
Delivering Interactive Multimedia Services in Dynamic
Pervasive Computing Environments

Cristian Hesselman
Telematica Instituut, Netherlands
cristian.hesselman@telin.nl

Mathieu Boussard
Alcatel-Lucent, France

Mathieu.Boussard@alcatel-lucent.fr
Antonietta Spedalieri, Albert Sinfreu

Telefónica I+D, Spain
{alberts, aspedal}@tid.es

Pablo Cesar, Ishan Vaishnavi
Centrum voor Wiskunde en Informatica, Netherlands

{p.s.cesar, i.vaishnavi}@cwi.nl
Ralf Kernchen, Stefan Meissner
University of Surrey, United Kingdom

{r.kernchen, s.meissner}@surrey.ac.uk
Christian Räck

Fraunhofer Fokus, Germany
christian.raeck@fokus.fraunhofer.de

ABSTRACT
This paper introduces a distributed system for next generation
multimedia support in dynamically changing pervasive computing
environments. The overall goal is to enhance the experience of
mobile users by intelligently adapting the way a service is
presented, in particular by adapting the way the user receives
multimedia content from the service and how he interacts with the
service. The system tailors this presentation to the user’s context,
for instance based on his current activity (e.g., driving or walking)
or the characteristics of the devices that surround him (e.g.,
devices for multimedia rendering and user interaction devices).
The system integrates with the (IMS-based) service platforms of
“beyond 3G” telecom operators and allows multimedia content to
be rendered on multiple devices at the same time. It can also
dynamically and seamlessly adapt the way a service is presented
while it is being used (e.g., from gesture-based input to voice
commands). These changes are triggered by changes in the user’s
context (e.g., when the user gets into his car). This paper
discusses the system’s requirements, presents an architecture
proposal and describes its current implementation.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Distributed
Systems – distributed applications; H.5.2 [Information
Interfaces and Presentation]: User Interfaces – Input devices
and strategies, Interaction styles; H.5.1 [Information Interfaces
and Presentation]: Multimedia Information Systems – video.

General Terms
Design

Keywords

Adaptive multimodal interfaces, IMS, non-monolithic rendering

1. INTRODUCTION
The past few years have seen a revolution in mobile multimedia
technologies. While the deployment of these technologies has
been impressive, their use for interactive multimedia services has
been limited to the simplest situation: to the delivery of a single
set of content streams to a single device and by restricting user
interaction to the keypad for basic media functionalities
(play/pause/stop).

A well-known way to go beyond such a basic user
experience is by means of multimodal user interfaces, which
enable users to interact with services in a variety of ways
[3][4][21]. Mobile environments are however highly dynamic,
which means that it must be possible to dynamically tailor a
multimodal interface to the situation of a particular user. For
example, when a user gets into his car, the interface of the
services he is using will typically need to change for safety
reasons.

The contribution of this paper is a distributed system called
the Multimodal Delivery and Control System (MDCS) that
provides this form of adaptation. While adaptive multimodal
services have been investigated before [3][4][7][8][11][21], the
MDCS addresses and combines three of the major challenges that
remain in this area:
• How to make adaptive multimodal services available on a

large scale;
• How to use multiple devices at the same time for content

rendering; and
• How to dynamically adapt the rendering and interaction

features of a service based on the user’s situation (“context”).
To make adaptive multimodal services widely available, the

MDCS integrates into the service infrastructure of “beyond 3G”
telecom operators (typically based on the IP Multimedia
Subsystem (IMS) [12]). The advantage of this approach is that
service providers can rely on the telecom operator to dynamically
adapt the modality of their services to the context of a particular
user, which allows them to deploy multimodal services more
easily. Moreover, the telecom operator can provide these
multimodal facilities for multiple service providers, thus reducing
the costs of operating these facilities and fueling the uptake of
adaptive multimodal services. A final advantage is that telecom

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Ambi-sys'08, February 11-14, 2008, Quebec, Canada.
Copyright 2008 ACM 978-963-9799-16-5…$5.00.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AMBI-SYS 2008, February 11-13, Quebec, Canada
Copyright © 2008 ICST 978-963-9799-16-5
DOI 10.4108/ICST.AMBISYS2008.2908

operators usually have a large customer base, which makes
support for adaptive multimodal interfaces available to a large
number of mobile users.

The MDCS supports non-monolithic rendering [10], which
means that it allows for the simultaneous use of multiple devices
in a user’s vicinity to render a particular multimedia item in a
synchronized manner. This enhances the experience of a (mobile)
user and is unlike current solutions for adaptive multimedia
[7][8][11] that provide a fixed and self-contained set of content
streams targeted at a single device. The MDCS focuses on
multimedia items that take the form of multimedia presentations
and supports presentations described in declarative languages
such as SMIL [20] or MPEG-4 [22].

To provide truly adaptive multimodal services, the MDCS
dynamically and seamlessly adapts the rendering and interaction
features while a user is utilizing the service. These adaptations are
triggered by changes in the user’s context, for instance when his
activity changes or when new rendering devices appear. This is
unlike existing systems, which traditionally only adapt a service’s
interaction features or its rendering features, but not both
[7][8][11] .

This paper is structured as follows. Section 2 introduces a
motivating scenario in order to clarify the concepts presented
elsewhere in the paper. Section 3 identifies the requirements of
the MDCS and Section 4 discusses its architecture. Section 5
describes the system’s implementation and Section 6 discusses
related work. Finally, Section 7 concludes the paper and proposes
future directions to follow in this research.

2. SCENARIO
The scenario revolves around a user called Consuelo. Consuelo is
staying in a hotel and wants to watch a movie before she goes into
town for dinner. Consuelo has a subscription with the VoD
service provided by her mobile operator and uses the large touch
screen in her room to select the movie “Casino Royale”. Because
Consuelo is in a hotel room and has a high-definition TV screen
and her handheld device at her disposal, she receives the service
in three synchronized parts: (1) the video component of the movie
on the high-definition television, (2) the audio on the room’s hi-fi
system, and (3) the user interface for interacting with the VoD
service on her handheld device [10]. Figure 1 shows a graphical
representation of the scenario.

hotel room

getting in car

walking

video audio playout controls
Figure 1. Scenario.

When it is time to leave for dinner, Consuelo heads for the
parking lot to get to her car. As she gets out of her room, she
decides to keep on watching “Casino Royale” and uses the
controls on her phone to transfer the video part of the movie from
the TV to her mobile phone.

When Consuelo gets in her car, her mobile phone indicates
that its microphone, speakers, and display have been disabled for
safety reasons. As a result, the audio of the movie is now playing
on the car’s audio system, while the in-car information system
signals that the microphone in the car has been enabled. Since the
movie is now audio only, Consuelo pauses it through a voice
command and uses the in-car microphone to quickly annotate the
movie with a few words that will enable her to remember the
movie’s story line once she gets back. She then drives off into
town and uses the controls on the steering wheel to select an
Internet radio station to listen to during the drive.

3. REQUIREMENTS
The scenario of Figure 1 requires a system that can dynamically
adapt the delivery of a particular service in response to changes in
a user’s situation. This involves adapting (1) the way in which a
user receives multimedia content from a service (the service’s
output) and (2) the way in which that user interacts with that
service (the user’s input). To accomplish this, the system has to
go through three high-level steps (also applicable to a wider class
of adaptive multimodal systems [3]):
1. Detect changes in a user’s situation and discover the

capabilities of nearby devices;
2. Given the user’s new situation, decide on (1) the best way to

deliver the content of the service to the end-user (e.g., in a
non-monolithic way) and (2) on the best way for that user to
interact with the service (e.g., in a multimodal way); and

3. Enforce these decisions by rendering content in a non-
monolithic manner, by realizing multimodal interactions, or
by transferring streams to other devices.
In the scenario of Figure 1, the system goes through these

steps twice: once when Consuelo leaves her hotel room and once
when she gets into her car. This high-level behavior gives rise to
seven requirements, which are discussed below.

3.1 Context Detection & Resource Discovery
The system should be able to detect changes in a user’s context,
for instance in the set of devices in the vicinity of the user or the
activity the user is engaged in. The devices in a user’s vicinity can
be considered as a dynamic “sphere” and are therefore called the
user’s Distributed Communications Sphere (DCS) [23] in this
paper. As illustrated in Section 2, a user’s DCS might change over
time: Consuelo’s DCS changes when she leaves her hotel room
(the TV disappears from her DCS) and when she gets into her car
(the car’s audio system and built-in microphone become part of
her DCS). A DCS also includes the network connections through
which the devices in the DCS communicate with service in the
infrastructure.

An important factor is the strategy that the system uses to
handle changes in the user’s context. The system could for
instance respond to every event that signals such a change. This
maximizes the match between a user’s context and the way the
system delivers the service (rendering and interaction-wise), but
may also result in the system ‘ping-ponging’ between different
devices and modalities. This reduces the stability of the system,
which in turn negatively affects its usability. The system should
therefore apply some hysteresis in responding to changes (cf. [6]),
but this topic is outside the scope of in this paper.

In addition to detecting changes in a user’s context, the
system also needs to be able to discover the capabilities of the
resources (devices and networks) in the user’s DCS. Resource

discovery will however also not be considered in this paper as we
expect the system to build on existing work in this area.

3.2 Decision Making
The system has to be able to decide on (1) the best way to deliver
the content of the service and (2) the best way for a user to
interact with that service. This decision should be based on the
properties of the multimedia service involved and on the
capabilities of the devices and networks in the user’s DCS. In
addition, it should take the user’s preferences into account, which
define what constitutes “best” based on the context of the user.
These preferences could for instance specify a preference for
certain devices (e.g., wall-mounted displays) or certain modalities
(e.g., gesture-based interaction) in certain situations.

3.3 Non-monolithic Rendering
The system needs to support non-monolithic rendering, which
means that it has to be able to simultaneously render the output of
a particular multimedia service onto two or more devices in a
user’s DCS. When Consuelo is in her hotel room, for example, the
system should be able to relay the audio component of “Casino
Royale” to the hotel room’s hi-fi system, the user interface to
Consuelo’s cell phone, and the video component to the wall-
mounted display.

Non-monolithic rendering requires the involved devices to
be time synchronized. This means that the system should be
capable of transforming the timing and layout description of a
service into stream and/or device-based synchronization
constructs implemented in the transport/network layer.
Furthermore, the user’s DCS needs to have an efficient local
device synchronization protocol, which works across varying
network types.

3.4 Multimodal Interaction
The system should enable users to interact with a service in a
multimodal way. This means that it should allow users to utilize
different forms of input to interact with a multimedia service. This
may require using the input capabilities of different devices in a
user’s DCS. The scenario of Figure 1 is a multimodal example in
that Consuelo initially interacts with the movie service through
the key pad of her cell phone, but afterwards uses the microphone
in her car to stop the movie.

The system should also allow users to utilize multiple
modalities at the same time to interact with a service. An example
would be a user giving a service the instruction to zoom in on a
certain part of a video by simultaneously making a gesture (e.g.,
pointing) and providing a voice command. This form of
interaction requires a function called input fusion [24] [27], which
combines these different inputs into a semantically meaningful
action for the service.

3.5 Session Mobility
The system should be able to transfer part of the service’s output
to another device. This for instance allows Consuelo to transfer
the video stream from the TV screen to her mobile phone (cf.
Figure 1). This function is usually called “session mobility”
[1][2][5].

3.6 Unified Interface
 The system should provide a unified interface that allows service
providers to easily deliver interactive multimedia services to a

wide variety of users. The interface should abstract away from (1)
the modalities that the system uses to present the service and to
interact with the user, and (2) the devices and networks through
which the system delivers the service. The latter is particularly
important in “beyond 3G” environments in which a DCS usually
consists of multiple devices and wireless networks, each with
their own capabilities.

To provide a unified interface to interactive multimedia
services, the system should be able to handle different types of
description languages, for instance languages that describe the
properties of multimedia content (e.g., SMIL [20], MPEG-4 [22],
MPEG-7 [18][19]) and devices (e.g., CC/PP [25]).

4. ARCHITECTURE
This section discusses the architecture of the Multimodal Delivery
and Control System (MDCS), a distributed system that fulfills the
requirements outlined in Section 3. The MDCS focuses on
deciding how to deliver a particular service to a particular user
and on how to enforce these decisions through non-monolithic
rendering, multimodal interaction, and session mobility. It relies
on existing components for dynamic resource discovery and for
detecting context changes.

The MDCS is specifically designed to run in the
infrastructure of mobile telecom operators and forms a value-
added service that, for the most part, runs on the operators’
platform. The MDCS integrates into the service infrastructure of
“beyond 3G” telecom operators, which will typically be based on
IMS [12]. Figure 2 illustrates this.

Figure 2. High-level view of the MDCS.

The MDCS architecture consists of three types of
components: media components, control components, and
supporting components. Media components process and render
the content of a multimedia service and handle the interactions
with users. Control components govern how media components
are arranged and dynamically reconfigure these components to
adapt to the end-user’s current context. Finally, support
components are components that are not part of the MDCS, but
run elsewhere on the operator’s platform.

The rest of this section considers the MDCS architecture in
detail. It first discusses the concept of binding, which is an
abstraction that associates a service to a user. Next, it introduces
the MDCS’ media, control, and supporting components and
provides an overview of the system’s behavior.

4.1 Bindings
A binding provides an association between an interactive
multimedia service and a user. It enables a service to deliver
multimedia content to a user and enables that user to interact with
the service without the service having to be aware of the internal
state of the user’s DCS. This form of abstraction simplifies the
development and deployment of interactive multimedia services,
which is beneficial to the end-user, the service provider, and the
platform operator. To allow the service to abstract away from the
specifics of non-monolithic rendering, a binding also keeps track
of the rendering state for a user. As a result, bindings can for
instance be stopped, paused, or fast forward. Observe that a
binding is not an association between a service and a device,
which would expose the internals of a user’s DCS to the service
and would require the service to deal with the multiple modalities
and devices in the DCS.

Figure 3 shows an example of a binding, in this case between
the VoD service of Figure 1 and Consuelo.

Figure 3. Example of a binding.

While a binding provides a convenient abstraction for
interactive multimedia services, it is an abstract notion that the
MDCS needs to realize. In the MDCS architecture, such a
realization consists of a set of media components and a set of
sessions that interconnect them.

4.2 Media Components and Sessions
The media components in a binding are responsible for rendering
the content of the multimedia service and for handling the
interactions with the user. These components are:
• Renderers. A renderer is a component capable of rendering

multimedia elements (i.e., video, audio, images, and text). A
renderer runs on a device in a user’s DCS. There may be
multiple renderers on different devices in the same DCS,
thus allowing for non-monolithic rendering [10].

• Output transformers. An output transformer runs in the
infrastructure of a telecom operator and can manipulate
multimedia content (e.g., transcode it).

• Activators. Similar to a renderer, an activator runs on a
device in a user’s DCS. An activator catches user inputs such
as speech commands, gestures, or more traditional desktop
inputs like mouse clicks. The activators in one DCS may be
distributed across multiple devices.

• Input recognizers. An input recognizer receives raw user
input from an activator, determines what kind of action the
input represents (e.g., a certain gesture), and sends a
description of that action to the fusion component.

• Fusion components. A fusion component merges multiple
user inputs into a single action that is understood by the
service (e.g., “zoom”) and conveys this action to the service.

A fusion component is service-specific in that it knows
which actions the service supports.
A binding contains instances of these components, which are

interconnected by sessions that transport data. Figure 4 shows
what the binding of Figure 3 could look like. In this example, the
binding consists of an audio renderer (on the hi-fi system) and a
video renderer (on the wall-mounted display) that receive audio
and video packets from the VoD service through an audio and a
video session, respectively. To handle interactions with the user,
the binding also contains two activators, one for capturing voice
commands and one for capturing gestures. Both activators run on
Consuelo’s cell phone and feed their data to an appropriate input
recognizer (one for voice and one for gestures). The recognizers
interpret the user’s voice and gesture actions and forward a
description of these actions to the fusion component. The fusion
component combines them into a single action that is specific to
the VoD service and conveys it to the service. The sessions that
interconnect activators, input recognizers, fusion components, and
services convey user interactions. Observe that the rendering
watchers in Figure 4 are control components that are co-located
with media renderers, but are not part of the binding. The example
binding of Figure 4 does not contain any output transformers.

application
server

binding

fusion
component

gesture
activator

voice
activator

voice
recognizer

VoD
service

gesture
recognizer

(1)

resource
coordinator

(2)

pres. descr.
processor

sessionbinding control interaction

supporting
components

configure

video
renderer

audio
renderer

scheduler

Consuelo’s DCStelecom operator

rendering
watcher

rendering
watcher

Figure 4. MDCS architecture.

The interfaces that media components expose to interactive
multimedia services together form the multimodal delivery
interface of the MDCS (interface 1 in Figure 4). This interface
enables services to easily deliver their output to users in a
multimodal and multi-device manner without having to be aware
of the specifics of DCSs. It also allows them to receive
multimodal commands from end-users without having to be aware
of the actual modalities through which the user interacts with the
service (e.g., a combination of gestures and voice commands).

Together, this contributes to the realization of the MDCS’ unified
interface (Section 3.6).

4.3 Control Components
Control components govern how bindings are organized in terms
of media components and sessions. They reconfigure a binding
when an event occurs that indicates that the context of a user has
changed (e.g., when Consuelo leaves her room or gets into her
car). The MDCS architecture contains five control components
(also see Figure 4): MDCS application servers, resource
coordinators, presentation description processors, rendering
watchers, and schedulers.

An MDCS application server allows multimedia services to
request the establishment of a new binding with a particular user.
The MDCS application server forwards these requests to resource
coordinators, which are components that control the current
bindings of specific users. The interface the application server
provides is called the MDCS’ binding control interface (interface
2 in Figure 4). It abstracts away from the details of managing
bindings, thus reducing the complexity of the interactive
multimedia services that use it. Because the MDCS takes care of
non-monolithic rendering (see Section 4.1), the binding control
interface also provides basic methods that enable services to
manipulate the playout of their multimedia content (e.g., stop and
fast forward). The MDCS application service is also responsible
for managing the life-cycle of resource coordinators and handles
requests to release an existing binding.

A resource coordinator manages the bindings associated
with a specific user. For each service, it decides (1) through which
devices the user will receive the multimedia content and in which
modalities (e.g., text and audio), and (2) through which devices
and modalities the user will interact with the service (e.g., using
gestures and keystrokes). A resource coordinator enforces these
decisions by instantiating and configuring several media
components, and by establishing the appropriate sessions to
interconnect them using the Session Initiation Protocol (SIP). The
resource coordinator also handles events that signal that the
context of a user has changed, re-computes the way the media
components of a binding should be arranged in the new context,
and then enforces that decision by reconfiguring the set of media
components in the binding. To facilitate this adaptation process,
the resource coordinator keeps track of the bindings of a
particular user and their realizations in terms of media
components and sessions. The inputs for the decisions that a
resource coordinator makes are the description of the service
(input and output characteristics), the user’s preferred devices and
modalities, and a description of the characteristics of the available
devices in the user’s DCS.

A presentation description processor is responsible for
mapping specific declarative languages such as XHTML, SVG,
SMIL, or MPG-4 into an MDCS-internal data model. This allows
the resource coordinator to become a language-agnostic
component, thus allowing it to operate in heterogeneous
environments (cf. Section 3.6).

A scheduler is a component that determines in what order the
presentation provided by an interactive multimedia service will be
rendered on the devices in a DCS. A scheduler offloads an
interactive multimedia service from having to deal with non-
monolithic rendering and keeps track of the state of a multimedia
presentation. The goal is to keep the clocks of the scheduler and
the renderers synchronized.

A rendering watcher is a component that keeps track of the
state of an individual renderer and communicates timing
information about the renderer to the scheduler (e.g., when a
renderer has finished playing a certain multimedia element).

4.4 Supporting Components
The resource coordinator makes use of a set of supporting
components that are not part of the MDCS, but that run elsewhere
on the operator’s platform. They are:
• Recommender [14]. The recommender is a learning

component that provides modality recommendations. A
modality recommendation suggests a certain set of
modalities for delivering a particular service in a particular
user’s DCS on a particular device. A modality
recommendation includes a confidence level that indicates
the probability of the recommendation being correct. The
recommender provides an interface for obtaining modality
recommendations and for feeding information back into the
recommender to improve its performance using learning
algorithms. The recommender takes the user’s current
context into account.

• Resource discovery facility [23]. The resource discovery
facility dynamically discovers the devices in a user’s DCS
and provides information about their capabilities (e.g., in
terms of supported network interfaces). The discovery
facility supports a request-response interface as well as a
publish-subscribe interface that provides asynchronous
callbacks when the composition of a user’s DCS changes.

• Context manager [29]. The context manager provides
information about the context of users, for instance in terms
of their location or their current activity. The context
manager supports a request-response interface and a publish-
subscribe interface that provides asynchronous callbacks
when the context of a particular user changes.

4.5 System Behavior
Resource coordinators form the central point of control in the
MDCS. They manage the life-cycle of bindings in four different
phases: an establishment phase, a delivery phase, an adaptation
phase, and a release phase. These are similar to the phases
discussed in [3].

The establishment phase begins when a user selects a content
item from an Electronic Program Guide (EPG). The EPG sends a
delivery request to the selected multimedia service, which in turn
requests the MDCS application server to establish a binding with
the user. The request contains the ID of the user, a description of
the multimedia presentation that the user requested, and a
description of the input commands that the service supports (e.g.,
“zoom” and “fast forward”). The application server forwards this
request to the user’s resource coordinator, possibly after creating
it first. Next, the resource coordinator obtains a personalized
modality recommendation from the recommender and uses the
discovery facility to get a description of the set of available
devices in the user’s DCS. It combines this information with the
description of the multimedia presentation to decide on (1) the
modalities to use for delivering the multimedia content and on
which devices, and (2) on the modalities to use for the interaction
between the user and the service and through which devices these
interactions should take place. Based on this decision, the
resource coordinator creates a new binding by instantiating and
configuring a set of media components (cf. Figure 4). It for

instance creates a fusion component and configures it with a
description of the commands that the service supports. Finally, the
resource coordinator passes a description of the content along
with associated timing details to the rendering components.

The delivery phase begins when the resource coordinator has
established a new binding and the user is receiving the service’s
content and is interacting with that service. During the delivery
phase, the rendering watchers synchronize the playout of the
content at the renderers and report their status back to the
scheduler. In parallel, the service receives user inputs via the
fusion component and calls the MDCS application server to
execute actions that influence the rendering state of the service
(e.g., pause).

SC RC(Consuelo) VA(car) AR(car)

event

getRecommendation

getDevices

DP(SMIL)

extract

establishmentRequest(VIR)

rendering and
interaction

decision

instantiate audio
input recognizer

VIR

establishmentRequest(VoDService, audioDescription)

SC = Support Components
RC = Resource Coordinator
DP(X) = Presentation Description Processor for language X

VIR = Voice Input Recognizer
VA = Voice Activator
AR = Audio Renderer

telecom operator Consuelo’s DCS

Figure 5. Example behavior.

The adaptation phase begins when the resource coordinator
receives an event that indicates that the user’s context has
changed. It can receive such event from the context manager (e.g.,
when the user’s activity changes), from the resource discovery
facility (e.g., when a new device appears in the user’s vicinity), or
explicitly from the user. During the adaptation phase, the resource
coordinator goes through the same steps as during the
establishment phase, in the end possibly re-configuring the
binding in terms of its media components (and hence the
modalities and devices involved in the delivery of and interactions
with the service). The resource coordinator also updates its
internal model of the binding to match the new situation and
sends updated media descriptions to the renderers involved in the
delivery of the service’s content.

Figure 5 illustrates this behavior when Consuelo gets into her
car. Her resource coordinator receives a context change event
from one of the supporting components (e.g., the context
manager). The resource coordinator then consults the
recommender and the discover facility in order to determine how
to adapt the VoD service in Consuelo’s new context. Based on
their output, the resource coordinator instantiates a voice input
recognizer and requests the audio activator in Consuelo’s car to
establish a session with it. The resource coordinator also requests
the voice input recognizer to connect to a fusion component, but
this is not shown in Figure 5.

Besides changing the interaction part of the binding with
Consuelo, the resource coordinator also connects the audio
renderer in Consuelo’s car to the VoD service and disconnects the
audio and video renderers on her mobile phone (not shown in
Figure 5). The resource coordinator interacts with a presentation
description processor to extract the audio part from the
description of the service’s output (in this example a SMIL
description).

An important aspect of the resource coordinator in the
adaptation phase is that it applies a certain degree of hysteresis to
the events that it receives to avoid the MDCS from continuously
changing modalities and devices. This could for instance be
regulated by a set of configurable policies [28]. The MDCS goes
back to the delivery phase when the adaptation phase ends.

The release phase begins when the MDCS is in the delivery
phase and the MDCS application server receives a request from a
service to release its binding with a particular user. The
application server forwards this request to the user’s resource
coordinator, which releases the binding by stopping the associated
media components and releasing the sessions.

5. IMPLEMENTATION
This section discusses the state of the MDCS implementation, in
particular of the media and control components introduced in
Section 4. The supporting components are third-party
implementations and will not be discussed here. For more
information on these components, the reader can consult the
following articles: recommender [14], resource discovery facility
[23], and context manager [29].

As explained in the previous section, the target platform for
the MDCS is the IP Multimedia Subsystem (IMS) [12], which
means that the different rendering devices, activators, and the
multimedia service are connected using the IMS standard1. The
particular implementation in use is Open Source IMS2.

5.1 Media Components and Sessions
The rendering components (Section 4) are instances of the
Ambulant Player3, which is an open source implementation of
SMIL 2.1. It runs on wide range of platforms and devices, from
desktop computers to mobile devices such as Pocket PC, Linux-
based PDAs, and Windows Mobile 5 systems. The major
advantage of using SMIL for describing multimedia services is
that it provides the timing and synchronization information of the
constituting media elements. As a result, it becomes easier to
perform transformations on the content, such as resizing, and to
render to content in a non-monolithic manner. The output
transformer is an extension of the Ambulant Annotator [10]
implemented in Python.

The implementation of the MDCS integrates the scheduler
into the resource coordinator (cf. Figure 4). The scheduler takes
the form of an instance of the Ambulant Annotator [10], which
allows users to annotate multimedia content. The Ambulant
annotator is able to receive XML-RPC commands and is based on
a user interaction model that provides multimodal and multi-
device interaction. The model separates an RPC call for a

1 http://www.3gpp.org/
2 http://www.openimscore.org/
3 http://www.cwi.nl/projects/Ambulant/distPlayer.html

particular user interaction into action semantics, action handling,
and activator. The semantics provides a description of the action
in terms of its name, what it provides, and what are the needed
input data. The handler provides an actual implementation of the
action. Finally, the activator is the implementation of the interface
to the user. This model, analogous to the Model-View-Controller
(MVC) paradigm, provides the benefit of a clear separation
between the action handling and the actual look and feel of the
interactions.

In the implementation, each interactive device provides its
own implementation of the activators depending on their internal
capabilities. The system includes a number of activators such as
traditional graphical user interfaces in mobile phones, gesture
interfaces, and voice interfaces. The raw input is then transformed
into the Extensible MultiModal Annotation Markup Language
(EMMA) [26] standard by the specific input recognizer and sent
to the fusion component. The major advantage of using EMMA is
that a device-specific input is transformed into a device-agnostic
input. Finally, the fusion component, based on the actions
semantics, is responsible for producing one action that will be
handled by the resource coordinator.

5.2 Control Components
The following control components of the MDCS architecture have
been implemented: the presentation description processor, the
resource coordinator, and the rendering watcher.

The implementation of the presentation description processor
targets interactive multimedia presentations and is therefore based
on the SMIL language. The SMIL processor parses the
description of a multimedia presentation and identifies the media
elements, their characteristics, and their synchronization (e.g.,
video, audio, and subtitles). Based on the parsing of the
document, a general description of the output model of the service
is provided to the resource coordinator. Future work includes the
development of presentation description processors for XHMTL,
SVG, and XForms, among others.

The resource coordinator decides where and when to render
the multimedia content. Its decision engine is implemented as a
matching algorithm of the output model of the service, the results
of the device discovery mechanism, and on recommendations.
The resource coordinator is written in Java and interacts with the
Ambulant Player and Annotator

The rendering watcher is responsible for enforcing the timing
description and is implemented as part of each renderer. In order
to synchronize the different renderers, the implementation uses
the NeighbourCast-NM (Non-Monolithic) algorithm [9][15].

6. RELATED WORK
Adaptive multimodal services have been investigated before
[3][4][7][8][11][21], but to the authors’ knowledge they have not
been integrated with the (IMS-based) platforms of “beyond 3G”
telecom operators before. The MDCS is a distributed system that
does exactly this. A derived contribution in this regard is the
notion of a binding, which allows an interactive multimedia
service to connect to a user without having to worry about the
internal organization and dynamics of that user’s DCS.

In terms of multimodality, a number of research papers also
study full multimodal adaptation (i.e., adaptation while a user
utilizes a service) based on contextual information, but they do
this independently for user interaction [4][21] and rendering [3].
The MDCS, on the other hand, is designed to adapt both in an

integrated manner. Another difference with existing work is that
the MDCS largely runs on the servers of a telecom operator,
which allows for more content adaptation possibilities (e.g.,
transcoding). Pure client-side solutions are less flexible in this
regard [3][4].

As for rendering multimedia, traditional adaptive multimedia
[7][8][11] solutions provide a self-contained stream targeted to a
specific device. The MDCS, on the other hand, is capable of re-
adapting the way content is rendered depending on changes in the
user’s context. Moreover, its architecture permits the output (or
different parts of the output) of the service to be rendered through
different synchronized rendering components simultaneously (i.e.,
in a non-monolithic manner), using the NeighbourCast-NM
algorithm. As discussed in [15], the algorithm meets all the
requirements for non-monolithic rendering.

Multimodal interaction should incorporate available
interaction and rendering devices in the close environment into
the user interaction. Aspects such as context-awareness, media
content transformations, user input integration, content and device
selection, device and modality service discovery are needed to be
integrated in order to achieve a flexible and modular overall
software architecture allowing for a better user experience [13].
Additionally, learning aspects in order to improve system
response based on observed user interaction patterns can improve
the overall user experience significantly as described in [14]. All
these requirements are being taken into account in the proposed
architecture.

7. CONCLUSIONS AND FUTURE WORK
This paper introduces the Multimodal Delivery and Control
System (MDCS), a distributed system that enhances the
experience of mobile users by dynamically adapting the way
these users consume and interact with multimedia services. The
MDCS integrates with the service platforms of “beyond 3G”
telecom operators, in particular with the IP Multimedia
Subsystem (IMS). It also allows a multimedia presentation to be
rendered on multiple devices in parallel (non-monolithic
rendering) and can dynamically and seamlessly adapt the
rendering and interaction features of a service while a user is
utilizing the service. These adaptations are triggered by changes
in the user’s context. The main abstraction of the system is that of
a binding, which enables services providers to deliver interactive
multimedia services to mobile users without having to worry
about the details and dynamics of the user’s communications
environment (networks, devices). We discussed the MDCS’
requirements, its architecture, and the state of its implementation.

Future work includes a more detailed study of mechanisms
for media synchronization, advanced multimodal interaction, and
device sharing (e.g., when two users share a device such as a
wall-mounted display). Other future work will involve a
formalization of the algorithms that the resource coordinator uses
to decide how to present a particular service to a particular user
(rendering and interaction-wise). The implementation of the
MDCS will be extended as well, as it has a prototype status at this
point. This will for instance include developing new types of
presentation description processors for other for declarative
languages such as SVG and XHMTL.

8. ACKNOWLEDGMENTS
This work has been conducted within the project SPICE (027617),
which targets intelligent extensions of next generation service
platforms.

9. REFERENCES
[1] H. Song, H.-H. Chu, and S. Kurakake, “Browser Session

Preservation and Migration”, the 11th International World
Wide Web Conference (WWW2002), Hawaii, May 2002.

[2] H. Song, H.-H. Chu, N. Islam, S. Kurakake, and M. Katagiri,
“Browser State Repository Service”, International
Conference on Pervasive Computing (Pervasive 2002),
Zurich, Switzerland, August 2002.

[3] R. Kernchen, B. Mrohs, M. Sałaciński, K. Moessner,
“Context-aware multimodal output selection for the Device
and Modality Function (DeaMon)”, 6th International
Workshop on Applications and Services in Wireless
Networks, Berlin, Germany, May 2006.

[4] R. Kernchen, P. Boda, K. Moessner, B. Mrohs, M. Boussard,
G. Giuliani, “Multimodal user interfaces for context-aware
mobile applications”, 16th Annual IEEE International
Symposium on Personal Indoor and Mobile Radio
Communications (PIMRC), Berlin, Germany, 2005.

[5] K. Ohta, T. Yoshikawa, T. Nakagawa, Y. Isoda, S.
Kurakake, “Adaptive Terminal Middleware for Session
Mobility,” 23rd International Conference on Distributed
Computing Systems Workshops (ICDCSW'03), May 2003.

[6] C. Hesselman, H. Eertink, and A. Peddemors, “Multimedia
QoS Adaptation for Inter-tech Roaming”, Proceedings of the
6th IEEE Symposium on Computers and Communications
(ISCC'01), Hammamet, Tunisia, July 2001

[7] S. Boll, “MM4U – a Framework for Creating Personalized
Multimedia Content”, International Conference of
Distributed Multimedia Systems, Miami, Florida, September
2003.

[8] T. Lemlouma and N. Layaida, “Adapted Content Delivery
for Different Contexts”, International Symposium of
Applications and the Internet, Orlando, Florida, 2003

[9] I. Vaishnavi, D. Bulterman, P. Cesar, B. Gao,
“NeighbourCast: A synchronisation algorithm for wireless ad
hoc networks”, IASTED International Conference on
Parallel and Distributed Computing and Systems, 2007.

[10] P. Cesar, D.C.A. Bulterman, Z. Obrenovic, J. Ducret, and S.
Cruz-Lara, “An Architecture for Non-Intrusive User
Interfaces for Interactive Digital Television”, EuroITV, pp.
11-20, 2007.

[11] J.V. Ossenbruggen, L. Hardman, J. Geurts, and L. Rutledge,
“Towards a Multimedia Formatting Vocabulary”, 12th
International Conference of the World Wide Web, Budapest,
Hungary, 2003, pp. 384-393.

[12] 3GPP TS 23.002: “Network architecture”
[13] D. Bonnefoy, O. Droegehorn, and R. Kernchen,

“Multimodality and Personalisation”, in Enabling
Technologies for Mobile Services: The MobiLife Book, M.
Klemettinen, Ed. Chichester: John Wiley & Sons, LTD,
2007, pp. 153 - 184.

[14] Y. Du, R. Kernchen, K. Moessner, C. Räck, O. Sawade, and
S. Arbanowski, “Context-aware Learning for Intelligent
Mobile Multimodal User Interfaces”, 18th Annual IEEE

International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC 2007), Athens, Greece,
2007.

[15] I. Vaishnavi, D. Bulterman, P. Cesar, and B. Gao, “Media
Synchronisation in Non-Monolithic Rendering
Architectures,” IEEE International Symposium on
Multimedia, 2007.

[16] F.D. Keukelaere, R.D. Sutter, and R.V.D. Walle, “MPEG-21
session mobility on mobile devices,” International
Confererence on Internet Computing, pages: 287-293, 2005.

[17] R. Shacham, H. Schulzrinne, S. Thakolsri, W. Kellerer,
“Session Initiation Protocol (SIP) Session Mobility”, Internet
Draft, draft-shacham-sipping-session-mobility-02.txt,
February 2006

[18] F. Nack and A.T. Lindsay, “Everything you wanted to know
about MPEG-7 (part 1),” IEEE Multimedia, 6 (3), July-
September 1999, pp. 65-77.

[19] F. Nack and A.T. Lindsay, “Everything you wanted to know
about MPEG-7 (part 2),” IEEE Multimedia, 6 (4), October-
December 1999, pp. 64-73.

[20] D.C.A. Bulterman and L. Rutledge, “SMIL 2.0: Interactive
Multimedia for Web and Mobile Devices,” Springer-Verlag,
Heidelberg, 2004.

[21] M. Honkala and M. Pohja, “Multimodal Interaction with
XForms,” International Conference on Web Engineering
(ICWE2006), 2006, pp. 201-208.

[22] F. Pereira and T. Ebrahimi, “The MPEG-4 Book,” Prentice
Hall, Upper Saddle River (NJ), 2002.

[23] R. Kernchen, M. Boussard, C. Hesselman, C. Villalonga, E.
Clavier, A.V. Zhdanova, and P. Cesar, “Managing Personal
Communication Environments in Next Generation Service
Platforms,” IST Mobile and Wireless Communications
Summit, Budapest, 2007, pp. 1-5.

[24] S. Oviatt , A. DeAngeli, and K. Kuhn, “Integration and
synchronization of input modes during multimodal human-
computer interaction,” SIGCHI conference on Human factors
in computing systems, 1997, p.415-422.

[25] G. Klyne, et al., “Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies”, W3C
Recommendation, 2004.

[26] P. Baggia, J. Carter, D.A. Dahl, G. McCobb, D. Raggett,
“EMMA: Extensible MultiModal Annotation markup
language,” W3C Working Draft, April 2007.

[27] R.A. Bolt, “Put-that-there”: Voice and gesture at the graphics
interface, International Conference on Computer Graphics
and Interactive Techniques, pp. 262-270, 1980.

[28] C. Hesselman, H. Eertink, and A. Peddemors, “Multimedia
QoS Adaptation for Inter-tech Roaming”, 6th IEEE
Symposium on Computers and Communications (ISCC’01),
Hammamet, Tunisia, July 2001

[29] H. van Kranenburg, M. S. Bargh, S. Iacob, A. Peddemors,
“A Context Management Framework for Supporting
Context-Aware Distributed Applications”, IEEE
Communications Magazine, August 2006, pp. 67-74

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

