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ABSTRACT

The investigation and the development of self-organizing
systems are especially needed for operation and control in
massively distributed systems such as Sensor and Actor Net-
works (SANETS). The main issues addressed by self-organi-
zation techniques are scalability, network lifetime, and real-
time support. In the literature, biological principles are of-
ten cited as inspirations for technical solutions, especially
in the domain of self-organization. This concept already re-
sulted in a good number of solutions with significant impact
such as ant-based routing and immune system inspired net-
work security solutions. In this paper, another specific bi-
ological field is investigated: cellular signaling cascades for
event-specific reaction initiated by individual cells in collab-
oration with their direct neighbors. Information between
cells are transmitted via proteins and result in the cascade
of protein—protein or protein—-DNA interactions to produce
a specific cellular answer, e.g. the activation of cells or the
transmission of mediators. These processes are programmed
in every individual cell and lead to a coordinated reaction on
a higher organization platform. We transferred these mech-
anisms to operation and control in SANETSs. In particular,
a rule-based processing scheme relying on the main concepts
of cellular signaling cascades has been developed. It is re-
lying on simple local rules and providing problem specific
reaction such as local actuation control and data manipu-
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lation. We describe this Rule-based Sensor Network (RSN)
technology and demonstrate comparative simulation results
that show the feasibility of our approach.
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1. INTRODUCTION

Wireless Sensor Networks (WSNs) have become a ma-
jor research domain in the networking community over the
last decade. It has been shown that classical networking
techniques are often not suitable or at least insufficient in
terms of communication and storage requirements. The
main problems are the necessary energy efficiency and the
capability to work on low-resource embedded systems. Ac-
tually, WSNs are meant to be composed of small battery-
driven embedded systems that are communicating over a
wireless channel [2,5].

The requirements are becoming even stronger when Sen-
sor and Actor Networks (SANETS) are considered. In many
cases, SANETSs represent networks similar to WSNs but
with inherent actuation facilities. Such actuators can be a
heater or a switch — both activated and driven by network-
inherent sensor measures. In other cases, actuators can be
mobile robot systems able to perform much more complex
actuation. In contrast to typical WSNs, SANETSs also face
critical real-time operation requirements [1].

The coordination and control of SANETS is still an emerg-
ing research area. Usually, the applications follow the clas-
sical approach as depicted in Figure 1 (left). Sensor nodes
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are continuously analyzing the environment (measurement).
The measurement data is transmitted to one or more fixed
systems for further processing. Then, the actuators are
controlled by explicit commands that are finally executed
(actuation). The measurement and the control loop are
shown by corresponding arrows. Obviously, long transmis-
sion distances have to be bridged leading to unnecessarily
high transmission delays as well as to a questionable com-
munication overhead in the network, i.e. possible network
congestion and energy wastage.

s

Figure 1: Operation and control of SANETSs: cen-
tralized (left), network-centric (right)

Self-organization of the SANET is considered the final so-
lution to build energy efficient SANETSs that allow real-time
operation without complex global state maintenance [10].
The favored system behavior is shown in Figure 1 (right).
Self-organization methodologies are used to provide network-
centric actuation control, i.e. a processing of measurement
data within the network and a direct interaction with asso-
ciated, i.e. co-located actuators.

A number of approaches related to the main ideas of au-
tonomic networking, i.e. the development of self-managing
networks, have recently been proposed. One idea is to clus-
ter the available sensor and actor systems into groups that
enable simple coordination and control strategies. An ex-
ample is the distributed coordination framework developed
by Melodia et al. [16]. Another approach is to group nodes
according to the main objectives of the sensor network such
as a given degree of coverage. Gupta et al. [11] have shown
that queries into a sensor network can be optimized based
on this measure.

Higher level task allocation strategies are also related in
the discussed context because actuation represents a spe-
cific class of remotely executed tasks. For example, Low et
al. [15] employed autonomic networking techniques for task
allocation in mobile sensor networks. The use of general
self-organization techniques has often been suggested in the
domain of communication networks [18]. With respect to
SANETS, only few approaches have been published.

In the last few years, we studied some aspects of concep-
tual similar techniques that have been studied in the domain
of cellular biology. These investigations lead to completely
different communication and control paradigms in an area
that is widely known as bio-inspired networking. A great
number of solutions are thinkable based on bio-inspired ap-
proaches [9].

In this paper, we present a system that we named Rule-
based Sensor Network (RSN). It follows the concept of
network-centric operation and control [8] based on adapted
mechanisms as known from cell biology. The result is an
architecture for data-centric message forwarding, aggrega-
tion, and processing. We evaluated the performance of this
system using a comprehensive simulation model. According

to the simulation results, RSN outperforms classical ad hoc
routing techniques by far — in a typical SANET scenario.

The rest of the paper is organized as follows. Section 2
introduces the concepts of cellular signaling cascades. Sec-
tion 3 outlines the ideas and the internal system aspects of
RSN. The simulation model as well as the obtained results
from the performance evaluation are depicted in Section 4.
Finally, Section 5 concludes the paper.

2. CELLULAR SIGNALING

The focus of this section is to briefly introduce the infor-
mation exchange in cellular environments [3,17,20]. Infor-
mation exchange between cells, called signaling pathways,
follows the same principles that are required by network
nodes. A message is sent to a destination and transferred,
possibly using multiple hops, to this target.

Within complex organisms, such as mammals, cells are
organized according to their physiological function. Perma-
nently, neighboring cells have to inform each others that
everything is normal, e.g. by sending growth factors, telling
the neighbor: "Keep on growing ”. But also information
from far away in the body can be received via a "telephone
wire” called the blood. Via these pathways, information can
be received and sent and have to be processed by the re-
ceiving cell. From a local point of view, the information
transfer works as follows. One way is that the reception of
signaling molecules via receptors. The receptor can be lo-
cated on the surface of the cell. Typically, these receptors
can bind an information molecule on the outside of the cell
and during this binding it is activated, e.g. by a change in
its sterical or chemical conformation (phosphorylation of de-
fined amino acids). The activated receptor molecule is able
to further activate signaling molecules inside the cell result-
ing in a "domino effect”, because these activated signaling
molecules in turn can activate further downstream signaling
molecules see Figure 2 (1-a). As an example the signaling
via several growth factors can be mentioned.

Another example for the information transfer via recep-
tors is the following. Small molecules like steroid hormones
reach the cell of destination via the blood. This remote in-
formation exchange works as follows. A signal is released
into the blood stream, the medium that carries it to distant
cells. The hormone can pass the cell membrane and enter
the cell. Within the cell the receptor binds the hormone.
The ligand (hormone)-receptor complex can enter the nu-
cleus of the cell and initiate gene transcription which leads
to the production of an "answer”.

This answer can be a different behavior of the cell. As
an example may serve the signaling via the hormone aldos-
terone binding to mineralocorticoid receptor expressed in
e.g. some cells of the kidney (e.g. the Renin-Angiotensin-
Aldosteron system [12]. A schematic construction is shown
in Figure 2 (1-b). Another example is the activation of the
immune system.

The interesting property of this transmission is that the
information itself addresses the destination. During differen-
tiation a cell is programmed to express a subset of receptor
in order to fulfill a specific function in the tissue. In conse-
quence, hormones in the bloodstream affect only those cells
expressing the correct receptor. This is the main reason for
the specificity of cellular signal transduction. Of course, cells
also express a variety of receptors which regulate the cellular
metabolism, survival, and death.
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Figure 2: Detailed overview to signaling cascades for intra cellular and inter cellular communication

In principle these signaling pathways are not as simple as
described here. Many of these signaling pathways are in-
terfering and interacting. Different signaling molecules are
affecting the same pathway. Inhibitory pathways are in-
terfering with the straightforward signal transduction. To
sum up, the final effect is dependent on the strongest sig-
nal. The effect of such a signal transduction pathway is
mostly gene transcription. Gene transcription means that
the cell respond to incoming the signal by translation of
specific mRNA into new proteins, which are then secreted
(transported out of the cell), where it can induce signaling
processes in the cell’s direct environment. The cellular an-
swer is a specific response according to the received signaling
molecules and the current constitution of the cell. For ex-
ample, signaling molecules can be created to send messages
to other cells. Additional signaling molecules may affect the
established signaling cascade towards the nucleus. The cel-
lular answer is relying on the nucleus to initiate the desired
process.

Other possibilities are the reorganization of intracellular
structure such as the cell cytoskeleton or the internalization
and externalization of molecules in and out of the cell as a
response to the received message.

This specific response is the key to information process-
ing. It depends on the type of the signal and the state of the
cells (which receptors have been built and which of them are
already occupied by particular proteins). Finally, a specific
cellular response is induced: either the local state is manip-
ulated and/or a new messaging protein is created. In this
scheme different possibilities are shown how cells can trans-
fer answers. In Figure 2 (3-a) the response to a received
information particle is gene transcription and the produc-

tion of a specific protein serving as a new message. This
protein can be submitted into the extracellular space, e.g.
secretion of hormones into the blood stream to activate cells
far away as described above.

Additionally, messages can be forwarded to a neighboring
cell via a paracellular pathway. In this case intracellular sig-
naling molecules are transfered via junctions between cells.
Congeneric cells develop several forms of junctions. One
example are so-called “gap-junction” which represent tun-
nels where small molecules such as calcium ions or cAMP
(cyclic-adenosine-mono-phosphate) can be transferred to the
neighboring cell. This pathway is shown in Figure 2 (3-b).

Finally, other non-protein molecules such as nitric oxide
can enter the cell which are directly processed in a biochem-
ical reaction. The resulting product of the reaction directly
changes the behavior or state of the cell. For example, ni-
tric oxide leads to smooth muscle contraction, schematically
shown in Figure 2 (2).

The lessons to learn from biology are the efficient and,
above all, the very specific response to a problem, the short-
ening of information pathways, and the possibility of direct-
ing each problem to the adequate helper component. There-
fore, the adaptation of mechanisms from cell and molecular
biology promises to enable a more efficient information ex-
change. Besides all the encouraging properties, bio-inspired
techniques must be used carefully by modeling biological and
technical systems and choosing only adequate solutions.

3. Rule-based Sensor Network

The key objectives motivating the development of RSN
were improved scalability and real-time support for opera-
tion in Sensor and Actor Networks. RSN is based on the
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Figure 3: The working behavior of a single RSN node. Received messages are stored in a buffer, selected to
a working set according to specific criteria, and finally processed, i.e. forwarded, dropped, etc.

following three design objectives that enable the mentioned
objectives:

e Data-centric communication — Each message carries all
necessary information to allow data specific handling
and processing without further knowledge, e.g. about
the network topology.

e Specific reaction on received data — A rule-based pro-
gramming scheme is used to describe specific actions to
be taken after the reception of particular information
fragments.

o Simple local behavior control — We do not intend to
control the overall system but focus on the operation
of the individual node instead. Simple state machines
have been designed, which control each node (being
either sensor or actor).

In the following, the concepts of RSN are outlined and the
intended use is depicted according to some examples relevant
in the domain of SANETSs.

3.1 Data-centric operation

The RSN architecture has been developed for SANET
programming and operation that consequently follows the
data-centric communication approach and enforces a com-
plete network-centric operation [8]. Thus, instead of carry-
ing address information, each message is encoded using a
(type, content) pair. The type describes the message and
the attached content. The data itself will usually include
a value and application specific meta information such as a
geographical position or priority information.

Similar data-centric communication schemes have been
proposed in the context of probabilistic data dissemination.

The best known approach is gossiping [13]. Its key objective
is essentially reduced communication overhead compared to
other approaches — whereas the probability that messages
reach the destination might be very low in specific scenarios
such as linear setups. Optimized gossiping approaches are
available but out of scope of this article.

The message encoding and processing in RSN are similar
to the ones suggested by directed diffusion [14]. Even though
the communication scheme is completely different, directed
diffusion and RSN both rely on the identification of messages
according to representative type information.

Each message could be encoded as follow:

M := { type, region, confidence, content }

At least type and content are needed for every message
processed by RSN. Additional parameters such as a geo-
graphical region or a confidence level can be added in order
to provide meta information for optimized data processing.
Examples for such messages are:

o { temperatureC, [10, 20], 0.6, 20 }
A temperature of 20°C was measured at the coordi-
nates [10, 20]. The confidence is 0.6, therefore, a
low-quality sensor was employed.

o { pictureJPG, [10, 30], 0.9, "binary JPEG" }
A picture was taken in format JPEG at the coordinates
[10, 30].

3.2 RSN architecture

An extensible and flexible rule system is used to evalu-
ate received messages and to provide the "programming” in
a similar way as performed for the cellular response. Even
though the message handling in biological cells is more so-



phisticated, the basic principles including the processing in-
structions (the DNA) are modeled.

The local behavior is controlled by a rule interpreter in
form of simple state machines. The interpreter is applying
the installed rules to previously received messages. It uses
a queuing subsystem that acts as a generic receptor for all
messages and keeps them for a given time. This time con-
trol is necessary to prevent queue overflows due to received
messages of unknown type.

Figure 3 depicts the working behavior of a single RSN
node. After receiving a message, it is stored in a message
buffer. The rule interpreter is started periodically (after
a fixed At) or after the reception of a new message. The
period At is critical for particular applications such as data
aggregation: the longer messages are stored before being
processed, the better the possible aggregation ratio (more
messages can be aggregated into a single one); and the longer
the period, the longer the artificially introduced per hop
delay.

Each rule that is used to process the received messages
consisting of two parts, a condition and an action, as shown
in Figure 4. Starting with this overview, we will continue to
use the specific RSN syntax to outline rules in the examples.
The condition is intended to associate messages to a given
rule, i.e. an action. In RSN, the specific reaction on received
data is achieved by means of predicates. RSN is able to
select all messages of a given type or messages with specific
content attributes. All selected messages are stored in so
called working sets.

if PREDICATE then {
ACTION
}

Figure 4: Basic rule composition depicted in RSN
syntax. Messages are selected by a predicate and
processed by an action

The predicate work on parameters of the received mes-
sages or on local state information. All parts of a mes-
sage can be accessed, e.g. to select all messages of a given
type ($type == "Temperature"), to identify important mes-
sages ($priority > 0.8), or to test whether given thresh-
olds have been exceeded ($value > THRESHOLD). Local state
information includes the current time or parameters specific
to the current message evaluation such as the number of
messages in the buffer (:count > 1) or just a random value
(:random > 0.5).

All messages in the temporary working set are processed
by the given actions. In particular, RSN performs one of the
following actions:

e modify — A message or a set of messages can be mod-
ified, e.g. to fuse the carried information with locally
available meta information.

e return — Messages may be returned to the message
buffer for later processing, e.g. for duplicate detection
or improved aggregation.

e send — Obviously, a node needs to be able to send
messages. This can be a simple forwarding of messages
that have been received or the creation of completely

new messages needed to coordinate with neighboring
nodes.

e actuate — Local actuators can be controlled by re-
ceived messages, e.g. to enable sensor-actor feedback
loops.

e drop — Finally, the node needs to be able to drop mes-
sages, which are no longer required, e.g. because they
represent duplicates or because an aggregated message
has already been created and forwarded.

The send and return actions may send or return the orig-
inal message but also create completely new messages. This
action is used for example for data aggregation. The aggre-
gated message may for example be used to carry the mean
value of all source messages and the standard deviation.

Each rule may contain any number of actions. For exam-
ple, a message can be modified and forwarded. Additionally,
the rule may need to discard the message to prevent it being
processed by other rules in the system.

3.3 Application examples

In order to demonstrate the capabilities, two simple ap-
plication examples are depicted in the following. First, the
probabilistic data forwarding technique gossiping is repro-
duced in RSN. The algorithm according to [13] forwards
packets with a given gossiping probability p. In order to
cope with special cases (problems) such as linear networks,
flooding is used for the first n hops.

Each message is assumed to be encoded in the following
way:

M := { hopCount, content }

Then, the gossiping algorithm can be formulated as fol-
lows (again, we are using the implemented RSN syntax for
the examples):

# infinite loop prevention
if $hopCount >= networkDiameter then {
!drop;
¥
# flooding for the first n hops
if $hopCount < n then {
!sendAll;
!drop;
¥
# gossiping
if :random < p then {
!sendAll;
!drop;
¥
# clean up
!drop;

In the first block, all messages are selected that have a
hopCount greater or equal to networkDiameter. These mes-
sages are silently dropped (!drop). This command is in-
cluded to prevent infinite loops. The second block selects all
messages with hopCount smaller than n and forwards these
messages (!sendAll). After processing the messages, they
are discarded. The third block selects all remaining mes-
sages in the working set if an on-demand calculated random
value (:random) is smaller than the gossiping probability p.



These messages are forwarded and all remaining messages
are dropped.

From this simple example, two mechanisms become obvi-
ous. First, each command operates on sets of messages in-
stead of single messages. Secondly, messages remain in the
working set until they are dropped. Thus, multiple com-
mands may be applied to particular messages.

A second example should demonstrate more sophisticated
applications. In this example, the sensors are used to mea-
sure the temperature. Data aggregation is performed to
reduce the number of messages in the system. Additionally,
critical temperature values are observed and alarm messages
are created if a threshold has been exceeded.

The message encoding is similar to the previous example:

M := { type, position, content, priority }
type := ( temperature || alarm )

The complete algorithm can now be written as follows:

# test for exceeded threshold and
# generate an alarm message
if $type = temperature &&
$content > threshold then {
lactuate (buzzerOn) ;
Isend($type := alarm, $priority = 1);
}
# perform data aggregation
if $type = temperature &&
:count > 1 then {

Isend($content := @median of $content,
$priority := 1 - @product of $priority);
'drop;

}
# message forwarding, e.g. according
# to a simplified gossiping algorithm
if :random < $priority then {
IsendAll;
!drop;
X
!drop;

In this example, the three command blocks actually per-
form different operations. The first block tests the tempera-
ture value and, if the threshold is exceeded, a local actuation
is enforced (a buzzer is turned on — !actuate) and a new
alarm message is generated with message priority set to one
(!send). In the second block, all temperature messages are
aggregated (if more than one has been received — :count).
The content is set to the median of all temperature values
and the message priority is increased. Finally, the last block
is in charge of message forwarding.

From these two examples, it can be seen that RSN pro-
vides a powerful set of commands to enable in-network op-
eration and control for SANETSs. Nevertheless, a number of
open issues still exist:

e Handling of unknown messages — Which action should
be performed if unknown messages, i.e. messages of
unknown type, have been received? Basically, two
decisions are possible, drop vs. seamless forwarding,
while not being appropriate in all application scenar-
ios.

e Period of RSN execution At — The duration of mes-
sages stored in the local node introduces an artificial

per-hop delay. The optimal value for At affects the
aggregation quality vs. real-time message processing.

e Rule generation and distribution — So far, we consid-
ered homogeneously programmed nodes. This is not
necessarily the optimal case. Also, new rules may be
required during the lifetime of the network. The rule
deployment needs further research in terms of diffuse
or random distribution vs. global optimization.

4. SIMULATION EXPERIMENTS

In order to evaluate the efficiency of RSN, we compared it
to the typical setup used in sensor network scenarios. Multi-
ple sensor nodes are continuously measuring environmental
conditions and transmit this information to a central base
station. This, in turn, will analyze the received results and
engage the installed actors accordingly. For the communi-
cation, we chose Dynamic MANET on Demand (DYMO),
which is a popular routing protocol used in the ad hoc and
sensor network community. We also created the same setup
with RSN for a direct comparison.

4.1 Setup and scenario

For the simulations, we developed a simulation model us-
ing OMNeT++ 3.3 [19], a simulation environment free for
non-commercial use, and the INET Framework 20060330,
a set of simulation modules released under the GPL. OM-
NeT++ runs discrete, event-based simulations of commu-
nicating nodes on a wide variety of platforms and is get-
ting increasingly popular in the communications commu-
nity. Scenarios in OMNeT++ are represented by a hier-
archy of reusable modules written in C++. Their rela-
tionships and communication links are stored as Network
Description (NED) files. Simulations are either run interac-
tively in a graphical environment or executed as command-
line applications.

We implemented RSN in form of a C++ library. This
library contains all functionality that is necessary to pro-
cess RSN statements. RSN statements are formulated in a
flexible script language. We integrated the RSN library into
the OMNeT++ simulation framework in order to execute
intensive tests and experiments with different algorithms
for data aggregation, probabilistic data communication, and
distributed actuation control.

For comparison of network-centric actuation control with
classic base-station approaches, we investigated the follow-
ing scenario. A large number of sensor nodes are considered
to measure environmental conditions such as the tempera-
ture. If measurements exceed a given threshold, actuation
devices are triggered. Such actuators are able to interact
with the environment or to initiate secondary events and
actions.

In order to evaluate the communication behavior in this
scenario, we created a simulation model in which 100 sensor
nodes are placed on a rectangular playground. The nodes
are either distributed in form of a regular grid or on a ran-
dom pattern. In addition to these sensor nodes, four actor
nodes are included in the middle of each quadrant. This
setup is depicted in Figure 5.

In our example, we configured all sensors to periodically
send their sensor readings towards the actuators. In the
base-station scenario, the central base station checks the re-
ceived measures whether they exceed the given threshold



Figure 5: Simulated scenario

and forwards only appropriate messages to the actors. In
the network-centric operation scenario, all messages are dis-
tributed with a certain gossiping probability and only the
actors are able to check the threshold. All the variable pa-
rameters using in the simulation are summarized in Table 1.

Table 1: Variable simulation parameters

Parameter | Values

Sensor reading period 60s, 600s

Sensor readings uniform in [0, 100]
threshold for actuation 50, 70, 90

RSN gossiping probability | 0.2, 0.5, 0.8

For the base-station scenario, we used the DYMO routing
protocol [4], which can be considered a de-facto standard
in the ad hoc and sensor networking community. In par-
ticular, we used the implementation of DYMO available for
OMNeT++ [7].

For all communications, wireless modules working accord-
ing to the IEEE 802.11b standard have been used. All sim-
ulation parameters used to parameterize the modules of the
INET Framework are summarized in Table 2.

In the RSN scenario, the sensor nodes have been config-
ured with the following program. It ensures that all mes-
sages are forwarded with a probability of GOSSIP-PROB (set
to 0.2, 0.5, and 0.8, respectively) over a maximum distance
of DIAMETER (for the presented simulation results, we con-
figured the maximum hops count to four). The !recordAll
command is used for statistical purposes only.

!recordAll;

if $hopCount >= DIAMETER then {
'drop;

}

if :random <= GOSSIP-PROB then {
IsendAll;
!drop;

}

!drop;

The actors have a much simpler programming. For each
received message, they check whether the THRESHOLD (set to

Table 2: INET framework module parameters

Parameter Value
net.headerLengthByte 20 byte
net.ROUTE_TIMEQUT 120s
net.ROUTE_DELETE_TIMEQUT 200s
net.NET_DIAMETER 10
mac.address auto
mac.bitrate 2 Mbit/s
mac.broadcastBackoff 31slots
mac.maxQueueSize 14 Pckts
mac.rtsCts true
decider.bitrate 2 Mbit/s
decider.snirThreshold 4dB
snrEval.bitrate 2 Mbit/s
snrEval.headerLength 192 bit

snrEval.snrThresholdLevel 3dB

snrEval.thermalNoise —110dB
snrEval.sensitivity —85dB
snrEval.pathLossAlpha 2.5
snrEval.carrierFrequency 2.4GHz
snrEval.transmitterPower 1mW
channelcontrol.carrierFrequency | 2.4 GHz
channelcontrol.pMax 2mW
channelcontrol.sat —85dBm
channelcontrol.alpha 2.5

50, 70, and 90, respectively) was exceeded and, if necessary,
local actuation is initiated.

'recordAll;
if $value > THRESHOLD then {
lactuate ($type:=rsnActuatorLightSource,
$value:=0Qaverage of $value,
$priority:=2);
!drop;
}
!drop;

4.2 Measurement results

A number of simulations have been executed with the pri-
mary objective to analyze the following characteristics of
both evaluated communication and control approaches:

e Real-time support, i.e. the overall latency between
measuring a value higher than the particular threshold
and the time the message successfully arrived at the
actuators. In this context, also the path length is of
interest, which is directly proportional to the end-to-
end latency and to the message loss probability.

e Overhead, i.e. the number of messages that need to be
processed by all the nodes to transmit the necessary
data messages. This includes protocol overhead from
routing protocols as well as overhead due to duplicated
messages for gossiping approaches.

In order to increase the statistical significance of the sim-
ulation experiments, all simulations have been executed five
times (runs). In each experiment, all the 100 sensor nodes
send exactly 200 packets. After starting the simulation, the
time for each sensor to start its local activities is uniformly
distributed over the first 60s. This behavior first models
the initialization of real sensor nodes at arbitrary times and,
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Figure 6: End-to-end latency. Left (RSN): time until the first copy of a message arrives; middle (RSN) time
until any copy arrives; right (DYMO): end-to-end latency as observed from the application
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Left (RSN): path length for the first copy of a message; middle

(RSN): path length for any copy; right (DYMO): path length towards the base station and between the base

and the actors

secondly, it prevents collisions on the MAC layer due to syn-
chronization effects.

All results are shown as boxplots. For each data set, a box
is drawn from the first quartile to the third quartile, and
the median is marked with a thick line. Additional whiskers
extend from the edges of the box towards the minimum and
maximum of the data set, but no further than 1.5 times the
interquartile range. Data points outside the range of box
and whiskers are considered outliers and drawn separately.
Additionally, the mean value is depicted in form of a small
filled square. In most graphs, the overall mean and median
are shown in the middle bar.

4.2.1 Real-time support

First, the latency of the application messages has been an-
alyzed. We measured the time from creating a sensor mes-
sage until it was successfully received by the actor. Because
only messages exceeding a given threshold are of interest for
the actors, we just analyzed the latency after identifying the
message as matching this criterion.

Figure 6 shows the measurement results. In all the shown
graphs, all setups as depicted in the previous subsection and
all the simulation runs are integrated to show the statistical
effects of single parameters. In Figure 6 (left and middle),

results for the RSN scenario are shown. The graphs differ-
entiate between the deployment scenarios and the gossiping
probability. If only the first reception of the first copy of
the message is considered, the end-to-end delay slightly os-
cillates around 1.4 ms. The measured maximum is at about
16 ms. The results are nevertheless only meaningful, if all
sensor messages can be differentiated, e.g. by a unique id.
If this is not possible, the reception of further copies cannot
be distinguished form the first one. The measurement re-
sults taking this effect into account slightly oscillate around
2.2ms with a maximum peak at 33 ms.

If we compare these results to the DYMO scenario as
shown in Figure 6 (right), we obviously see that the delays in
this scenario are significantly higher (median: 20 ms, mean:
55ms, and max: 5.700ms). There are two reasons for this
behavior. First, the mean path length is essentially longer as
discussed below and, secondly, the on-demand routing pro-
tocol takes some time for setting up the routing path before
being able to transmit a message. This effect is shown by the
comparison between the 60s and 600s message generation
setups. The route timeout of DYMO has been configured to
120s. Thus, in the 600s scenario, almost always the route
towards the base and towards the actor nodes will timeout
and needs to be reestablished.
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Figure 9: Loss ratio and collisions.
RSN collisions

Secondly, we analyzed the path length, i.e. the hop count,
in the same experiments. The results are depicted in Fig-
ure 7. Obviously most messages are transported over only
two hops in the RSN scenario. This also explains the log la-
tency communication. In the DYMO scenario, each message
needs to be transmitted first to the base station (which re-
quires in average about six hops) and then it is forwarded to
the actor nodes (requiring in average seven hops). Thus, we
could expect a factor of about 3-7 for the latency difference
between the RSN and the DYMO scenario. Nevertheless,
as shown in Figure 6, the factor is about 10-55. The only
explanation for this high factor is the overhead according to
the on-demand routing.

4.2.2 Overhead

In the previous paragraph, we have shown that the over-
head may essentially affect the real-time support of the em-
ployed communication techniques. Especially in the context
of SANETS, the overhead also characterizes the energy effi-
ciency of the entire system, and thus, the possible network
lifetime [6].

In Figure 8, the protocol overhead is depicted. For the
DYMO scenario with 60s sampling period, we can see that
each node needs to send in average between 20 and 1,300
DYMO messages in order to transmit 200 data messages in
the random and grid deployment scenario, respectively. If
the sampling rate becomes too small, i.e. if the route time-
outs of DYMO are triggered, in average between 5,200 and
76,000 DYMO messages need to be sent for delivering 200

T T T T T T T T T T T
60s 6005 60s 600s 02 05 08 02 05 08
grid random grid random

deployment scenario, traffic patterm gossiping priority, traffic pattern

1st: DYMO loss ratio; 2nd: RSN loss ratio; 3rd: DYMO collisions; 4th:

data messages. The primary reasons for these high numbers
are the high probability of multiple nodes searching simul-
taneously for a given destination and the increased collision
probability (see below). The ratio of data to DYMO mes-
sages is shown in Figure 8 (middle) — this figure takes all
data messages into account, whether generated at the local
node or forwarded on behalf of other nodes.

In the RSN scenario, in almost all measurements about
two duplicates are received by the actor nodes. Thus, an
overhead factor of two can be noticed as shown in Figure 8
(right). According to the probabilistic forwarding scheme,
some peaks up to 33 duplicates can be recognized. This ef-
fect has been expected and it can, according to the median of
two, be neglected. On the other hand, the loss ratio is quite
high in the RSN scenario as depicted in Figure 9 (2nd). The
primary reason lies in the working principle of probabilis-
tic communication. A number of sensors need to send their
messages of three of four hops towards the actors. Thus, the
probability of reaching the destination equals to p® or p?, re-
spectively, which is quite low for gossiping probabilities p of
0.2, 0.5, and 0.8.

Another reason for the high loss ratios is the unreliable
wireless communication. As shown in Figure 9 (1st), the
loss ratio is also high for the DYMO scenario. Thus, we
finally analyzed the number of collisions at the MAC layer.
This measure allows to determine the load distribution over
the time and the ability of the network to afford the neces-
sary number data and protocol message transmissions. The
results are shown in figure 9 (3rd and 4th). It can be seen



that the use of RSN leads to reduced network congestion
(on average we measured 2,300 collisions) compared to the
DYMO scenario (42,300 collisions).

S. CONCLUSION

In this paper, we presented and discussed a methodol-
ogy for network-centric operation in SANETSs. Inspired by
biological information processing, we developed three easy
to handle building blocks: data-centric operation, specific
reaction on received data, and simple local behavior. The
resulting architecture, which we named Rule-based Sensor
Network (RSN), is able to process sensor data and to per-
form network-centric actuation according to a given set of
rules. In particular, this system is able to perform collab-
orative sensing and processing in SANETSs with purely lo-
cal rule-based programs. The interaction and collaboration
between these nodes finally leads to an optimized system
behavior in an emergent way. We also developed a simula-
tion model to compare the system performance with classi-
cal base-station approaches. In particular we analyzed the
performance of the DYMO routing protocol, which can be
considered state of the art in ad hoc and sensor network rout-
ing, with RSN. It turned out that RSN provides much better
scalability and support for real-time operation. This advan-
tage is achieved by reducing the determinism of the system
to a certain degree. Depending on the application scenario,
this disadvantage might be feasible considering deployments
with huge numbers of sensor and actor nodes. Additionally,
the possible parameterization of the RSN approach allows
to adjust the reliability vs. overhead ratio according to the
current needs in the network.
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