
Distributed Service Framework: an innovative open eco-
system for ICT/Telecommunications

Rosario Alfano
Telecom Italia Lab

via Reiss Romoli 274
10148 – Torino - Italy

+39-011-2285854
rosario.alfano@telecomitalia.it

Antonio Manzalini
Telecom Italia Lab

via Reiss Romoli 274
10148 – Torino - Italy

+39-011-2285817
antonio.manzalini@telecomitalia.it

Corrado Moiso
Telecom Italia Lab

via Reiss Romoli 274
10148 – Torino - Italy

+39-011-2286780
corrado.moiso@telecomitalia.it

ABSTRACT
In order to fuel new emerging service markets, next generation
service delivery framework have to be based on an highly
distributed and open architectures adopting innovative
technologies capable of enabling features such as robustness,
security, stability and scalability.

The talk will elaborate on RT&D activities and results concerning
a Distributed Service Framework (DSF) solution that has been
designed as an innovative open eco-system for ICT/
Telecommunications services. Specifically, the DSF architecture
is based on multiple autonomic components that are interacting
each other via a self-organising overlay. Particular attention is
devoted to the service execution environment of the DSF where
scalability and dynamic load balancing are met by self-
organization capabilities of the components. The design choices,
specifically the autonomic and altruistic local behavior of
components and “ServiceSpace”, enable global features
effortlessly, simplifying implementation and management
complexities.

Keywords
Distributed Service Framework, Agents, Autonomic,
Virtualization, ServiceSpace

1. INTRODUCTION
Technology is currently offering a wide set of portable

digital devices (e.g. cell phones, PDAs, laptops, digital cameras,
music player, Wi-Fi devices) at relatively low cost. Penetration of
these and other miniaturized digital devices (e.g. sensors) is
becoming deeper and deeper in modern cities. This driver is
opening new opportunities to produce and access ubiquitously
cross-media applications and services.

For example, the dynamics of a city can be captured in real-
time by collecting and correlating data (anonymous localization,
traffic, pollution, cultural sites, events, etc) provided by
heterogeneous digital devices and data sources. Real cities are
like ecosystems with self adaptive and self-organizing properties
where social patters represent valuable (anonymous) information
for providing situated services even anticipating Users’ needs.
Services may include pervasive communications, personalized
cross-media real-time contents, infotainment, commercial and
social information. Pervasiveness requires supporting
technologies capable of scale over highly distributed resources
with de-centralization of functionalities. These requirements

might be met by dynamically configurable structure using a P2P
overlay network.

As a matter of fact another contemporary driver is the wide
adoption of peer-to-peer solutions to deliver services to end-users
(e.g. Skype, Jost, Edonkey). It should be note that current peer-to-
peer solutions are basically application-oriented and they don’t
meet the requirements of network-transparency for cross-media
applications and services; nevertheless they has engendered a
great interest for flexible, robust, secure service and control peer-
to-peer distributed service platforms; further requirements that
have to be met include scalability and survivability, especially in
unpredictable and chaotic environments and when failures occur.

In order to meet the challenges and the opportunities offered
by this service context, innovative technologies and solutions are
required for exploiting highly distributed environments. In
principle a distributed system is a collection of independent sub-
systems (linked with distributed software) that appear to the
operators/users of the system as a single entity. Distributed
software enables sub-systems to coordinate their activities and to
share the resources of the system - hardware, software and data.
Actually this is likely to be an attracting model for the evolution
of next generation Service Platforms capable of meeting the
requirements of an emerging service context as described above.

The Distributed Service Framework (DSF) model, presented
in this paper, is based on secure, robust, scalable, component-
based environment capable of operating even in disconnected and
chaotic environments (e.g. with corrupted information and
capabilities).

DSF aims addressing the identified challenges, in particular
by:

• enabling an open service eco-system which allows
Individuals (e.g., as Prosumers), Service/Contents Providers
and other Operators to produce and consume services
according to innovative business models;

• providing a platform for service delivery, that reduces the
costs, for both infrastructure and management/ operation
aspects, of service providers

From the technical point of view DSF aims overcoming the
limitations and drawbacks of current solutions for service
delivery, based on centralized environments for the execution of
Business Service Logic, and SOA solutions for reusing and

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.AUTONOMICS 2007, 28-30 October 2007, Rome, ItalyCopyright © 2007 ICST 978-963-9799-09-7DOI 10.4108/ICST.AUTONOMICS2007.2302

sharing decentralised ICT/Telco resources and capabilities,
through the adoption of:

• autonomic techniques, both at the platform and at the service
logic level, to achieve high degree of self-organization, self-
management (“self-chop”), self-adaptation properties , etc.,
to the reduction of management costs and to the
improvements of the reactiveness of the system to unplanned
or unexpected events;

• distributed solutions for services and data, to achieve high
levels of scalability, reliability, and optimization of resource
usage, and seamless involvement of end-users devices.

2. TELECOMMUNICATION SERVICE
PLATFORMS: CURRENT TRENDS AND
LIMITATIONS

Currently telecommunication services are mainly created,
executed and managed by a “Service Layer”, which consists of a
set of systems implementing the functions needed for the service
delivery. The services are characterized by a “business logic” that
may use and combine a set of Telco features which provide some
basic service capabilities. Examples of Telco features are:
capabilities for controlling bearers/channels; enablers for value-
added capabilities and user-adaptation; identity and data
management: end-user identity federation, end-users profiles,
service profiles, terminal profiles, end-users account,
billing/charging, etc. Services are either triggered by some events
produced by Telco Features (e.g., call activation, the reception of
a new message, the change of location of a terminal/end-user), or
activated by some applications (e.g., deployed on an end-user
terminal interacting through a specific protocol, such as HTTP,
etc.). Context awareness in service activation, as this is provided
through external (location, sensor readings, pushed content) or
internal (device status, memory or power levels) triggering is the
means to offer comprehensive service provision, with a minimum
of user intervention. Currently, services interact with Telco
Features and terminals through a wide set of protocols, each of
which specialized to deal with specific capabilities/functions.
Examples are: INAP, and CAP for session and call control, LIF
for localization, SIP/ISC for session control and presence, USD
for control of SMSs, MM7 for control of MMSs, etc.

Most of the current service layer deployed in the Telco
Operator’s infrastructures are realized as a set of “vertical”
platforms or solutions, named Silos, each of them specialized to
provide services involving a specific service classes (e.g., content-
based services, location based-services, massaging) or a specific
networks. In general, such platforms integrate in a single system
the service execution environments, the relevant Telco features
and some supporting functions (e.g., payment, authentication,
profiles). Some Silos-based service environments are based on
standards (e.g., IMS for IP-based multimedia services, IN for
circuit-based services, OMA and 3GPP specifications for
messaging and location-based services), others are proprietary
products and/or customized solutions. Whatever the case, Silos-
based service environments are typically characterized by:
specific servers for service logic execution; specialized
mechanisms/ protocols to activate services and to configure such
activations; specialised repositories handling the data necessary
for the execution and management of the services running on it;

repositories for storing user preferences and service
activation/deactivation rules; specific and/or proprietary protocols
for the interaction of services with other services and with the
functions, implemented in it.

Silos-based service environments exhibit a number of
limitations with regard to the characteristics requires by
innovative service scenarios. It is quite difficult to integrate/
combine functions belonging to different Silos without costly
integration efforts, due to lack of adoption of open and/or
standard interfaces to access their internal functions. Such a
context, where the silos-based platforms deployed in the service
layer are loosely integrated (and hardly integrable), introducing
serious constraints and complexities in the possibility and
efficiency in the process of creating and deploying new services.

In order to overcome such situation, the service layer is
evolving towards a “horizontal” approach based on the integration
among platforms for service delivery which are deployed in the
Operator infrastructure, and the sharing of and interoperability
among functions, enablers and service capabilities [1]. Although
at present there is not a shared definition of a horizontal Service
Layer in literature, but some common principles can be identified:
logically unique functions; open interfaces and adoption of open
protocols APIs detaching from actual enables; unique
identification of customers and uniform access to data; uniform
mechanism for the exposure of Telco features to IT applications;
adoption of a common communication infrastructure (e.g.,
CORBA, .NET, etc.).

So-called Service Delivery Platforms [2] are examples of
solutions which implement such principles but, at the moment,
these are mainly proprietary proposals elaborated by vendors,
based on integration of their products and of products of their
partners. It is worth mentioning that several standards are being
proposed providing specifications which can be used to deploy
multi-vendor SDP-based solutions. Examples are: OSA/Parlay
APIs and Parlay X Web Services, 3GPP GUP and Liberty
Alliance Frameworks, JAIN SLEE specification provided by JSP
for event-oriented service execution, and OSE, the architectural
vision of OMA.

The most promising trend in this direction is the evolution of
the service layer according to a horizontal approach is the
adoption of Web Services and Service Oriented Architecture
solutions [3]. Recent initiatives, e.g., proposed by OMA and
Parlay, are aiming defining a Web Service/SOA Framework for
Telecommunication Services, typically relying on existing and
newly proposed standards (defined in W3C, OASIS, WS-*
initiative).

A SOA-based Service Layer model typically includes sets of
macro-functions for execution of loosely coupled services, service
exposure, specialized functions for Telco Web services (possibly
based on emerging standards such as 3GPP/ETSI Parlay X Web
Services, Liberty Alliance WSF, OMA service enabler
interfaces), and functions that enable the deployment and the
delivery of services based on Telco features (other than basic
connectivity, enables for Multimedia, WAP, location services,
etc). In addition, it includes infrastructural services such as
directories, SOA communication buses, and identity/access
management services.

Generally, SOA frameworks are made independent of
specific Telco protocols, and are (at least logically) decoupled
from the servers implementing the Telco Features (e.g., JSLEE
introduces several adaptors to interact with different
protocols/interfaces). This makes SOA frameworks more suitable
for enabling integration and convergence than vertical
frameworks and other proprietary horizontal frameworks.

Still, in these frameworks, service logic is mainly
“centralised” with limited distribution of business logic
components: components (e.g., exposed as Web Services) are
mainly used to access basic functions (e.g., for controlling Telco
Features) and not to structure the application business logic.
Moreover, the configuration and composition of service logic are
static with limited dynamic adaptation to the service execution
context. Finally, the deployment of applications/components on
servers is performed according to some off-line planning without
limited dynamic adaptation to traffic, performance, fault-handling
conditions.

Such characteristics inherently limit scalability and the
capability of handling large-scale service and data systems, limit
the possibility of exploiting such frameworks for the dynamic
deployment and execution of innovative, user-centered, and
adaptive Telco services (also by Prosumers). Also, the need for
specifically configuring application logics makes any attempt in
that direction technically hard and economically unbearable.

3. DSF OBJECTIVES
The DSF model presented in this paper aims overcoming the

limits of current solutions for telecommunication services by
proposing a flexible distributed services framework, relying on
fully distributed and self-chop solutions for services, and on a
flexible peer-to-peer overlay as a substrate for their execution.

This will enable: dynamic organization/adaptation of service
behaviour according to the evolution of service sessions, through
the organization of the service logic in smaller independent
components with autonomic behaviour; optimization of resource
allocation and higher scalability properties through flexible/
dynamic allocation of services,/components to the servers;
handling of immense volumes of highly-dynamic data/
information, as required by pervasive/mobile Telco-ICT services,
through flexible organization of data management.

Moreover, DSF will lead to a reduction of management/
configuration costs via a uniform autonomic model, a reduction of
the costs involved in hardware resources, and will open up the
possibility for innovative business models, through service
development, configuration, execution, assurance open to diverse
set of actors (e.g., prosumers-ecosystem).

Limitations of State-of-the-Art DSF objectives

Configuration and composition
of service logic are static with
limited automatic capabilities of
adaptation to the service
execution context

The organization of the service logic
in smaller independent components,
with autonomic behaviour, enables
the dynamic organization/adaptation
of service behaviour according to the
evolution of service sessions

Limited scalability in handling
data intensive applications,
requiring a real-time view of the
huge volume of highly dynamic

Flexible organization of data
management, by using autonomic and
semantics based information, and
distribution of data across computing

information, as required by
pervasive/mobile Telco-ICT
services

nodes, dynamically allocated, allow
handling immense volumes of highly-
dynamic data/information

Static allocation services-servers,
according to off-line planning,
traffic estimation, etc.;
“monolithic” allocation of the
services to the servers; some
proprietary solutions available
for single vendor server farm

Resource allocation through flexible/
dynamic allocation of components to
the servers, also according to
autonomic decisions and exploitation
of GON capabilities, optimize the
usage of the resources (through an
allocation on demand), and improve
scalability in terms of both processing
and data management

Focused on the development of
services in the domain of service
providers

Uniform governance of DSF across
heterogeneous computing/network
contexts, and autonomic support for
service management, enables diverse
types of actors (e.g., prosumers-
ecosystem) to offer services and
facilitate the coalitions of service
providers

4. DSF ARCHITECTURAL OVERVIEW
The DSF is deployed on an heterogeneous set of resources

which ranges on common-of-the-shelve (COTS) servers, Users’
devices (e.g., PDA, mobile phone, laptop), Customer Premise
Equipment (Residential Gateways, Step Top Boxes), sensors (or
their aggregation proxy), etc. These nodes are interconnected
through a, potentially, heterogeneous communication
infrastructure (e.g., Internet): some of them could have
dynamically assigned addresses, or may be allocated behind
NAT/firewall nodes.

In fact, DSF has to be deployed on both end-users’
terminals/devices and servers/clusters in the service providers’
premises, in order to provide a platform homogenous from the
point of view of services and components: this environment
would contribute to achieve seamless integration of the Prosumers
systems in the overall architecture.

The overall architecture may enhance the self-similarity
properties of Google’s Googleplex solutions (both pizza-box
servers and clusters of servers have the same functional
architecture) supporting a distributed replication of data and
services: this would allow high levels of availability also starting
from low-cost commodity H/W.

Distributed Service and Data
Environment

Generic Overlay Network

IP Network and Internet

Data-ware

Figure 1: Distributed Service Framework: Architectural vision

The Generic Overlay Network (GON) is a layer on top of the
computing resources and the Internet governing interactions
between the DSF functions and services.

GON aims decoupling the service execution functions
(implemented by the DSDE) from the underlying infrastructure,
as a virtualization of the infrastructural resources and
communication/networking among them. GON organizes the
computing nodes (either end-user devices, servers, or servers
clusters), interconnected through a potentially heterogeneous
communication infrastructure, in a set of peers. GON provides
the basic functions to build and maintain overlay networks, by
handling also the dynamic and unpredictable failures of
computing nodes or introduction of new ones. GON has to
provide a “generic” support to distributed service execution: it is
not tailored to a specific application, as the most known current
overlay solutions (e.g., by Skype for VoIP services, GIA for
content distribution).

The Distributed Service and Data Environment (DSDE),
based on autonomic agent/component-ware technologies, will be
in charge of executing, maintaining the services (e.g. functions as
service composition, execution, management, assurance...). DSDE
provides autonomic capabilities for self-organization, self-
adaptation, and self-management (e.g., self-chop) to the service
components required to implement the service business logic.

DSDE functions (i.e., execution environments for autonomic
components/agents, distributed data repositories, etc.) are
deployed on the GON peers, either on servers/clusters or on end-
users devices/terminals (possibly belonging to different domains):
moreover, DSDE relies on the functions of GON to build,
optimise and maintain the virtual connectivity necessary to handle
data and execute services in a distributed, reliable and scalable
way.

Moreover, DSDE includes functions/components to
implement Data-ware capable of gathering, caching, correlating
(by also exploiting semantics knowledge) and offering huge
amounts of data/information from/to different data sources/sinks
(e.g. mobile handsets, distributed devices, etc) of which the
availability is changing dynamically (i.e. high churn rate of
resources). Data-ware functions would enable to deal (retrieve,
store, access, protect, etc.) in a uniform way data/contents
managed by Service/Content Providers and data/contents handled
by Prosumers.

DSF has to supports the interworking with legacy systems
such as service enablers from legacy service delivery
environments (e.g. Location, Presence and Group List
Management, Messaging Call/Session Control, Conferencing),
OSS/BSS systems, Data-Centers, Contents/Media-Repositories.

These interworking should be performed in order to allow
DSDE components/services interacting with the legacy systems,
in a seamless way, according to the adopted component-ware
paradigm. For instance, the interaction with OSS/BSS systems
should be mediated in order to be integrated in the context of the
autonomic self-management capabilities.

The Distributed Service and Data Environment (DSDE) has
to provide the environment for the execution of services
structured as distributed components: these components include
autonomic capabilities for self-management, self-action and self-

organization. Moreover, the DSDE has to be capable of handling
and organizing huge amounts of distributed data/information.

The DSDE responds to the key evolutionary requirements
with respect to the current solutions of service execution
environments, typically adopted for the delivery of services over
ICT/Telco infrastructures. Such current solutions, mainly based
on “centralized” service logic deployed on application servers, are
based on servers running execution environments either compliant
to international standards (such as J2EE, JSLEE, BPEL), or
proprietary solutions (in particular for services in the Telco
context, such as Intelligent Network SCPs of new generation). In
fact, in spite of introduction of SDP and/or SOA inspired service
layers, the business logic of the services still remains mainly
“centralized”: at most they interact with components to control
Service Enablers or to interface management systems.

In order to overcome the limitations, DSDE adopts an
execution model based on interacting distributed
components/agents with goal-oriented logic capable of providing
a rich set of autonomic capabilities. According to view, service
logic (or, better, an eco-system of service functions/components)
is provided through a web of communicating autonomic
components/agents, which are executed in a distributed way and
(self-)managed through a set of self-* features. For instance:

• the organization of the service logic in smaller
independent components, with autonomic behaviour,
may offer the possibility to dynamically organize/adapt
service behaviour according to the needs of service
session instances;

• the allocation of services, and service components
instances to the servers in a more flexible/dynamic way,
possibly according to autonomic decisions taken by
services/components, allow significantly optimized
allocation of the resources: servers may be allocated to
services/components on-demand (e.g., due to service
request picks, QoS requirements, facing fault
situations), and released (to be allocated to other
services) when no longer needed;

• the distribution mechanisms, also based on autonomic
features, for service logic and tasks increment the
scalability of the solutions, for instance to monitor huge
numbers of client/consumer devices to detect service
triggering based on dynamic conditions (e.g., based on
crossing boundaries between geographical areas);
moreover, an efficient distribution of service/task
execution improve the handling of sessions (determined
by “long-running” Telco protocol transactions);

• the flexible organization of data management (e.g., for
gathering, aggregating, inferring, and making it
available dynamically where and when needed) and
data distribution across on a (possibly dynamic) set of
computing nodes enables the handling of data huge
volume of highly dynamic data/information.

DSDE is organized as multiple/distributed instances
deployed on peers. Each of the instances implements functions
the execution of distributed autonomic components/agents and/or
for the flexible management of huge amount of data.

In order to work on a set of dynamically available computing
nodes interconnected, the DSDE will exploit the capabilities
provided by the GON for handling the (dynamic) allocation of
DSDE peerws on computing nodes, according to the performance
and fault recovery needs. This solution would improve scalability
and high-availability at a reduced cost w.r.t. to traditional
solutions (based on the static allocation of execution
environments on server farms).

Peers (of GON)

Distributed Service Execution Environment

Distributed Data

Autonomic Components

Figure 2: Distributed Service and Data Environment

Technologies for autonomic behaviour and communication
of the service components provide the core capabilities for
flexible management of the DSDE: solutions elaborated in Project
CASCADAS [4] are a possible starting point (the component
model, the related supervision infrastructure, the guidelines for
self-organization, and data management functions).

As an example the following features can be implemented
with goal-oriented approach:
• Self-action features that allow a component/agent to behave

proactively, i.e., to act autonomously without the persistent
necessity of human intervention. Such distributed decision-
making may be offered by an individual component/agent, or
by consensus agreement, and helps to enable the automation
of selected tasks traditionally performed by human operators.
This forms a necessary precursor to enabling self-
management and self-organization;

• Self-management features that employ autonomic feedback
loops to provide self-adaptation according to detected events
and conditions (and considering also resource availability).
They include self-configuration to dynamically change
service configuration, composition, and distribution/
deployment according to the evolution of the execution
conditions, self-optimization to optimize the behaviour and
operation of service components and their
allocation/configuration on the execution environment, and
self-regulation to compensate for change and failures in the
DSDE and thus offer dependability and resilience;

• Self-organization features that allow the dynamic and
automatic assembly of the functions required to accomplish a
given task or set of tasks according to component-local rules
and behaviours. Sustainable system properties are supposed
to emerge for self-organized behaviour of an interacting
network of basic components. These features could be
enriched with resource negotiation capabilities.

• Self-similarity that addresses the derivation and deployment
of general management and organisation mechanisms to be
applied on various levels of abstraction, thus supporting the
autonomous formation of hierarchical structures in service
eco-systems that are necessary for a scalable definition of the
DSF.

• Self-security that addresses all functions that are concerned
with the establishment of trust relations between users and
systems, or between systems. It includes classical security
solutions such as authentication and encryption mechanisms
as well as more advanced “soft-security” concepts such as
the dynamic trust and reputation management, community
based security, etc. It would include a module to
continuously monitor potential DoS attacks for any
component of the DSDE, and to offer dynamic defense
mechanisms. The optimal incorporation of this module into
key DSDE components will be a topic for research and
experimentation, leading to a technical solution that will
offer a compromise between possible overhead during
normal operation, and enhanced performance in the presence
of attacks.

The autonomic features of the DSDE are improved through
the introduction of goal-oriented knowledge reasoning
capabilities relying on ontologically-grounded data semantics,
both at the level of component lifecycle management, and at the
level of component interaction and aggregation. The use of
semantics as an integral part of service descriptions allows a more
meaningful association between the data or knowledge rendered
accessible by a service, and the programmatic expression of that
data within the service description. Assigning semantics is crucial
for the management of huge amount of data; DSDE will also
exploit semantic information to express the underlying concepts
to aggregate, combine, delete, or re-distribute data items.

DSDE includes mechanisms for the flexible organization of
data management (e.g., for gathering, aggregating, inferring, and
making it available dynamically where and when needed), data
distribution across on a dynamic set of computing nodes, and
support for rich set of data access functional requirements (e.g.,
currency, consistency and integrity, version, preserved distributed
isolation, persistence) as well as data access non-functional
requirements (e.g., latency, throughput, security, resilience and
recoverability, mobility location and speed, scalability); this data
management organization, data access requirements richness and
data distribution would enable the handling of immense volumes
of highly dynamic data/information, required to address pervasive
Telco-ICT services (e.g. systems for environmental monitoring,
human life support, emergency and traffic management, etc.).

As already described the target environment is characterized
by high degree of dynamicity and high probability of
unpredictable events, changing conditions and disconnections.
This motivates one of the basic principles of the architecture: each
building block has to provide the information/capabilities it is
responsible for to other participants as much as possible and any
time it is capable to do it. The right metaphor is the
“ServiceSpace”: a shared environment each participant
contributes with its knowledge and its capabilities.

This principle avoid to implement strong and heavy controls
needed to ensure that the right information reach the proper

consumer when needed. If a component is available and it is
capable to reach some other participant, its information is
provided.

The principle described above, if applied alone, could lead to
poor performance due to the huge amount of information
circulated by the “altruistic” participants. In order to mitigate this
effect the class of autonomic algorithms described above. The
main goal for the algorithm in this case is to ensure the proper
connection among participants in order to ensure that each
participant is altruistic with the best group of other components.

The basic assumption underlying this mechanism is that if
any participant tries to do its best job in terms of proposing its
capabilities to other participant, and do this any time he can, we
can achieve significant benefits at whole system level. This will
lead to a “ServiceSpace” characterized by the proactive behavior
of the single component: each participant, apart from its main
business goal, has the main aim to contribute to the information
building the “ServiceSpace”. This information is statement about
the proposed service.

The metaphor for the “ServiceSpace” is the blackboard: each
component runs its service logic when needed and each time it is
idle write proper information in the “ServiceSpace” in order to
state its availability. The information about the services proposed
is obviously augmented with further information aimed to allow
its proper invocation.

The “ServiceSpace” will lead to a very useful view of the
system which will state the status of the system in terms of
availability of services, their locations and condition to invoke
them.

5. CONCLUSIONS
This paper has provided some preliminary results of ongoing

RT&D activities on the so-called Distributed Service Framework
(DSF), a solution that has been conceived as an innovative open
eco-system for ICT/Telecommunications services. DSF
architecture is based on multiple autonomic components which
interacts each other via a self-organising overlay.

The design of the DSF has devoted particular attention to the
service execution environment of the DSF where scalability and
dynamic load balancing are met by self-organization capabilities
of the components. The design choices, specifically the
autonomic and altruistic local behavior of components and
“ServiceSpace”, enable global features effortlessly, simplifying
implementation and management complexities.

6. REFERENCES

[1] R. Minerva R., C. Moiso, “The Death of Network

Intelligence?”, in Proc. International Symposium on Services
and Local Access 2004 (ISSLS), Edinburgh, 2004.

[2] The Moriana Group, “Service Delivery Platforms and
Telecom Web Services - an Industry Wide Perspective”,
(http://www.morianagroup.com/sw1635.asp), June 2004

[3] E. Thomas, “Service-Oriented Architecture: Concepts,
Technology, and Design”. Prentice Hall, 2005.

[4] A. Manzalini, F. Zambonelli, “Towards Autonomic and
Situation-Aware Communication Services: the CASCADAS
Vision”, in Proc. IEEE 2006 Workshop on Distributed
Intelligent Systems.

