
Multi-agent Designs for Ambient Systems
Kendall E. Nygard

North Dakota State University
Dept. of Computer Science

Fargo, ND 58105-5164
1-701-231-8203

Kendall.Nygard@ndsu.edu

Dianxiang Xu
North Dakota State University

Dept. of Computer Science
Fargo, ND 58105-5164

1-701-231-8185

Dianxiang.Xu@ndsu.edu
Martin Lundell

University of Minnesota Crookston
Dept. of Math, Sci., and Technology

Crookston, MN 56716
1-218-281-8180

mlundell@umn.edu

Jonathan Pikalek
North Dakota State University

Dept. of Computer Science
Fargo, ND 58105-5164

1-701-231-8562

Jonathan.Pikalek@ndsu.edu

ABSTRACT

Designing and developing software for an ambient intelligence
(AmI) system involves difficult challenges related to the varied
roles of many heterogeneous devices and communication
channels, and intelligent user interfaces. Because ambient systems
have unpredictable requirements and are context-aware, software
designs must support dynamic and sustainable change. We argue
that such designs should utilize formal methods and aspect-
oriented techniques, to help in supporting model validation and
verification. Features of an aspect-oriented, multi-agent,
architectural description language are presented as a mechanism
for reasoning about cross-cutting concerns.

Categories and Subject Descriptors
D.2.11 [Software Architectures]: Domain-specific Architectures

General Terms
Design, Languages, Theory, Verification.

Keywords
Architecture description languages

1. INTRODUCTION
The vision for systems with ambient intelligence foresees large
numbers of processors and tiny sensors integrated into everyday
objects, leading to the disappearance of traditional input and
output media. In ambient systems there is a high level of shared
situational awareness among widely distributed units, structured
to promote collaboration, self-synchronization, agile and fast
responses to new information, adaptation, and sustainability.

The building of an AmI environment is challenging. Such an
environment involves the participation of heterogeneous devices,
forming an open, dynamic system, where the available resources,
context and activities change continuously. The approach that we
take to architecting ambient systems is influenced by our previous
work involving distributed systems with humans and agents
working together and allocating tasks in applications such as the
semi-autonomous cooperative operation of systems of unmanned
air vehicles, sensor networks, and sense-and-respond logistics

systems [1, 2, 3, 4, 5]. We see a large gap between the abstraction
of the high level user needs and the native functionalities
provided by the devices. This calls for a flexible design approach
in which adaptation to the user is the result of the dynamic
building of applications from available resources and the ongoing
reconfiguration of applications to adapt to changes in the
environment [6]. Multi-Agent Systems (MAS) are a natural and
powerful approach to designing AmI systems to function within
complex environments.

One powerful capability of intelligent software agents is that they
can anticipate events and adapt to changes in their environment.
Agents can conduct proactive actions to seek goals and follow
their beliefs that pertain to situations that they encounter. They
also can actively communicate and collaborate with other agents
to achieve objectives that are broader than their own. Due to
being massively distributed, software agents for these types of
systems must be imbued with decision choices that they can make
autonomously, resulting in overall outcomes that are non-
deterministic. We follow a formal method approach to multiple
agent design for ambient systems. In addition, we identify
multiple important cross-cutting software concerns that should be
formally included in the architecture. Our work provides a
specification approach that employs an architecture description
language (ADL) with XML conventions. An example scenario is
presented.

In ambient systems there is a clear need for decision support for
agents to form teams of agents and assume roles within teams.
We present an optimization model that can be employed to
provide decision support of this type.

2. MULTI-AGENT SYSTEMS

A software agent is an encapsulated software system situated in
an environment where it can conduct flexible and autonomous
actions to meet its design objectives [7, 8]. Agent goals can be
common or private. The key characteristic of a software agent
that is distinctive from other programming paradigms is that
within a context, agents persistently evaluate a suite of options
that are available to them, then choose among them and act. In
contrast, other programming paradigms are much more
prescribed.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
AMBI-SYS 2008, February 11-13, Quebec, Canada
Copyright © 2008 ICST 978-963-9799-16-5
DOI 10.4108/ICST.AMBISYS2008.2925

In an ambient system, agents are defined for roles such as
monitoring the activities and intentions of users, monitoring the
status of certain other agents, and devices, brokering the
completion of computational tasks among available resources, and
representing preferences of users and other agents. Thus, we see
a correspondence between the capabilities of a software agent
from a programming perspective, and the roles that must be
fulfilled in responsive and adaptive ambient intelligence
activities. The agents can be homogeneous or heterogeneous, and
cooperative or competitive. The agents in an AmI system are
heterogeneous and cooperative. Heterogeneity arises from the
devices sensing widely differing things, activating diverse
controllers, negotiating the completing of varied tasks, and
finding acceptable solutions to various models. They are
cooperative in that they all contribute to a larger overall objective,
even if they have their own localized goals to achieve.

The Belief-Desire-Intention (BDI) agent model can flexibly
handle the entire agent modeling in an AmI system. In this
model, beliefs correspond to the state of the agent, including the
current characteristics of the agent of the environment in which it
is functioning. Desires correspond to the effects that the agent
attempts to cause in its environment. Intentions represent the
plans that the agent has available and is following to realize those
effects.

Figure 1. Generic Multi-agent System

Figure 1 generically illustrates a MAS [1]. Some agents are
composites formed from subagents, such as those that negotiate,
broker, or use the services of other agents. The triangles represent
agents or composite agents. The ovals represent the area of
influence of an agent, consisting of the entities in an environment
to which it can sense and respond. Managing heterogeneous
communication networks, alternative and widely varying agent
communication protocols, and inter-agent message information
content are central issues in the MAS approach. This is illustrated
by the network cloud in figure 1. Communication agents often
with multiple receiving and transmitting capabilities, specify the
work of the communication network itself, and handle issues like
whether devices are within listening range of each other and can
successfully communicate. Protocol issues, such as the
responsibility for logical agents to forward packets, are handled
by agents charged with choosing, enforcing and modifying
protocols as needed (for example, to support self-healing

capabilities). Finally, agents must understand the syntax, parse,
process, and act upon the content of messages that support
information sharing and cooperative decision making. Some
agents could be mobile, having the ability to move among
supporting platforms. In an AmI system, mobile agents can model
the preferences of brokering agents, users, and the suppliers of
resources. These agents can adaptively respond to dynamic
conditions, using multiple options available to them to guide them
in their quest for carrying out a command or request. Mobility is
represented by a double ended arrow, meaning that the agent can
move from one environment to another. Mobility is a cross-
cutting concern that is not present in most MAS problem
domains, but can be powerful or necessary in the ambient system
domain.

3. CROSS-CUTTING CONCERNS
The need to manage complexity while creating software that is
flexible, adaptable, and evolvable is critical in an AmI system.
Although modularity is essential, some requirements and
properties cannot be modularized because they are inherently
crosscutting concerns. Crosscutting concerns are difficult, because
they are inherently distributed, and make other functional
components of a software system less self-contained. In a MAS,
for example, secure communication among the agents that
represent decision-making entities is an important concern
regardless of their specific functions. In software engineering it is
well-understood that cross-cutting concerns can easily result in
expensive duplication of code across many components. Such
duplication decreases software quality and makes it difficult to
reason about concerns at the architectural level. An application
with numerous crosscutting concerns often results in software that
is difficult to modularize, understand, reuse, or evolve. In dealing
with cross-cutting concerns, it is useful to employ high level
abstractions, to make the design of the software intellectually
manageable. High-level abstraction often reveals concerns and
can provide insight into how to encapsulate them into separate
components. It is then possible to precisely describe how the
components interact with each other so that the system to behave
meets its intended purposes. The MAS manages complexity by
separating the concerns into agents, objects, and the environment
in which they interact. Some concerns of a system, such as
security, resist such modularization.
Aspect-oriented software development (ASOD) addresses the
modularization of cross-cutting concerns by separating the cross-
cutting concerns into aspect modules. Code that addresses a
cross-cutting concern is called advice and is maintained within the
aspect. The aspect catalogs the places within the system that need
advice and weaves advice into locations called join points.
Aspects provide a powerful approach to handling cross-cutting
concerns in an AmI system. In an AmI system, concerns are
associated with the interaction, adaptation, and autonomy of
agents, as well as mobility, learning, and collaboration.
We consider a scenario in which a customer enters a shopping
mall with a shopping list stored on her phone. Upon entering the
mall, the phone handshakes with the network in the mall network,
accessing databases of inventories of stores in the mall. Matching
the items on the list with descriptions of products in inventory, the
mall network returns a list of products, prices, and store locations
in the mall. Based on previous purchases of the customer along
with current popular mass market purchases, the phone filters the

returned list, only showing products it anticipates the customer
wishes to buy. The customer quickly locates the items she wants
and uses credit information stored on her phone to make the
desired purchases. Suppose further that upon walking past a
music store a video screen displays the cover of a newly released
album from one of the artists the customer has mp3 files of on her
phone. The shopper stops and makes an unplanned purchase of
an album of one of her favorite artists. Finally, her purchasing list
is influenced by the interrogated balance available in her credit
line, and by the amount of time she has available to shop before
she must leave to meet other obligations.
The scenario clearly indicates the need for adaptation in several
ways. In this type of scenario, there is a need for personal devices
to have the capability of being dynamically configured to work
within their environments. Table 1 provides a list of cross-cutting
concerns that apply to the agents in the scenario. These concerns
are candidates for modularization into aspects, potentially
improving the design, testing, and maintenance of the system.
The disparate entities in the scenario have distinct roles and
responsibilities that can be represented as individual agents. Each

entity has its own set of objectives and goals (modeled as
Desires), intelligence (Beliefs) and plans (Intentions) in a MAS.
Each unit has a collection of capabilities, sensors and effectors
and a limited sphere of influence. Each unit has a measure of
local control and enough autonomy to choose a course of action to
realize its goals. As the situation evolves, the entities must
recognize a change of state, to acquire knowledge, and share it
appropriately with others. Collaboration and sharing of
capabilities is essential. When changes occur, plans must be
adapted to reach their goals. Such adaptation is triggered by
knowledge acquisition and may require collaboration. The
interactions must be secure and authentication protocols and
policies must be enforced.
Although the units are heterogeneous and not all have the same
beliefs, goals, intentions, or capabilities, they all are subject to the
concerns shown in Table 1. Aspect-oriented development
provides a way to reason about all the concerns in individual
modules, separate from each of the different agent types.

Table 1. Example Cross-cutting Concerns
Ambient Systems Cross-cutting
Concerns

Definition Application Example

Autonomy The ability of agents to act independently. Customer phone independent of mall
network

Communication Interaction protocols related to message
passing, sensors, and effectors.

Protocols and message content concerning
sharing information regarding resources,
position,

Collaboration, Negotiation,
Coordination, Dissolvation, Reliability

The ability to work together or negotiate to
achieve common or private goals including the
protocols for creating and dissolving
partnerships.

Collaboration with mall to retrieve popular
mass market purchase data related to
customer’s list.

Knowledge Acquisition (Learning and
Sharing)

The ability to gain knowledge and how to
share knowledge with others.

Phone updates buying patterns after purchase

Anticipation, Forecasting The ability to use past behaviour to predict
future needs.

Phone anticipating desirable products from
mall search results.

Mobility(a concern for a subset of MASs) The ability to move from one environment to
another.

Ability of phone to “handshake” with mall
network and operate within it’s domain.

Dynamism, Adaptation, Stability
(preconditions and validity of goals)

The ability to react to changes in the
environment.

Phone responds to request from music store
regarding artists on the phone to the benefit
of the customer.

Environment The environment may place constraints on
agents and/or objects and their actions .

Handling connectivity, time issues,
power/battery resources,
number/frequency/validity of network
requests.

Security, Trust, Authentication, Policy
enforcement

Protocols for identifying agents, safeguarding
knowledge, establishing trust relationships and
enforcing policies (e.g., Agent role
hierarchies).

Clearances for sensitive information,
protocols for establishing contacts and
sharing information, and encryption of
data.

4. FORMAL METHODS AND AGENTS
The agents in a MAS must exhibit both proactive and reactive
behaviors. For example, an agent who is proactively monitoring
and predicting the locations and availability of prescribed
resources, may need to suspend the monitoring if asked to quickly
and reactively allocate resources in response to a perceived
change in a user’s preferences and plans. Also, some agents must
resolve conflicts among multiple objectives. Suspending activities
can result in lead to missing critical changes in information that in
turn produce actions that may not be required. Yet another issue
is that the aggregate behaviors of all the agents may reach beyond
the sum of their actions. Thus, in ambient systems, it may be
necessary to support controls that limit undesirable emergent
effects. Controlling such situations must be done through
managing the details of the specification and design of the system.
We assert that formal software engineering specification and
design practices provide the ability to reason about how and why
such problems can occur.
In our MAS, we use an architectural description language (ADL)
for identifying the components for agents, objects, and aspects
and how they interact with each other. An ADL explicitly
describes components and their interfaces, connectors, and
architectural configurations [11]. Our approach utilizes multiple
software agents with aspects within a framework and notation that
resembles Z and, AspectZ [12,13].
Figure 2 conceptualizes the role of the connector in the ADL.
The Aspect Component encapsulates the cross-cutting concern
but it is the Aspect Connector that contains the information
concerning where and how the cross-cutting concern is
implemented in other components. In Aspect-oriented
programming language, the aspect connector declares a set of join
points and weaving rules for the cross-cutting concern. Agent
components interface with their environment through sensors and
effectors. These sensors and effectors make up the set of possible
join points that the aspect connector can target. The links in the
ADL represent the configuration of the system, linking the aspect
connector to its stated join points in the agents.

Figure 2. Illustration of an Aspect-oriented MAS ADL

We choose to represent our architecture in the eXtensible Markup
Language (XML). In the Figure 3 we display an abbreviated
instance of our ADL describing a concern that cuts across two
components. The cross-cutting concern is one of recognizing the
communication specification of a device. This would be a
concern of any agent who needs to establish communication

across a wide range of devices that may enter that agent’s area of
influence. This concern would tend to be updated frequently as
newer versions of communication specifications are continually
being released and new specifications are regularly introduced.
The two agent components (Figure 3a) realize an interface of type
specRec_type (Figure 3d) as sensors. The aspect component,
ConfigureComm (Figure 3a), is described to contain functionality
related to identifying a communication specification. It is the
connector (Figure 3b) that identifies joinpoints as any component
that realizes the specRec_type interface. The links (Figure 3c)
establish the configuration via the id and href attributes.

Figure 3. ADL Code

The use of XML in ADLs has the clear advantage of its
widespread adoption for information interchange and tool support.
However, XML is not as precise in its description of properties
and behaviors as other notations (e.g., Z), so have supplemented
the XML based ADL with more formal notations.

5. DECISION SUPPORT
Task allocation is a critical function in an agent-oriented
architecture for an AmI system. From the standpoint of
cooperatively making and executing intelligent decision choices,
a modeling framework is required. Available modeling
frameworks that we have worked with include fuzzy decision
rules, neural networks, contract nets, and rough sets. Here we
describe a distributed optimization model. We assume that there
is a collection of goals to be met, and that the environment in
which the agents function to meet the goals is dynamically
changing. Goals are met by forming cooperative teams of agents
that are collectively capable of meeting the goal at some
measurable level of quality. The agents on a given team each
carry out a role that contributes to meeting the goal. The aim of
the model is to specify optimal decisions concerning which teams

are formed and which agents comprise each team. A related
model is given in [10]. We adopt the notation given below.

Goalt Goal to be pursued by team t

Rolest Number of roles available in team t

Valuet,r,a Value of agent a joining team t to carry out
role r

Formedt Binary variable with value 1 if team t is
formed

Teamedt,r,a Binary variable with value 1 if agent a joins
team t to carry out role r

Teams can have differing numbers of roles, and agents are
assignable only to roles for which they can potentially contribute
value. Thus, the index sets for the parameters and variables are
generally not complete. The optimal assignment of agents to
roles and teams is met when the overall utility is as high as
possible, which is met by forming teams that objective is to
maximize the function below.

∑
art

artart TeamedValue
,,

,,,, *

Assuming that each goal is to be met at some level by at most one
team (to ensure deconfliction among agents), the following
condition must be met for each goal g:

∑
=

≤
gGoal

t
t

Formed 1

To ensure that all necessary roles are filled by agents on all teams
that are formed, the following condition must be met for all teams
g and roles r:

∑ =
a

tart FormedTeamed ,,

Finally, to ensure that all agents have an active role on some
team, even if just assigned to staying alert, we form conditions so
each agent a must satisfy the following:

∑ =
rg

argTeamed
,

,, 1

We stress that parameterization of this model can greatly limit the
number of combinations of ways that agents can be assume roles
on teams, effectively reducing the otherwise exponentially large
numbers of combinations. Also, for a given set of values for the
variables Teamedg,r,a, the collapsed problem is an easily solvable
capacitated transshipment problem with all integer solutions, a
powerful property that invites embedding in parent solution
procedures. Natural heuristics are also easily formulated. In
general, answers to questions concerning how task allocation is
best accomplished in AmI systems is in its infancy.

6. CONCLUSION
We developed a formal software engineering approach with an
Architectural Description Language (ADL) for specifying
multiple interacting software agents for AmI systems. The design

is aspect-oriented and modularizes cross-cutting concerns in a
MAS. The use of formal methods has advantages in supporting
specification, design, validation, and verification. The design
captures the need for dynamic adaptation and non-determinism of
AmI systems. XML is employed for the ADL. The use of aspect-
oriented concepts, formal methods, and ADLs in a MAS is
promising for managing the complexity of the software. This
work is an early effort to address the cross-cutting concerns in a
MAS ADL. AmI systems are a good fit for the approach, and
provide an interesting test base.

7. REFERENCES
[1] Lundell, M., Xu, D., Tolliver, D., and Nygard, K.E. A Multi-

agent Design for Sense and Respond Logistics, preprint,
computer science, North Dakota State University, submitted
for publication, 2007.

[2] Xu, D., Volz, R.A., Miller, M.S., and Plymale, J.
Knowledge-Based Human-Agent Teamwork for Distributed
Training. International Journal of Intelligent Control and
Systems. Vol. 11, No. 1, pp. 1-10, March 2006.

[3] X. Du, M. Zhang, K. Nygard, M. Guizani, and H. H. Chen,
Self-Healing Sensor Networks with Distributed Decision
Making, International Journal of Sensor Networks, accepted,
to appear.

[4] Lundell, M., Tang, J., Hogan, T., and Nygard, K.E. Agent-
oriented Simulation of Cooperative UAV Missions, WSEAS
Transactions on Systems, 5(4), 2006.

[5] Nygard, K. E., Altenburg, K., Tang, J., Schesvold, D., and
Pikalek, J. Alternative Control Methodologies For Patrolling
Assets With Unmanned Air Vehicles, Algorithms for
Cooperative Control, Oleg Prokopyev, Don Grundel, Robert
Murphy, and Panos M. Pardalos, Eds World Scientific Series
on Computers and Operations Research, Vol. 5, 2007.

[6] Saif, U., Pham, H., Paluska, J.M., Waterman, J., Terman, C.,
Ward, S.: A case for goal oriented programming semantics.

In: Workshop on System Support for Ubiquitous Computing
(UbiSys'03), 5th International Conference on Ubiquitous
Computing (UbiComp 2003).

[7] Jennings, N., Wooldridge, M., Agent-Oriented Software
Engineering, in proceedings of the 9th European Workshop
on Modeling Autonomous Agents in a Multi-Agent World,
2000.

[8] Kolp, M., Giorgini, P., and Mylopoulos, J., An
Organizational Perspective on Multi-agent Arcitectures, in
Proceedings of the 8th Int. Workshop on Agent Theories,
Architectures, and Languages, 2001.

[9] Mathieu Vall´ee1, Fano Ramparany1, and Laurent
Vercouter, Dynamic Service Composition in Ambient
Intelligence Environments: a Multi-Agent Approach, in
Proceedings of the First European Young Researcher
Workshop on Service-Oriented Computing, UK, 2005.

[10] Hennebry, Michael J., Kamel, Ahmed, and Kendall E.
Nygard, An Integer Programmng Model for Asssigning
Unmanned Air Vehicles to Tasks, in Sergiy Butenko, Robert
Murphey and Panos Pardalos, eds., Recent Developments in
Cooperative Control and Optimization, Kluwer Academic
Publishers, Dordrecht, Netherlands, 2003.

[11] Medvidovec, N., and Taylor, R. A Classification and
Comparison Framework for Software Architecture
Description Languages, IEEE Transactions on Software
Engineering, 26(1), pp. 70-93, 2000.

[12] Spivey, J., The Z Notation: A Reference Manual. 2nd Ed.
Prentice Hall., 1992

[13] Yu, H., Liu, D., Yang, L., He, X. Formal Aspect-Oriented
Modeling and Analysis by AspectZ, Proceedings of 17th
International Conference on Software Engineering and
Knowledge Engineering (SEKE’05), Taipei, 2005.

	1. INTRODUCTION
	2. MULTI-AGENT SYSTEMS
	3. CROSS-CUTTING CONCERNS
	4. FORMAL METHODS AND AGENTS
	
	Figure 3. ADL Code
	5. DECISION SUPPORT
	6. CONCLUSION
	7. REFERENCES

