
Context Generation and Structuralization

for Ambient Networks

Tomasz Szydło
tszydlo@agh.edu.pl

Robert Szymacha

szymacha@agh.edu.pl

Krzysztof Zieliński

kz@ics.agh.edu.pl

Departament of Computer Science

AGH-University of Science and Technoloogy

Al. Mickiewicza 30, 30-059 Kraków, Poland

+49 12 617 39 02

ABSTRACT

This paper presents a model of context information data source

structuralization, having in mind requirements of Ambient

Networks applications. The proposed solution extends the

ContextWare architecture, which is a general framework for

context information dissemination. It assumes that the transfer of

context information which represents a temporal state of sensors

is accompanied by semantic information. This is a key concept in

achieving true interoperability between heterogeneous system

domains in mobile applications. A system for semi-automatic

generation of data sources in the form of Web Services wrapping

the sensors is presented. The input data of this system consists of

information about sensors and an ontology describing their

semantics. A proposed notation, describing the mapping of values

from sensors to the ontology used in the Ambient Networks

project, was employed at this stage. The outcome of the system

consists of a Web Service which exposes data and semantics of

context information.

Categories and Subject Descriptors

D.2.12 [Interoperability]: Data Mapping.

General Terms

Management, Design, Standardization.

Keywords

component; Ambient Networks; context; context sensors; context

management; triggering; context modeling

1. INTRODUCTION
Pervasive computing systems pose new challenges for software

developers dealing with software and hardware, as well as their

development. Interoperability and adaptability are the most

important ones, but new technologies such as metadata and

semantic representation are needed to bridge the gap between

heterogeneous platforms and applications. A very good survey of

the challenges and state of the art in software technologies

applicable to pervasive computing environments can be found in

[12]. The main challenges of pervasive software include a uniform

and adaptive middleware technology as well as interoperability of

services and networks.

Pervasive computing enhances the use of computers by making

computers effectively available throughout a physical

environment and, at the same time, making them invisible to the

user. Mark Weiser [15] expressed this goal as achieving the most

efficient technology and making computing as ordinary as

electricity. Pervasive computing [13] is another term used in the

same context but from a different point of view. Pervasive

computing emphasizes mobile data access, smart spaces and

context awareness. The Ambient Networks project [7] explores a

similar area, placing more stress on ad-hoc communication and

execution environment mobility.

Modern Web computing and Web service technologies are the

driving force behind development of interoperable system

applications. Full power of this technology may be achieved with

semantic extension [8] of data exchange between system

components. This goal was recognized a few years ago by the

REST (Representational State Transfer) architecture [4],

supported by the Web. The basic concept of the REST

architecture is that of a resource. A resource is any piece of

information that can be uniquely identified. In REST, requesters

and services exchange messages that typically contain both data

and metadata. Another important point is that services in REST

do not maintain the state of an interaction with the requestor, so if

an interaction requires a state, it must be part of the messages

exchanged. This simplifies mobility and recovery processes and

improves scalability of such services. Web technology bases on

simple generic interfaces, which is not true for custom-defined

Web Services. This makes SOA [15] far more complex than

REST. Nevertheless, the fundamental concept of REST may be

used for a SOA-based system. The goal of this paper is to present

how the concept of REST may be practically used for

structuralization of the context information in AN (Ambient

Network) [7] systems. The proposed solution assumes that the

transfer of context information which represents the temporal state

of the AN execution environment is accompanied by semantic

information. This is the only way to achieve true interoperability

between system domains in a mobile environment. As a

consequence of this approach, a suitable wrapping of sensors by

generating data with context sources, adding semantic

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AUTONOMICS 2007, 28-30 October 2007, Rome, Italy
Copyright © 2007 ICST 978-963-9799-09-7
DOI 10.4108/ICST.AUTONOMICS2007.2233

information, has been proposed. This concept extends the

ContextWare architecture proposed by the AN Project [7].

The structure of the paper is as follows. First, in Section 2, the

Ambient Networks ContextWare architecture is briefly

summarized. Next, in Section 3, the requirements of a context

information structuralization are specified and illustrated by a case

study. The proposed context source model is described in Section

4, while its construction process is presented in Section 5. The

paper ends with conclusions.

2. AMBIENT NETWORKS

CONTEXTWARE ARCHITECTURE
Ambient Networks (AN) are aimed at enabling cooperation of

heterogeneous networks on demand, transparently to potential

users, and without the need for pre-configuration or offline

negotiation between network operators. Context awareness,

facilitated by collecting context information, dissemination and

management will play an essential role in the operation of AN.

The general architecture of the system providing such

functionality is ContextWare, proposed by the AN Project [7] and

depicted in Figure 1. ContextWare could be considered a

middleware model for context processing, dealing with sources of

context localization and identification, acquiring context data

from various sources, distributing context information to

interested consumers, as well as caching and storing context in a

database.

AN consist of base components, called Functional Entities (FE).

FE is a high-level building block which exposes a Web Service

interface for communication with other FEs and applications from

outside the AN. For ContextWare architecture, ANs have

identified the FEs i.e. Context Coordinator (ConCoord) FE,

Context Manager FE, and Triggering FE which will be described

in subsequent sections.

In addition to FEs, there are also other entities, called Context

Sources and Context Sensors, which provide context information

for AN (described in Section 4).

Ambient Networks have identified the use of a common ontology

as a requirement for Functional Entities to exchange context

information in a consistent and unambiguous way.

Composition/decomposition taking place in Ambient Networks

requires efficient knowledge transfer and automatic decision-

making. This in turn demands proper conceptualization of the

context domains, having roles in the process of

composition/decomposition. We have decided to use the Resource

Description Framework (RDF) [9], a W3C specification for

defining metadata models.

Every piece of context information provided in an AN is

identified by a Universal Context Identifier (UCI). UCIs are a new

type of Uniform Resource Identifiers (URI) [14] and uniquely

identify a given context object, but not its location within the

network. A UCI is the conceptual rendezvous point between client

and sources, i.e. whenever a client wants to obtain specific context

information, it has to know the UCI of the object representing this

information. Similarly, a context source is assumed to know the

UCIs of the context objects it wants to publish.

A fully qualified UCI looks as follows:

ctx://domain.org/path?options

where: “ctx” is the new URI scheme; “domain.org” is the DNS

domain name within which the context object exists; “path” is a

sequence of words separated by slashes (‘/’); “options” specifies

further modifiers like the data encoding format on the wire.

an-voc-glb:

AN

an-voc-grp:

Groups

an-voc-net:

Network

an-voc-loc:

Location

an-voc-dev:

Device

consistOf

contain

integer

bandwidth

string

place

string

Model

Number

string

Serial

Number

string

event

contain

contain

string

Capabilities

Figure 2. Simple ontology

2.1. Context Coordinator FE
The Context Coordinator FE (ConCoord) is a distributed registry

that maps Universal Context Identifiers to the location of context

objects. The ConCoord maintains this registry by receiving

REGISTER requests from Context Sources (entities providing

context) and Context Managers. Hence, Context Sources actively

disseminate pointers to their context objects to the ConCoord. The

ConCoord FE is the first point of contact for Context Clients.

When Context Clients want to access context information, they

send RESOLVE requests which contain one or more UCIs to the

ConCoord. The ConCoord then responds by returning the

locations of the corresponding context objects. Clients contact the

located context sources directly to GET the information, or to

SUSBSCRIBE to context change events by receiving

NOTIFICATIONs, using the Triggering FE. If a Context Source

no longer wants to be registered with the ConCoord it removes its

entry in the ConCoord by sending a DEREGISTER request.

ConCoord is built on a Distributed Hash Table [5], which

provides a robust and efficient distributed registry for storing

context information.

2.2. Triggering FE
The Triggering FE has been identified in Ambient Networks to

handle notifications between different Functional Entities in an

asynchronous way. Because of the properties of the AN

architecture, there are many FEs which require this type of

communication; using the Triggering FE enables this to be

performed in a standardized way.

A trigger producer is an entity which is able to send triggers

(asynchronous notifications) using the Triggering FE. In

ContextWare, trigger producers are ConCoord FE, Context

Manager FE, and Context Source. If a trigger producer wants to

send a trigger, it has to REGISTER in the Triggering FE, and then

send triggers using the SEND primitive.

A trigger consumer is an entity, which is able to receive triggers

from the Triggering FE. The consumer subscribes to the

Triggering FE (using the SUBSCRIBE primitive) for a specific

type of triggers. It is also possible to add filtering expressions for

the trigger, if the consumer does not want to receive all triggers of

a specific type.

If a trigger is sent by a trigger producer, the Triggering FE sends

this trigger to the trigger consumer (if trigger filters apply).

In ContextWare, the Triggering FE is used to send notifications

about context changes in the network.

2.3. Context Manager FE
As opposed to the ConCoord FE which maps UCIs to the location

of context information, the Context Manager (CM) FE manages

context within and across domains. It therefore provides the

means to:

• allow Context Sources to delegate the distribution of the

context information they provide,

• allow recursive aggregation and processing of context

information to be done once and on behalf of many clients,

• schedule interactions between Context Sources and Context

Clients, monitoring these interactions, re-allocating channels

of interaction as needed.

Context Managers, once created, register their output type and

capabilities with the ConCoord. The ConCoord's registry

therefore maintains mappings to locations of context sources and

also of context managers. This enables recursive multi-pipe

establishment in a distributed way. The ConCoord locates the

final context manager, which locates the managers for its input,

which in turn locate the managers for their input, and so on, until

the inputs are all initial objects (i.e. basic Context Sources).

Context Managers may also provide additional functionality, such

as caching context fetched from source to reduce network load. It

should be noted that the depicted tree is rebuilt automatically

when a new CM appears in the network or when it disappears

(this is the consequence of the highly dynamic structure of

Ambient Networks).

2.4. Context Sensors
Context Sensors play a key role in the management of AN, since

all context or networking information – whether raw, derived,

aggregated, inferred or archived – can ultimately be traced to an

original physical or logical source. The programs that interface

with these sources of context or networking information and

provide the abstractions for integration with MangementWare are

called network sensors. Network sensors can be pre-deployed or

dynamically deployed on demand in the AN underlay or overlay

for a specific use. A number of types of network sensors are under

development within the project: P2P context event sensors,

Quality of Service sensors, Node and device context sensors and

flow context sensors. The information collected through sensors

can be used for network and service self-adaptation, triggering

network services, implicit QoS signaling, mobility support, in

context-based flow classification, in content delivery, in

mitigating network attacks, and in controlling malicious or

resource-wasting flows such as spam and spit, interplay and

optimization of the underlay with the overlay.

3. CONTEXT INFORMATION

STRUCTURALIZATION
There are two different approaches to structuralization and

processing context information. The first, more traditional

approach assumes that Context Sources (CS) have implicit

semantic information about the context they provide. A CS only

produces data in a CS-specific format, without any description,

e.g. as name-value pairs. In this approach, every Context Client

which retrieves context from CS has to know what each value

means – e.g. that data called “Load” means “% of load for the

CPU” and so on. We call this data-centric approach.

The second approach assumes that semantic information is

explicitly added to data gathered from CS. This in turn means that

CS provides sensor values and additional descriptions, which tell

the client how to interpret this data. This novel approach is much

more generic than the first one. We call it semantic-data-centric

approach.

In case of a CS change (e.g. change of data units), in the data-

centric approach the Context Client must be changed as well,

because of the fact that all context information is hardcoded

inside. In the semantic-data-centric approach, the Context Client

may be written in a generic way, and, by using ontologies, be able

to discover this change and adapt to the current context provided

by the CS. For example, one network sensor may provide

throughput in kilobits per second, whereas another one may refer

to megabits per second. By using ontologies for context

description we can add information on how these units are related;

thus the client will be able to understand these two different

values, and translate them to its internal units.

Ambient Networks constitute a highly dynamic environment, built

of different devices, context sources, and clients. Because of this

fact, the Context Client in an AN must be able to understand

context information provided by different Context Sources.

Context information cannot be hardcoded in the Context Client,

so we have decided to use the semantic-data-centric approach.

4. CONTEXT SOURCES
Context information consist of raw data from different type of

sensors and the semantic layer which enriches it and give them

meaning. In Ambient Networks context data is provided by

various sets of Sensors which provide it using Sensors-specific

protocols. For example, it may be a plain socket protocol with

specific string or binary values defined. Thanks to this fact,

sensors may be executed on machines with limited hardware and

software capabilities, if needed. Semantic meaning of the values

are added by the Context Source layer. ContextWare operates on

context information, which is stored in the RDF ontology format.

This is a flexible and high-level description format which assures

interoperability. Context Source is an entity which is able to

communicate with a sensor using that sensor’s protocol and

expose its interface (i.e. sensor values) in the ContextWare

format. Figure 3 depicts how the semantic layer is added to the

values acquired from sensors. This cannot be done automatically

because, as pointed out previously, sensors typically provide only

raw values. User interaction is necessary to map these values from

sensors onto their semantic meaning.

Figure 3. Adding semantic meaning to sensor values

The ContextWare implementation is based on the following

assumptions:

a) exposing context interface as a Web Service to assure

interoperability

b) adding semantic information using the RDF ontology format

allows us to create generic clients, which are not aware of the

full context information specification. A client is able to

discover a context and learn how to access it;

c) ConCoord registration and optionally generating triggers for

context information changes.

Sensors may be executed on limited hardware (e.g. light sensor),

which is not even aware of ANs, so it may not be possible to

access the full Ambient Networks infrastructure. Context Source

is a kind of delegate, which registers a sensor in the ConCoord

Functional Entity and the Triggering Functional Entity. Context

Source knows its UCI and registers this UCI with the Service

Access Point in the ConCoord FE. In addition, CS registers itself

as a trigger producer in the Triggering FE. If there is a context

client, or Context Manager, which should be asynchronously

notified about context changes, it may subscribe in the Triggering

FE for a specific kind of Trigger; subsequently the Context Source

will send the client notifications about every context change.

The Context Source interface consists of the following primitives:

• GET, which may be called by a client to get context

information in the RDF format;

• SUBSCRIBE, which is called by a client, when it needs to be

notified by a source about context changes. This primitive

returns trigger to the client, which should subscribe in the

Triggering FE. Following subscription, the Context Source

sends triggers, and clients get information that they should

refresh context information (trigger contains information

about the Context Source UCI where the context has changed,

and after receiving this trigger client should call the GET

primitive on the Context Source);

• UNSUBSCRIBE, which is called by a client to unsubscribe

from notifications about context changes.

5. CONTEXT SOURCE CONSTRUCTION

PROCESS
This section describes the process of constructing context source

in the Ambient Networks. Figure 4 depicts the necessary steps for

building the SensorContextSource. Most of the steps are

performed automatically. User interaction is only necessary for

choosing sensors to collect information from, write simple

wrappers and map them onto the AN ontology. In the most cases,

some sensors will be widely used in the Ambient Network so user

can get mapping from the repository, and customize parameters

when there is need for it.

During bootstrap of an AN, the distributed sensors in the network

start collecting the type of context they are responsible for. For

instance, a network utilization sensor starts monitoring throughput

on the node’s local interfaces. As mentioned before, sensors have

their own specific protocol for providing collected data. There is

the need to map between elements manually.

As stated before, we are using the RDF ontology format which is

processed by the Jena framework [6]. The simplest way to map

sensor values with RDF is to hardcode them in the source code.

The ContextWare architecture prototype in Ambient Networks is

implemented using the Web Services technology. AN

implementations may change, but mapping between ontology

elements and sensors will remain the same.

To avoid problems with further enhancement of prototypes we

have developed a notation for mapping values from sensors to the

ontology used in the AN project. This allows us to separate the

mapping from the source code. Listing 1 shows a simple file

which maps the cpusensor running on the node to an ontology-

derived value (file with .src extension in Figure 4). The

CONFIGURATION keyword sets the name of the sensor wrapper

class. Variables $(…) are the fields in that class. To parse the

mapping file we use JavaCC [10]. For the prototype we have

developed the src2java translator which generates for us a static

mapping in the source code from the ContextSource configuration

file.

Listing 1. Context Source configuration file

When these steps are completed, i.e. when we have the .src and

SensorWrapper.java files, the SensorContextSource WebService

is built automatically and is deployed into the Axis server. In the

case of a change of implementation technology, we have to

change the part of the process which is responsible for building

automation. The file with ontology mapping and sensor wrapper

remains unchanged.

//What is the UCI of this SensorContextSource

UCI ctx://AmbientNetworks/Devices/an1lt;

//Which of the Sensors you want to use.

CONFIGURATION FreeBSDDeviceSensors;

AN {

 DEVICES {

 DEVICE an1lt {

 cpuUsage = $(cpusensor);

 serialNumber = "12312312";

 width = "1024";

 height = "576";

 videoBitRate = "48000";

 frameRate = "25.00";

 }

 }

}

6. SUMMARY AND FUTURE WORK
The software components for the AN system require business

process logic that can be configured just in time in accordance

with the context information provided by the execution

environment. The heterogeneity of context information sources

makes approaches which assume inbuilt component knowledge

about the context data semantics unfeasible. The proposed

solution bases on annotation of the context data with semantic

information generated by the context source and is much more

flexible. This approach is similar to the REST technology which

is a foundation of the Web execution architecture.

The process of context source construction requires the definition

of ontology for domains over the AN application which is being

executed. The most suitable representation of this information is

RDF. Hence, an RDF description of context data must be

provided for each context source. This process has to be

performed manually as only a system designer is able to decide

about data semantics. One this is done, system activity is fully

autonomic.

The presented solution enables very late binding of the context

information to the business logic thus improving adaptability of

applications required by AN systems. The process of wrapping

context sources as Web Services may be performed automatically

using standard Java tools, with user-defined mapping of sensor-

generated values onto ontology items.

7. REFERENCES
[1] Bałos, B., Szydło, T., Szymacha, R., Zieliński, Z. “Context

Dissemination and Aggregation for Ambient Networks. Jini Based

Prototype” , EuroSSC 2006, 1st European Conference on Smart

Sensing and Context

[2] Christopoulou, E., Goumopoulos, C., Kameas, A. “An ontology-

based context management and reasoning process for UbiComp

applications”. In Proceedings of the 2005 joint conference on Smart

objects and ambient intelligence, pages: 265 - 270, Grenoble,

France, October 2005

[3] Coutaz, J., Crowley, J., Dobson, S., Garlan, D.: “Context is key”,

Communications of the ACM 48(3). March 2005

[4] Fielding, T. R. “Architectural Styles and the Design of Network-

based Software Architectures”, UCI Ph.D. Thesis 2000.

[5] http://bamboo-dht.org/, The Bamboo Distributed Hash Table

[6] http://jena.sourceforge.net/ , Jena Semantic Web Framework

[7] http://www.ambient-networks.org, Ambient Networks Web Page

[8] http://www.w3.org/2001/sw/, W3C Sematic Web

[9] http://www.w3.org/RDF/ , Resource Description Framework (RDF)

[10] https://javacc.dev.java.net/ , Java Compiler Compiler - The Java

Parser Generator

[11] McGuinness, D. L., Fikes, R., Hendler, J., Stein, L.A.

“DAML+OIL: An Ontology Language for the Semantic Web”. In

IEEE Intelligent Systems, Vol. 17, No. 5, pages 72-80,

September/October 2002.

[12] Niemela, E., Latvaskoski, J. Survey of Requirements and Solutions

for Ubiquitous Software ACM International Conference Proceeding

Series; Vol. 83, pp 71 – 78, Proceedings of the 3rd international

conference on Mobile and ubiquitous multimedia, College Park,

Maryland, 2004

[13] Niemela, E., Vaskivuo, T. "Agile Middleware of Pervasive

Computing Environments," presented at Middleware Support for

Pervasive Computing Workshop, Orlando, Florida, USA, 2004.

[14] Uniform Resource Identifier (URI): Generic Syntax, RFC 3986

[15] Weerawarana, S., Curbera, F., Leymann, F., Story, T., Frguson,

T.F. “Web Service Platform Architecture”, Prentice Hall 2005.

[16] Weiser, M. "The computer for the twenty-first century," Scientific

American, pp. 94-104, 199

Figure 4. Building process of SensorContextSource

