-east
directions are blocked repeatedly while they cross over the
intersection. The configuration of this scenario is shown in
Fig. 10. Since cars in north-south and east-west directions

Cars with 0/c islasssssnessansaans:

Figure 10: Cars without an o/c are considered as an
external disturbance

don’t have an o/c, they are not considered as part of the
collaborative system. Thus, in measuring the system perfor-
mance we only consider cars with an o/c. In this scenario,
we measure the system performance for the cases where on
average 0.5, 1.0, 1.5 and 2.0 cars per tick drive into the inter-
section in north-south and east-west directions. The results
can be seen in Fig. 11.
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Figure 11: The traffic flow-rate after 10.000 ticks
with two additional traffic flows in north-south and
east-west directions in scenario I'V

6.5 Evaluation of the system performance

The configuration of scenario I produces no disturbances
and allows one type of agent behaviour, since cars don’t
change their driving directions. Thus, we have a low com-
plexity in scenario I that can easily be handled by the central
o/c. The non-limited view allows the central o/c to work on
a higher abstraction level and implement a large-scale collab-
oration between cars providing a better system performance
while saving the required system resources like the cpu and
memory. On the other hand, the distributed o/c has a lim-
ited view so that a car cannot collaborate with another car
outside its neighbourhood. Thus, a car (C1) with direction
D1 can block another car (C2) with direction Do, if D1 L
D5 and C2 was not in the neigbourhood of C1 in the previ-
ous time step. This produces additional delay for cars while
crossing over the intersection, which eventually leads to a
lower flow-rate.

In scenario I, we have cars with orthogonal driving di-
rections in the critical area at the same time only if we
use the distributed o/c. In scenario II, this is always the
case regardless of which o/c we use, since cars can turn
to the left or to the right in the critical area. This kind
of agent behaviour produces additional competition situa-
tions in the critical area, if we use the central o/c. But the
central o/c doesn’t consider this kind of competition situa-
tions since it determines priorities for groups of cars on the
macro (higher abstraction) level. This decreases the collabo-
ration level (and at the same time increases the competition
level) between agents, which eventually leads to the devel-
opment of temporary clusters in the critical area. These
clusters disperse after some time without an intervention
from a controller, and this in turn decreases the flow-rate
in the intersection. The distributed o/c, on the other hand,
can determine priorities for each car on the micro (lower
abstraction) level sustaining the collaboration level between
agents. Therefore, the distributed o/c provides a better sys-
tem performance in scenario II depicted in Fig. 8.

Scenario IIT and scenario IV increase the complexity in the
intersection by creating internal and external disturbances
respectively. In both scenarios we have cars that don’t par-
ticipate in the collaboration, which leads to a decrease of the
system performance in central and distributed cases. The
experiments show that the distributed o/c scales better than
the central one in the case of an increasing complexity lead-
ing to the conclusion that the distributed o/c is more robust
than the central one in both scenarios. The implementation
of the collaboration between agents with the distributed o/c
on a lower abstraction level prevents the propagation of dis-
turbances more successfully isolating the agents affected by
the corresponding disturbance from the rest of the system.
On the other hand, on a higher abstraction level, we can
more effectively determine bottlenecks in the system due to
the non-limited view, but we cannot define the limits of the
isolation precisely enough with the result that more collabo-
rating agents get disadvantaged by non-collaborating agents
than in the distributed case.

Although we expect that the central approach should work
at least as well as the distributed one in scenarios with the
increased complexity, the experiments show that the more
complex the situation in the intersection is, the better works
the system with the distributed o/c in spite of the limited
view. Thus, a central o/c with a larger view on the system,
which makes decisions on a high abstraction level, doesn’t



implement the required collaboration in complex situations
as successful as the distributed o/c. On the other hand,
the central o/c works better in the low-complexity situation
presented in scenario I. Thus, the design optimum for sys-
tems, which work in a dynamically changing environment,
is located neither on the central nor on the fully distributed
level. So, the optimum should be somewhere in between the
central and distributed approaches.

The results suggest an adaptive architecture switching be-
tween a centralized and a distributed o/c architecture de-
pending on the current complexity domain. Such an ar-
chitecture can be realized by incorporating the presented
central and the distributed o/c architectures in the system
as shown in Fig. 2(d). Here, the central observer monitors
continuously the system state and dynamics and give the
corresponding information to its controller. According to
the identified situation in the system, the central controller
either sends a control signal directly to the agents so that
the distributed controllers only execute actions, which they
get from the central controller without "thinking* or lets the
distributed controllers determine the next action of their
cooresponding agents. This type of architecture increases
the communication cost, since each distributed controller
must communicate with the central controller in order to
determine their work mode that is either executing the pre-
determined actions from the central instance or calculate
the next action for its agent based on its limited view. Such
a multi-level architecture covers all the scenarios with dif-
ferent complexity levels presented in this section providing
the best possible system performance for each case. Since
we can show that the system performance depends on the
collaboration between the agents, this kind of switching be-
tween the central controller and the distributed controllers
can be implemented according to the degree of collaboration
occurring in the system. Thus, such an adaptive architec-
ture can realise the collaboration between agents both on
the macroscopic and the microscopic levels.

6.6 Evaluation of the communication cost and
response time

We also compared the implemented architectures with re-
spect to communication cost and response time'. Commu-
nication cost resulting from the application of both architec-
tures to the system can be found in table 2. We considered
only car-to-car communication in the distributed case. That
means, we omitted the local information exchange between
an o/c pair and their corresponding car in determining com-
munication costs. Therefore, the amount of information sent
to the system is 0, since a controller in the distributed case
sends messages only to its own car. The corresponding ob-
server on the other hand, communicates with all cars that
are in the direct neighbourhood, and receives messages from
them. That means that each car must send a message not
only to a single observer as in the central case but to each ob-
server in its neighbourhood, which in turn leads to a higher
communication cost.

In determining response times, we assume that a single

!The response time of an o/c pair is the time between the
moment when the observer retrieves information from the
system according to its observation model and the moment
when the corresponding controller sends appropriate signals
to the system according to situation parameters from the
observer.

Observer | Controller | Response time
25.58 ms 2.93 ms 28.51 ms
12.43 ms 2.00 ms 14.43 ms

Central
Distributed

Table 1: Response times in ms

message has a maximum size of 1375 Byte and is sent via
an IEEE 802.11 network with 5.5 MBit/s, which leads ap-
proximately to 2 ms message transmission time. Table 1
shows the resulting response times in the central and in the
distributed cases.

We have shown that the distributed o/c provides a better
system performance in complex scenarios whereas the cen-
tral o/c performs better in the low-complexity scenario. If
we want to develop an adaptive architecture that can switch
between the centralized and distributed architectures, we
must consider the communication cost and response time
resulting from the utilisation of each architecture. There-
fore, when switching from the centralized to the distributed
architecture, we must assure that the underlying communi-
cation network can scale with the increasing message trans-
mission rate and perform acceptable with the growing size of
exchanged messages between system elements per time unit
(see Table 2). On the other hand, when switching from the
distributed to the centralized architecture, we must consider
that the decision making on the central level takes longer
than on the distributed level (see Table 1) and assure that
the underlying system can still perform in real-time after
switching.

7. CONCLUSION AND OUTLOOK

We investigated the generic o/c architecture in the case
of an intersection without traffic lights. We implemented
different o/c architectures and applied them to the intersec-
tion in order to increase the system performance. In this
context, we considered the clustering problem in the inter-
section as a resource sharing problem, which is a common
problem in multi-agent systems, and presented a priority
allocation mechanism to cope with that problem. We im-
plemented this priority allocation mechanism on different
distribution levels of the generic o/c architecture. We pre-
sented a fully distributed and a central o/c architecture and
provided a comparison of both architectures. As comparison
criteria we used the system performance, the communication
cost and the response time resulting from the application
of each architecture to the system. Our experiments show
that the central o/c doesn’t implement the required collabo-
ration in complex situations as successful as the distributed
o/c. The more complex the situation is, the better works
the distributed o/c in comparison to the central one. The
central o/c, on the other hand, provides a better system per-
formance in the low-complexity scenario. This suggests the
implementation of an adaptive architecture, which combines
the advantages of both the central and the distributed o/c
architectures. Such an architecture can switch between a
centralized and a distributed o/c depending on the current
complexity domain, which requires a specific degree of col-
laboration between the agents in the system. Future work
will have to determine criteria for a transition between the
domains.
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Information retrieved from
the cars (Observer)

Information sent to the
cars (Controller)

Total

Central 261.04 Kb/Tick

0.42 Kb/Tick

261.46 Kb/ Tick

Distributed 923.40 Kb/Tick

0 Kb/ Tick

923.40 Kb/Tick

Table 2: Communication costs in Kb/Tick
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