
Autonomous Performance Control of Distributed
Applications in a Heterogeneous Environment

Keping Chen
chenk@cs.man.ac.uk

Kenneth R. Mayes
ken@cs.man.ac.uk

John R. Gurd
jgurd@cs.man.ac.uk

Centre for Novel Computing
School of Computer Science, University of Manchester

Manchester M13 9PL, United Kingdom

ABSTRACT
A framework is proposed that dynamically adapts to re-
source changes in a distributed heterogeneous environment.
In this framework, computational tasks are wrapped into
autonomous entities which are able to control themselves lo-
cally. Global control is provided in a decentralised manner
via control units which link with these local entities in hier-
archies, monitor them and coordinate their behaviour. With
these mechanisms, the framework controls performance of a
distributed application in a heterogeneous environment by
adjusting load balance and adapting to resource changes.
Fault tolerance is provided, being viewed as a special case
of performance loss. Mixed strategies are applied, includ-
ing global and local control policies, and their benefits are
illustrated in terms of scalability and efficiency.

Keywords
performance control, adaptivity, load balance, awareness

1. INTRODUCTION
Despite the constantly increasing performance of comput-

ing hardware, there is a continuing requirement for increas-
ing computational power that is driven by large scale, par-
allel scientific problems. Integration of networking, compu-
tation and information is required in order to meet such a
challenging requirement. One of the grand challenges is the
dynamic and heterogeneous nature of the distributed envi-
ronment; resources are non-dedicated, and may slow down
for various reasons, or even appear and disappear nonde-
terministically. Therefore, the ability to find and utilise re-
sources reliably and efficiently is fundamental to achieving
application performance in such an environment.

Manual tuning of load balance is time consuming, or even
impossible, with a large application over a large scale net-
work. To address the complex issues in runtime perfor-
mance tuning, the computing system needs the capacity of
self-management. In accordance with high-level policies and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Autonomics, October 28-30, Rome, Italy.
Copyright 2007 ICST ACM 978-963-9799-09-7 ...$5.00.

objectives set by users, low-level adjustments are operated
by the computer system itself at runtime autonomously to
achieve as high performance as practicable. A single point of
failure is also unacceptable, so the control mechanism must
be decentralised so as to be resistant to failures.

This paper presents a framework and demonstrates its
self-adaptivity to achieve load balance and fault tolerance
in the presence of dynamic resource changes in a heteroge-
neous environment. Experiments show that this framework
reacts to nondeterministic dynamic changes by runtime con-
trol, and achieves good resource utilisation by balancing the
workload on each resource. The framework is efficient and
scalable, and can be extended to various application struc-
tures and network topologies.

The paper is organized as follows. Section 2 introduces
the autonomous performance control framework. Section
3 presents different strategies to achieve load balance and
fault tolerance, using coordination between local and global
policies. Section 4 presents and discusses some preliminary
experimental results. Section 5 covers related work. Section
6 concludes and outlines plans for future investigation.

2. THE FRAMEWORK
The framework is based on the performance control model

of PerCo [2, 8] which is a prototype system that has the ba-
sic building blocks for controlling the performance of multi-
component applications executing on the Grid [4]. In the
current version of PerCo, the global aspects of performance
control have a centralised implementation. The new frame-
work presents an abstraction of the PerCo design, and offers
a distributed implementation of global control while also
emphasizing local control. Capability to adapt to resources
joining and leaving a network is also provided. The follow-
ing describes the role of each component in the framework
and the coordination mechanisms used between them.

2.1 ActiveObject
An ActiveObject (AO) encapsulates process and state into

a single entity. AOs are independent from each other and
each has a unique name. When running, an AO is able
to pause its computation and communication, save its state
and migrate completely to a different resource where it can
restore its state and restart from the checkpoint. The ap-
plications must provide a checkpointing mechanism. Com-
munication between an AO and any other component is
asynchronous. AOs only react in response to messages re-
ceived and only affect their environment by sending mes-

fezzardi
Text Box

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AUTONOMICS 2007, 28-30 October 2007, Rome, Italy
Copyright © 2007 ICST 978-963-9799-09-7
DOI 10.4108/ICST.AUTONOMICS2007.2201

sages. There are different types of messages, e.g. work steal-
ing messages allow AOs to achieve load balance by exchang-
ing part of their workload.

AOs monitor information about both their resource en-
vironment and the JobObjects’ (see Section 2.3) execution
status. AOs use this information to predict the execution
time of a job. Prediction is based on the assumption that
the resources on which the AOs are installed will be stable
until the job finishes. Thus prediction is not always accu-
rate, but it assists analysis of load balancing. It is assumed
that the system is more balanced when the predicted times
of all the AOs are similar, that is, task sizes are adjusted
to the resource capabilities. An abstraction, the satisfaction
level, is used to represent the monitored performance of an
AO. A high satisfaction level indicates the AO is idle and
more likely to accept tasks from other AOs, and vice versa.
Any changes in the environment will affect the satisfaction
level of an AO. If the satisfaction level is low, an AO can
react by making decisions that are expected to increase the
level (e.g. export work to other AOs).

2.2 ControlObject
A ControlObject (CO) is a management component which

does not directly run any computation. COs may or may not
exist on the same resources as AOs. COs are able to connect
to other components when necessary, to form more sophis-
ticated control topologies, e.g. tree or star, thus enabling
scalability across different numbers of resources. COs can
monitor the status of the components connected to them.
This is done by periodic message exchange. In a multi-level
control hierarchy, COs only monitor information from lower
level COs. This design separates the responsibility for con-
trol into a control hierarchy. COs make decisions for a group
of AOs. COs have more information than AOs, and so such
decisions can represent a wider area of performance con-
cern. For example, based on historical records, COs are
able to identify the AOs which are more likely to have low
satisfaction level, and react preemptively.

2.3 JobObject
A JobObject (JO) is an abstraction of the computational

task to be executed. It encapsulates data and algorithms
into a single entity. A JO can be accepted by an AO and
then be executed. It is able to migrate together with the
associated AO. JOs also contain application and platform
independent descriptions of computational and data-related
tasks. A computational task is described as three parts:
the input values, the main execution body and the output
values. Other parameters are also included reflecting the
configuration and other needs of the computation, e.g. the
requirement for a special library package. The output of a
JO can be used as the input to another JO.

It is possible to adjust the work granularity inside JOs.
Splitting work into finer grains allows for moving part of a
task from one AO to another; merging enables more tasks to
join the current computation. However, the opportunity for
such activity depends heavily on the nature of application.

2.4 Resource manager
The resource manager maintains information about all

components, including name, network address, etc. Any
component, once created, registers itself until it is destroyed.
The resource manager provides a look-up service that en-

ables the components to find each other. After an AO mi-
grates from one resource to another, it renews registration
with the same name but a different address so that other
components will be able to find it.

New resources may be added to the system to achieve
higher overall performance in the case that either the appli-
cation requires more resources, in order to finish the work
quickly, or when resources are released by other applications,
and these can be utilised to benefit performance. The re-
source manager discovers these potential resources, chooses
the most suitable resources based on the description of each
application, and allocates the resources to applications.

2.5 Overview
Figure 1 displays the relationships between the compo-

nents described above, using an example with five AOs and
three COs. One of the AOs is idle without a JO. The COs
form two levels: the lower level includes two COs which
monitor three and two AOs, respectively, and one higher
level CO maintains information from these two counterparts.
Communication between the components is not shown.

3. THE STRATEGIES
This section describes both local and global autonomous

performance control strategies.

3.1 Awareness of an ActiveObject
AOs maintain and use information, about themselves and

about the environment, which guides their behaviour. This
information is called the awareness of an AO. Such aware-
ness helps the decision-making of an AO. AOs take into ac-
count the topology of the network. As they exist in dif-
ferent domains, which may be local or remote, latency will
be a large factor in the throughput of message exchange.
The method to reduce communication overhead is to put
local AOs close to each other, but to allow remote AOs to
migrate without restrictions.

Each AO maintains a friend list of AOs which have ex-
hibited low latencies in recent communications. Both local
and high performance AOs have high rankings on this list.
When cooperation is required, an AO first tries to contact
the AOs with higher rankings on its list. When performing
adaptive operations, an AO is guided by its knowledge of
load status. Usually work units are shipped from busy AOs
to less-busy AOs. The work to be shipped is also determined
using the information in the AOs.

3.2 Awareness of a ControlObject
COs have information about the AOs to which they are

connected. The awareness of a CO thus represents the re-
quirements of a group or region of AOs. Based on historical
data, COs are able to distinguish between busy regions and
less-busy regions, and to predict busy regions in the near
future. If workload is distributed in an unbalanced fashion,
the CO can either force AOs to follow their mandatory deci-
sions or make advisory decisions as guidelines for the AOs’
own local decision-making.

When an AO gives no response for a period of time, the
associated CO determines it to be dead. Having identified
a dead AO, the CO notifies other components to stop them
trying to contact it. The CO then starts the recovery pro-
cess (see Section 3.6) for the dead AO in order to restart
execution of its tasks on a different resource.

Figure 1: The architecture for autonomous performance control. Lines represent the control relationships

between ControlObjects and ActiveObjects.

3.3 Local and global policies
As discussed in Section 2, AOs and COs are all able to

make decisions for themselves, and thus teamwork is an es-
sential requirement in this system. Therefore, when con-
trol is separated into a hierarchy, mechanisms are needed to
reach agreement. Control operations are categorised based
on the granularity of work. In fine grain cases, where work
stealing is appropriate, COs are used as coordinators. COs
monitor help requests from busy AOs and responses from
others, and match them accordingly. This process is ex-
pected to be more efficient than random matching. In coarse
grain cases, where job migration or adding new resources are
necessary, COs make these decisions mandatory and all AOs
must follow them.

3.4 Load balance in multi-level control
In a multi-level control hierarchy, such as a tree, load

should be balanced among the branches of the trees. AOs
in the same branch are local and tightly coupled while AOs
in others branches may be remote and loosely coupled. The
sums of the squares of predicted execution times (S) are cal-
culated using the predicted execution time of each branch.
The value S represents the load balance situation of all
branches: a larger S represents larger differences in predicted
execution time of different branches, thus indicating a poor
load balance situation. The CO at the root makes adjust-
ments to re-balance the branches, as long as the overhead
introduced is acceptable. The approach is to swap fast and
slow resources in different branches by making pairs of AOs
migrate from one resource to the other and vice versa.

3.5 Scalability
COs make decisions for coarse grain cases but coordinate

the adaptation process for fine grain cases, thereby reduc-
ing communication cost. When one CO becomes overloaded
because it controls too many AOs, it can either authorise
the control of some of its AOs by another CO, or spawn a
separate CO with a subset of its AOs.

In a tree hierarchy, because all the branches are connected
to the root CO, communication at the top level might be-
come a bottleneck. The solution is to increase the number of
hierarchy levels in order to separate the control into different
levels. Increasing depth and reducing width of a tree enables

the control to scale to a large number of computational re-
sources. A scalability analysis is presented in Section 4.3.

3.6 Fault tolerance
A failure in a resource is treated as an extreme case of

a resource slowing down; that is, of performance becoming
zero. Data in AOs are replicated, the replication strategy is
to let AOs save their states and disperse it to their neigh-
bours. In the case of a loss of some AOs, COs are responsible
for maintaining the application execution with an acceptable
performance. Solutions are to either redistribute the failed
job among existing AOs or discover an idle new resource and
create a new AO to recover the execution from the replicated
state. Currently the distribution target of replications is one
of the neighbours on the friend list, so as to keep the repli-
cation overhead at a low level.

4. PRELIMINARY RESULTS
The evaluation experiments are based on a simulation of

distributed resources using Java threads. Each resource is
described in terms of features such as CPU speed and net-
work address. The performance of different resources is de-
termined by such features. Disturbance to performance of a
resource is simulated by random modification of the resource
features at runtime.

4.1 Application and test cases
The application is a divide-and-conquer problem, similar

to the SUDA2 [7] algorithm developed in the HIPERSTAD
project1. The process of problem solving is first to decom-
pose the problem space into smaller subspaces, so that each
subspace can be solved separately by an individual AO. The
work involved in a given subspace is altered to be static and
predictable in order to help monitoring the load balance sit-
uation. The test case used can be divided into a maximum
of 1200 independent subtasks, and it is assumed that at the
beginning the tasks are scheduled in balance, that is, all the
AOs have similar predicted execution times.

In all scenarios below, each component is installed on a
separate resource. In Scenarios 1, 2 and 3, the system ini-

1More information about HIPERSTAD can be found at
www.cs.manchester.ac.uk/cnc/projects/hiperstad.php

Figure 2: Work stealing in Scenario 1. Wide gaps

between lines indicate load unbalances.

tially consists of four AOs and one CO. In Scenario 4, the
system consists of six AOs and three COs which form a two-
level hierarchical control architecture; the number of AOs in
each branch is four and two, respectively.

Scenario 1 — At runtime the performance capability of
all the resources vary. Three disturbances are introduced.
The main operation used in this scenario is work stealing.

Scenario 2 — One resource is unstable and finally crashes
during runtime. No additional resources are discovered to
replace the dead resource.

Scenario 3 — One resource slows down continuously; new
resources are discovered after a while and are then added
into the system to replace the slowing resource.

Scenario 4 — A disturbance similar to that used in Sce-
nario 1 is introduced to the branch with four components
while the other branch maintains a constant performance
capability. This tests the resource swapping feature.

4.2 Results and analysis
Figures 2, 3, 4 and 5 show the preliminary results from

these experiments. In all these figures, the predicted exe-
cution time of each AO is plotted against time, and time
is measured in cycles in COs. In one cycle, COs receive
monitor information reported from all associated AOs.

Figure 2 displays the result for Scenario 1, which consists
of two parts. In Figure 2 (a) the strategy is random work
stealing. In Figure 2 (b) the work stealing is coordinated by
the CO. When two AOs communicate they exchange infor-
mation about their workload and previous execution history,
and calculate the necessary amount of work to exchange. It
can be seen from the figure that awareness helps AOs to
achieve load balance more efficiently. In case (b), the job
finishes earlier than in case (a).

Figure 3 displays the result for Scenario 2. One AO (A1)

Figure 3: Recover from Failure in Scenario 2. Fail-

ure happens on A1; A4 is the neighbour of A1.

Figure 4: Add new resources in Scenario 3. A5 is

the AO on the fast new resource and it replaces A1.

is installed on an unstable resource. The unstable resource
crashes at about cycle 15. After detecting this, the CO
finds the replicated data of the dead resource from one of
its neighbours (A4). Then a neighbouring AO accepts the
remaining part of the interrupted job. Finally, load balance
is again reached by work stealing among the three remaining
live resources.

The result for Scenario 3 is displayed in Figure 4. One
AO (A1) is installed on a resource that continuously slows
down. One new fast resource is discovered by the resource
manager at about cycle 12, and the CO decides to add it to
the system. The AO (A1) on the slow resource stops and
migrates to the newly discovered resource with a new name
(A5). There it reinstalls itself and recovers execution from
the saved point. The new resource is fast, so the overall
execution time is reduced.

Figure 5 displays the result for Scenario 4. The tree is
unbalanced after the first two disturbances. In the third
case (about cycle 21), the sums of the squares of predicted
execution time of the two branches are so different that the
top level CO (Ctop) tries to balance its two branches. The
CO at the faster branch identifies the fastest AO it monitors
(Afast). The CO at the slower branch discovers the slow-
est AO it monitors (Aslow). Aslow and Afast stop execution
and swap their location by migration. The system is rebal-
anced after this exchange, and each branch is then balanced
automatically by work stealing.

4.3 Scalability analysis
The performance of the framework is measured with dif-

Figure 5: Multi-level Control in Scenario 4. A5 and

A6 are on the same branch while the other four AOs

are on the other branch. At cycle 22 A2 is swapped

with A6 for load balance of the two branches.

ferent numbers of AOs using the same application. The
number of AOs associated with each CO is limited to five
to prevent the CO becoming a bottleneck. The communi-
cation overhead increases as the number of control levels
increases. In this test the performance scales approximately
linearly (less than 1% overhead) when the control level is no
more than three. It is worth noting that scaling depends on
the task granularity; larger problems with coarse granularity
typically increase parallel efficiency [5].

5. RELATED WORK
There is a large literature on achieving autonomous self-

adaptivity in distributed applications. Cactus [1] is a exper-
imental framework which incorporates both an adaptive ap-
plication structure for dealing with changing resource char-
acteristics, and an adaptive resource selection mechanism
that allows applications to change their resource allocation
via migration and other approaches. The migration frame-
work described in [9] dynamically adjusts the parallelism
of applications executing on computational Grids in accor-
dance with the changing load characteristics of the under-
lying resources. The framework is lightweight and involves
much local autonomy. Distributed computing on P2P net-
works to achieve coarse-grained parallelism demonstrates
the use of decentralised control in a heterogeneous environ-
ment [10]. Our framework also benefits from the control
hierarchy with additional tuning mechanisms such as work
stealing and component migration. The Organic Grid [3] is
a self-organising distributed computing system based on au-
tonomous scheduling of mobile agents. Its communication
topology is restructured autonomously to increase utilisation
of resources; fault-tolerance is also provided. Our system be-
haves in a similar manner with respect to local control, and
also provides global coordination mechanisms.

6. CONCLUSION
A framework has been presented that controls the exe-

cution of parallel applications in a heterogeneous dynamic
environment. The framework combines hierarchical global
and local control policies so as to adapt to nondetermin-
istic dynamic resource changes. Load balancing and fault
tolerance are achieved to maintain acceptable performance
of distributed applications. Evaluation by simulation has

demonstrated the ability of the framework to adapt effec-
tively in a dynamically changing environment. The control
hierarchy enables the framework to scale to different num-
bers of computational resources.

To continue this work we intend to apply this approach
to more complex applications and to multiple applications.
The adaptive mechanisms in the framework make it possi-
ble to autonomously reschedule any incoming new jobs and
reachieve load balance at runtime. We also intend to ab-
stract performance control policies by using a distributed dy-
namic aspect machine [6] to separate such policies as cross-
cutting concerns. The performance control concern is sepa-
rated from other concerns, thus it may be able to help the
decision-making process.

7. REFERENCES
[1] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu,

T. Radke, E. Seidel, and J. Shalf. The cactus worm:
Experiments with dynamic resource discovery and
allocation in a grid environment. International
Journal of High Performance Computing Applications,
15(4):345–358, 2001.

[2] C. W. Armstrong, R. W. Ford, J. R. Gurd, M. Lujan,
K. R. Mayes, and G. D. Riley. Performance control of
scientific coupled models in grid environments.
Concurrency and Computation: Practice and
Experience, 17(2-4):259–295, 2005.

[3] A. J. Chakravarti, G. Baumgartner, and M. Lauria.
Self-organizing scheduling on the organic grid.
International Journal of High Performance Computing
Applications, 20(1):115–130, 2006.

[4] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications,
15(3):200–222, 2001.

[5] J. L. Gustafon. Fixed time, tiered memory, and
superlinear speedup. In Proceedings of the 5th
Distributed Memory Computing Conference(DMCC5),
pages 1255–1260, 1990.

[6] C. Kaewkasi and J. R. Gurd. A distributed dynamic
aspect machine for scientific software development. In
Proceedings of the first Workshop on Virtual Machines
and Intermediate Languages for Emerging
Modularization Mechanisms, page 3, 2007.

[7] A. M. Manning and D. Haglin. A new algorithm for
finding minimal sample uniques for use in statistical
disclosure assessment. In Proceedings of the 5th
International Conference on Data Mining, pages
290–297, 2005.

[8] K. R. Mayes, M. Lujan, G. D. Riley, J. Chin, P. V.
Coveney, and J. R. Gurd. Towards performance
control on the grid. Philosophical Transactions of the
Royal Society of London: Series A,
363(1833):1793–1805, 2005.

[9] S. S. Vadhiyar and J. J. Dongarra. Self adaptivity in
grid computing. Concurrency and Computation:
Practice and Experience, 17(2-4):235–257, 2005.

[10] J. Verbeke, N. Nadgir, G. Ruetsch, and I. Sharapov.
Framework for peer-to-peer distributed computing in
a heterogeneous, decentralized environment. In
Proceedings of the third International Workshop on
Grid Computing(Grid’02), pages 1–12, 2002.

