
Simulating and Implementing Geospatially-based Binding
Mechanisms for Mobile Peering

Ben Falchuk
Telcordia Technologies, Inc.

1 Telcordia Dr.,
Piscataway, NJ 08854 USA

bfalchuk@research.telcordia.com

David Shallcross
Telcordia Technologies, Inc.

1 Telcordia Dr.,
Piscataway, NJ 08854 USA

davids@research.telcordia.com

ABSTRACT
In mobile peer-to-peer information sharing, binding to - and
sharing with - another device uses up computing resources and
makes sense only when certain conditions are met. We propose a
visual notation and an software tool for mobile devices that
address the need for a simple and intuitive way to allow the
setting and testing of policies for on-the-go information exchange
(e.g., playlists). This intuitive and visual approach - called
MotionMaps - is well-suited for small screens and helps ensure
efficient use of device and network resources. This last claim is
supported in this paper by simulation and analysis that makes
clear the impact of these policies on the effectiveness of
information exchange across several mobile use cases.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: screen design, user-centered design,
C.2.1 [Network Architecture and Design]: wireless comm..

Keywords
Peer to peer communications, On-the-go information sharing.

1. INTRODUCTION
 The mobile distributed computing paradigm, in which

communications devices are on-the-go and enter into ad hoc peer-
to-peer communications with other such devices, is more and
more prevalent. Recent and newly widespread underlying
consumer electronics technologies making this possible include:
Global Positioning System, IEEE 802.11 (Wi-Fi) and Bluetooth
(now shipping with a majority of new smartphones), rich graphics
and user interfaces capabilities (e.g., Java2ME), availability of
dual-mode (Wi-Fi/cellular) smartphones, and middleware such as
that from the OSGi Alliance that allows a device to use software
components as they become available, without a restart or
disruption. Thus, ad hoc device discovery and binding are real, as
are rich services and applications. Currently, a large number of
mass-market mobile devices are overtly intended for consumers
who want to not only carry their media with them at all times but
also connect opportunistically to local networks and peers. Most
notably, this device-class includes Microsoft’s ZuneTM, whose
WiFi capabilities allow and encourage playlist and song sharing

amongst nearby users. Other devices include ultra-mobile PC’s
by Apple, Wibrain, and Kohjinsha. In addition to mass-market
hardware trends, social networking trends which have pushed the
Web into the so-called Web2.0 phase are now making the notion
of sharing user-generated content between small mobile devices
very desirable. True, some users remain concerned about privacy
and security during these exchanges but studies have shown that
passionate content-producers are more willing than ever to share
content, demographics, lifestyle and personal tastes information
despite the small but real risks of breach, malware, and so on [1].
Heavily trafficked Web sites reinforcing this notion include
Flickr, Blogspot, YouTube, and MySpace, while BitTorrent,
eDonkey and other file-sharing tools still comprise a great deal of
all Internet traffic.

 Our work addresses several key concerns and open
issues in peer-to-peer connectivity for information sharing. First,
even though wireless devices proliferate, none have simple,
intuitive, user-centric tools that allow the fine-grain tuning of
geospatially-based sharing policies. None offer users the ability
to visualize and test these policies for6 mobile use cases.
Secondly, in a mobile setting every act of sharing uses (and
drains, in the case of battery) resources such as network capacity,
computing capacity, and battery life. Thus, the current art of
geospatially-insensitive exchanges actually sets up the device to
waste valuable resources. Our work, then, has the following
contribution and highlights:
• applies principles of interface design for small devices to the

new and highly germane problem of geospatially-sensitive
information sharing

• a visual “language” with which policies are built and tested
• proof-of-concept developed on Windows Mobile 5 device
• a simulation and analysis that convincingly draws out the

benefits of using geospatially-sensitive binding policies to
police peer-to-peer information sharing

2. GEOSPATIAL BINDING
Geospatially-based binding can be thought of as any binding

methodology that includes - and takes into account - information
about one or more of the following attributes of the “binder”, the
“bindee”, or both: their position, their speed, or their direction, in
either a relative or absolute sense. Human interactions intuitively
follow geospatial rules: When bicyclists cross paths they usually
do not begin what will be long conversations; instead they
anticipate future resource availability and modify their exchange
accordingly. With device-based information-sharing, both
binding and information sharing consume valuable computing
resources and this makes intelligent trade-offs, analogous to the
human-case, all the more important. Consider the following: A
device and its user, C, are on a bicycle. C is interested in sharing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Ambi-sys'08, February 11-14, 2008, Quebec, Canada.
Copyright 2008 ACM, ISBN 978-963-9799-16-5…$5.00.

ziglio
Typewritten Text
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AMBI-SYS 2008, February 11-13, Quebec, Canada
Copyright © 2008 ICST 978-963-9799-16-5
DOI 10.4108/ICST.AMBISYS2008.2866

her playlists and also in receiving playlists from people she passes
near (as are D and E). As C’s device comes into range of D and E
P2P sharing becomes possible between the three. However,
geospatial properties of the devices - namely their relative speeds
and relative directions to each other - should also come into play.
Why? Because if C and a given peer are not in range of each
other for long enough, no successful sharing session can occur; in
this case no sharing attempt should even be initiated as it will
abort and fail (as an incomplete transaction) the moment that the
peer goes out of range. Additionally, binding should not occur if
C and the peer do not have compatible sharing preferences or
privacy settings. Hence four main dimensions can be
instrumented to help ensure efficient resource utilization: 1)
relative speed, 2) relative direction, 3) binding preference, and 4)
shared information type. A tacit goal, then, is to maximize the
number of successful sharing transactions made in a given time
while avoiding those peerings that will probably result in
interruptions or won’t result in completed transactions. Consider
the case of trying to share information in a busy street full of
candidate peers. Without any geospatial tempering, the device is
likely to use a greedy algorithm (first come first bound to);
assuming a variety of speeds and wireless signal strengths the
greedy algorithm is likely to result in the device continually
binding to peers, beginning information transfer, and aborting
when the peer goes out of range before the transfer is complete.
Therefore, “return on information” with respect to battery usage is
very low and a real practical application of our work is its
embodiment into device middleware as a battery-usage optimizer.

 Even though today’s mass market devices are notorious
for short battery-life, none presently support power-based binding
for playlist, song, and favorites sharing. But this work has
applicability in other realms too, including, but not limited to:
• Military - in dismounted troop movements it can be

beneficial to exchange information only with those traveling
in certain directions (e.g., are they on my trajectory or not?).

• Manufacturing - automated manufacturing floors employ
both mobile and stationary robots for which directional-
sensitive sharing may be useful.

Meanwhile, applications of positioning and trajectory are seen in:
guidance systems (tourism), public safety, and aids for visually
impaired users. This paper focuses on the following mass-market
cases:
1. Walking on 5th Ave. – A user and device walk on a busy

sidewalk. The user is mobile in a fixed direction and peers
likely to be either in opposite or co-directional. Peers’
speeds are fairly predictable.

2. Sitting on Campus Green – stationary on an active lawn.
Peers approach from relatively random directions with a
wide variety of speeds (e.g. on bikes, foot, etc.)

3. Walking in Grand Central Station – the user is mobile (on
foot) and encountered peers from random directions with
predictable speeds.

We study the merits of our approaches in each of these
representative use cases1. Note that if we assume that media
transfer times are small (more on this later) our technologies will
tend to be less useful when very few peers are encountered per
time interval, or when all parties are nearly stationary. In these
cases, even without our technology the device will see good

1 New mobility models [8] themselves are not the goal of this work

results by simply using a greedy approach.

2.1 Metadata Exchange
We assume that a given device has access to the metadata it

needs in order to decide go/no-go for a given exchange. Link
level and service discovery protocols such as Universal Plug and
Play, Service Location Protocol (SLP), Jini, and Salutation,
employ registries and string-matching to match client’s needs with
registered services. Much past work has expanded registry/search
semantics to allow for rich service querying - e.g., in [2] the
authors extend Bluetooth discovery with additional semantics. In
[3] the authors similarly extend the OSGi framework. 802.11
access points broadcast beacon frames about every 100ms; they
are 50 bytes long and carry SSID, rates, timestamps and other
information. In this paper we assume that devices have both a
low-level way of emitting and detecting beacons (for inter-
discovery) but also - since it will be a basis for decision-making -
an efficient way of exchanging geospatial and other service
metadata which may be comprised of:
• GPS (or other location) coordinates
• Instantaneous or average speed, direction
• Other service attributes - such as sizes of media that are

ready to be exchanged
Our past work [4] has shown that a rich ontology (and

parser) can be an enabler, at the cost of computational complexity.
In such a scheme peer metadata is read as instances of ontology
elements and interpreted accordingly. One advantage of this
approach is that unit equivalence may be inferred (e.g., direction
may be provided in any number of ways: compass direction (e.g.,
“NE”), a set of LAT/LONG’s comprising a vector, degrees (e.g.,
“270 degrees”), etc. In this paper we are concerned only that a
peer’s geospatial metadata is understood, not with the actual
format or mechanism of this exchange.

Table 1. Media and inter-device transfer times (TT)

Type Size TT for rate
0.5 Mbit/sec

TT for rate
10 Mbit/sec

Movie 500 MB 8000 sec (2.2 hr) 400 sec

Episode 250 MB 4000 sec (1.1 hr) 200 sec

Music video 30 MB 480 sec (8 min) 24 sec

Song 3 MB 48 sec 2.4 sec

Component 500 KB 8 sec 0.4 sec

Favorites 200 KB 3 sec 0.15 sec

Playlist 20 KB 0.3 sec 0.015 sec

2.2 Devices and media

Today’s mobile smartphones, mobile media players, and
ultra-mobile PC’s (UMPC) have widely varying capabilities as
their manufacturers strive to create design and feature
combinations that appeal to market niches. A core set of
functionality is emerging that ultimately embodies enough
functionality to allow peer-to-peer sharing of various sorts. A key
one is clearly WiFi networking, which enables peer-to-peer
sharing at high speeds (Bluetooth is ubiquitous but has limited
utility as a file-sharing transport and can experience interference
near WLAN networks [5]). A mobile device with WiFi
technology has varying effective ranges; for example a laptop with
WiFi can expect about 90 feet of range while some users have

seen the Zune’s range to be about 30 feet. Practical WiFi transfer
rates also vary in real-world conditions. Other experimentation
with Zunes has shown effective transfer rates to be about 0.5
Mbps [6]. Transfer rates are less important when the basic
currency of exchange is a playlist or Internet favorites but they
become a concern when the currency is songs and episodic
television shows, for example. Today’s consumers are already
buying and sharing many types of information. Table 1
summarizes these types, their typical sizes, and estimated transfer
times (TT) for several relevant bitrates.

Episode refers to episodic television such as NBC’s ‘The
Office’, or short films. Components refer to exchangeable,
reusable software objects - within OSGi and other Java (and even
non-Java) frameworks, software objects can be bundled and re-
used across platforms in a very dynamic fashion [7]; e.g., a
running application on one device may require an object present
on another device (a specific media-player component, or
temperature-converter) - OSGi provides the foundations for
seamless run-time use of this object. Favorites refers to Internet
browser favorites.

3. SIMULATION AND RESULTS
This section describes our simulation of the 3 use-cases and

the merits of using geospatial policies to filter out mobile binding
candidates that are “undesirable” while binding to those that are
likely to result in successful media transfers. This section relies
upon a visual metaphor with which filters will be presented.

Figure 1. Simulation details are presented in a simplified

MotionMaps style; a colored coordinate space

Filters are represented on a radial coordinate space in which
the up-facing angle is a given users current bearing and the other
angles correspond to relative bearings. Similarly, distance from
the center indicates increasing relative speed. Figure 2 shows 7
peers mapped onto a user’s filter-space - three (smiley faces) map
onto green regions and the filter lets these pass through to the
binding phase, while four map to red regions indicating their
undesirability for binding (either because their speed or angles are
large).

We implemented a discrete-event simulation to evaluate the
effect of using filters for the three use cases described above, and
the required transfer times corresponding to all combinations of
the “song” and “favorites” media types with exchange rates of 10,
5, and 0.5 Mbps. For the simulation, the user was taken as
moving at the fixed speed given in the table below for each use

case. For each use case, the peers were placed at random
according to a Poisson point process in the plane with the average
density given in the table and were assigned speeds uniformly at
random between the minimum and maximum speeds given in
table 2. In the 5th Avenue case, directions were chosen as parallel
or anti-parallel to the user with equal probability. In the other two
cases, directions were chosen uniformly at random. The effective
range of the connection was taken to be 9.14 meters (30 feet).
The simulated duration of the experiments was 1000 seconds.

Table 2. Simulation use cases and characteristics

Peer Speed Use Case User
Speed

Peer
Density minimum maximum

5th Ave. 0.91 m/s 1.0/m2 0.91 m/s 1.8 m/s

Campus
green

0 0.25/m2 0.25 m/s 2.0 m/s

Grand
Central

0.91 m/s 3.0/m2 1.8 m/s 1.8 m/s

For each total transfer time we chose a sample filter by hand,
as a user might. We tried to maximize the number of successful
transfers, using as a rule of thumb the ideas that the expected rate
of arrival of peers that pass the filter should be a small multiple of
the rate at which complete information transfers can occur, and
that we want to filter out the peers that are likely to stay in range
for the least amount of time. No formal or analytical optimization
was done. Any such optimization could only improve the
performance of the filters beyond the promising results we report.

After generating a set of peers, we can measure how many of
them are within range of the user during the duration of the
experiment. We can also divide the duration of the experiment by
the required duration of a successful transfer, giving the number
of transfers we could achieve if we always had an available peer
within range, who would wait within range until the transfer were
complete. In the particular cases whose results are described here,
the latter number is almost always smaller. The minimum of these
two values gives an upper bound on the number of possible
transfers, and a good benchmark to which to compare the actual
numbers of successful transfers.

At time zero the user starts out free. During the experiment,
whenever the user is free, she picks a peer at random from the set
of unused peers that are within range and, if a filter is active, that
pass the filter. If there are no unused peers within range, she
waits until a peer comes within range, and then selects that peer.
She attempts information transfer until either the required
duration elapses, giving a success, or until the peer moves out of
range, giving a failure. The peer is then marked used, and the user
does not attempt to connect to that peer ever again. At the end of
the experiment, any peer still in transfer is recorded neither as a
success nor as a failure.

For each use case, we give the value of the bounds described
above, and the numbers of successful and unsuccessful transfers
both without and with filters.

Figure 2. Filters and results: Sharing favorites and songs across 3 different data connections

Table 3. Effects of varying filters in Campus Green use case

Table 4. Effects of filters across all use cases

3.1 Discussion
Figure 2 illustrates 5th Avenue (top) and Campus Green

simulation results. We note significant reductions in sharing-
sessions that fail (after starting, thereby wasting resources) when
using geospatial filters. In the Grand Central use case (not
shown), total failures without and with filters amounted to 7.1%
and 0.43% resp. In the 5th Avenue and the Grand Central cases,
the density of peers is high, and so we can tightly filter them to
bring the number of successful transfers to the maximum possible,
while greatly reducing the number of failed transfers. On average,
failures were reduced by 91% in the 5th Avenue case and 93% in
the Grand Central case by using filters as opposed to without
filters. In the campus green case, the peers are sparser, but we
still can increase the successful transfers and reduce the failed
transfers, using filters. In this case, on average, failures were
reduced by 75% by using filters as opposed to without filters.

In the campus green case, useful filters can be characterized
by a single parameter α -- the maximum speed that will be
admitted. Table 3 shows how the numbers of successes and
failures vary with respect to α, for the 2.4 sec. transfer time. We
take 5 trials per α value in order to handle the randomized choice,
when the user becomes free, of the next peer from among the

peers in range. At α = 2.0 m/s, all peers pass the filter, so the
results are the same as without filters. As α decreases, failures
decrease and successes increase, until about α = 1.02 m/s. At this
point, failures and success both swiftly decrease as α decreases.
Filters with α near 1.02 m/s can be seen as "good" filters. Table 4
summarizes the clear value of filters by aggregating across all use
cases.

4. DESIGNING AND IMPLEMENTING
THE TOOL ON A MOBILE HANDSET

Our simulation and analysis have shown that the ability to
edit and manage personal geospatially-sensitive sharing policies
on the device is advantageous. This section describes the
MotionMaps tool, which allows exactly that. In effect, we
propose a visual “language” with which geospatial policies are
built and tested. The tool is intended for a user - either the device
owner or an administrator. The key goals and design
considerations were:
• Present the three independent variables (i.e., speed, direction,

and binding preference) in a single visual notation.
• Clearly distinguish between information type (i.e., playlist,

Internet favorites, components).
• Make use of the intuitive red-yellow-green “traffic-light”

color scheme for indicating binding preference
• Allow immediate policy creation, saving, and testing; also

allow easy changes to the angular and speed boundary
settings found on the interface

• Compact design compatible with small color screens
We make several reasonable assumptions: (1) Velocity

information is directly or indirectly accessible from the device or
a service provider and, given this, directions and speeds can be
computed for any two peers, (2) Binding is an opt-in feature and
user privacy is guarded, (3) The device’s screen must display
color at (least) 160x160 pixels, (4) the device is, for the most part,
on-the-go, not stationary.

4.1 The MotionMap Tool
The MotionMap visual notation is annotated in Figure 3 and

is the main visual metaphor with which device users design
sharing policies. The notation is meant to be interpreted with an
orientation so that the user should take the upward Y-axis as
pointing in the direction of travel; thus the relative bearing 90° is
off perpendicular to the user’s right (no matter which way she’s
traveling). The notation serves as a coordinate space in which
other dynamically encountered mobile peers can be plotted and
the color at that point on the MotionMap indicates the binding
preference for the encountered peer2. Configurable concentric
circles in the notation represent increasing speeds; the faster a
peer is “passing” the user (or visa versa) the further out toward the
edge it will be plotted on the MotionMap. The concentric regions
are subdivided into regions by a set of angular lines corresponding
to relative bearings. In the figure, the lines are at angles of 30°,
60°, (90°), 120°, 150°, (180°) in both positive and negative
values, however these settings are configurable from the tool itself

2 Though vaguely compass-like, the tool does not act like a compass for

the user at bind time. The compass-like metaphor is used only at
policy-authoring time; at encounter time, binding decisions follow the
specified policies and are likely to happen invisibly to the user.

allowing, for example, alternate angular divisions such as -10°
and 10°. In Figure 3, “region A” corresponds to the speeds
between 0 and 10 (km/h) and the relative bearings of -30 to -120°.
In creating binding preferences from scratch, the user begins with
a “blank” MotionMap (white, as in Figure 3) and proceeds to
color-in the regions. The meanings of the assignable region-
colors are taken from the traffic-light semantic:

Figure 3. MotionMap notation on a “capable” device with a

240x320 color screen and a 5-way joystick

• Green - “bind to the candidate under these conditions”
• Red - “never bind to the candidate under these conditions”
• Yellow- “possibly bind” (e.g., probabilistically)
• White - no preference specified yet

To change the color of a region the user moves the cursor
with the joystick to the region and clicks. Each subsequent click
changes the color of the region, alternating through: white, green,
yellow, red (then back to white) - multiple regions can also be
selected and changed with a “change all” command. The visual
notation captures bearings relative to the user in question, where
0° is co-incident with the bearing of that user. Thus, many
MotionMaps will tend to be symmetric in the Y-axis since users
will not likely want to distinguish peers approaching “from the
left” versus “from the right” (though it is possible and more
desirable in other commercial and military applications).

A small consistently-used icon on the editing screen’s
bottom left indicates the application type to which the policy is
applicable (playlists, favorites, & components). Figure 4 shows
user-created MotionMaps that reflect conservative and aggressive
binding policies. In Figure 4 (left), the user paints green regions
corresponding to peers traveling 15 km/h or less and traveling
with a bearing that differs by no more than about 60°. By
painting only in and around the co-incident angle the user ensures
that binding will occur only with peers traveling the same or very
similar direction. Yellow regions could allow for “random”
binding to peers whose geospatial coordinates place it elsewhere
in the MotionMap. Figure 4 (right) shows some of the menu
commands available to the policy designer; at the right (partially
obscured) the user specifies a “liberal” binding policy whose
green binding area includes any peers with speeds in the range

[0,20 km/h] at any relative bearing. The only binding situations
this policy author rules out are when the candidate peer has a
relative bearing in the range [120,240] and has speed greater than
15 km/h. “Moderate” binding policies would fall somewhere in-
between these two MotionMaps while an unlikely or erroneous
MotionMap might lack symmetry across the Y-axis.

Figure 4. User-created playlist MotionMaps: (left)

conservative, (right) liberal (colors are called-out for clarity)

4.2 Navigating through to Design
The tool’s GUI asks the user to: 1) choose the relevant

application, 2) choose either “design” or “test”, 3) if “design” then
choose the user’s mobility level (e.g., foot, bicycle, car - i.e., slow,
medium, fast), 4) choose to begin with a blank MotionMap, begin
with a pre-populated one and edit it, or load a MotionMap from
the storage card or a server. The user’s choice of mobility level
affects the speed boundaries that are drawn on the MotionMap
canvas.

When a given MotionMap is ready to be employed by the
user she must first save it and then activate it. The interface
menus provide these features. Saving can be done onto local
mobile storage or up onto a remote server if the device has an
TCP/IP connection. As mentioned, we have also experimented
with storing a rich representation of metadata using Semantic
Web technologies [4].

4.3 Intuitive and Immediate Policy Testing
Once users are familiar with the MotionMap notation our

tool makes the process of creating binding policies easy and
repeatable. While the intuitive representation affords users a good
understanding of the policy just by looking at it, sometimes just
looking is not quite enough. An effective way to visualize and
test policies before saving and activating them is to see them in
simulated action. To this end, we have designed and integrated a
mini-simulation screen on which MotionMap designers can test
their sharing policies. They do so by choosing the “Test” choice
instead of the “Design” choice during setup. The salient points of
the subsequent test screen are:
• The “user” is represented at screen’s center as an icon -

(same screen coords that the MotionMap had)
• A small circle around the user symbolically represents the

outer border of the user’s wireless realm. That is, users

outside of this circle are not yet known to the user; as they
enter this region they become binding candidates (as in real
wireless discovery, such as 802.11b).

• Simulated mobile peers (initially red) move towards and
across the user’s realm. Upon entering the realm they change
color according to their trajectory and speed and the sharing
policy being tested - as they leave the realm (on the other
side) they change back to red. Therefore a red peer indicates
that no binding occurs with it - a yellow peer indicates
“maybe” and a green peer indicates a “bind”. These
correspond precisely to the MotionMap policy designed in
the previous step. The manner and number in which peers
move at the user correspond to the user’s mobility type
Figure 5 illustrates these concepts with an annotated diagram

of the test screen (the added streak behind the peers illustrates
their trajectories). The simulation is intended to be watched by
the user who, in turn, as various simulated peers cross her path,
gets an intuitive idea of the value of her MotionMap policy. In
Figure 6 the first peer comes into the realm and changes to green
indicating that the user would bind to this device if using the
MotionMap policy being tested. At any time the user can add or
remove peers into the simulation by nudging the device joystick
right or left (resp.).

Figure 5. Annotated diagram of the test screen

Figure 7 shows a test after significantly more peers have been
added. If not satisfied with the simulation results the user returns
to the design screen where the MotionMap can be modified.

4.4 Technical Notes
The MotionMaps framework has been developed on a Java2

platform. Although today’s mobile handsets have varying support
for open (e.g., Java) and propriety (e.g., BREW) development
middleware, Java’s penetration into the market is great. In
addition, the Java-based OSGi framework has a strong presence in
the automotive market [7]. We have built the running prototype
on a Windows Mobile 5 Sprint 6700 mobile handset as well as on
Cingular HTC-based devices. The system is largely implemented
as a Java MIDlet application, thus a MIDlet manager must be
present on the MH Operating System. We have used the Tao
Group’s beta Intent MIDlet Manager on the mobile handsets but
others exist, such as IBM’s J9 MIDlet Manager; all provide fill-in
support for MIDlets on mobile handsets that do not natively do
so. The Sun Java Wireless Toolkit [9] and the open source cross-
platform NetBeans IDE [10] have been used to build and test the
project, first on software emulators and then on Connected
Limited Device Configuration (CLDC) and Mobile Information

Device Profile (MIDP) compatible devices. Software-wise the
Policy Testing tool and interface makes use of Java objects called
MobilePlatforms implementing Runnable (threads). These
objects are created on demand and seeded with the geospatial
attributes according to the test pattern; once seeded they follow
their intended “trajectory” across the user’s simulated wireless
realm. Threads are destroyed as appropriate keypad buttons are
pressed. The MotionMaps Policy editor makes extensive use of
the Java2D [11] capabilities of the device. It manages a dynamic
array of map segments and their attributes (e.g., their screen
positions, their fill color) and uses methods such as g.fillArc() to
draw segments.

Figure 6. As simulated peers cross into the wireless realm of

the user they change color according to the policy in test

Figure 7. More peers created by tapping on the button

5. RELATED WORK
Little previous work addresses mobile UI design and

geospatial sharing preferences for mobile devices. Today’s
Instant Messaging (IM) tools use simple policies to block or
enable incoming messages and location-enabled IM add-ons can
offer notifications when any buddies are nearby [12]. Similarly,
mobile location-based dating services send alerts when other
compatible singles are nearby. In [13], a small representation of a
bird on a browser toolbar is a dynamic visual cue and changes
color (from green, to yellow, to red) according to how closely a
web site’s and user’s privacy policies correspond. That users can
grasp compass-like metaphors is known: in Japan, a deployed
wireless service by KDDI uses a compass metaphor to “point”
users to interesting locations and a different system successfully
uses a (similar) metal-detector metaphor for location-sensitive
services [14]. Microsoft Research’s Scope uses a compact
circular radar-like interface to display notifications to computer
users [15]. However, these and others do not use nor require rich
geospatial policies nor testing, and visual edit and test tools are
not proposed. [8] and others survey the wide variety of user
mobility models; in comparison, our work uses straightforward
mobility models and constrains them to three distinct use-cases,
each of which has particular geospatial characteristics. Wireless
positioning technologies such have used accelerometers and
gyroscopes to gage direction and speed in order to better track
mobile wireless users [16]. Research into Mobile Ad Hoc
Networks (MANET) and mobile peer-to-peer address related
issues to those described here but also take into account Layer 2
and 3 concerns. For example, [17] describes how to exploit both
information age and its position relative to where it was created in
order to disseminate more effectively.

6. CONCLUSIONS
Through simulation this work has put a pragmatic

explanation point on the importance of geospatially sensitive
policies for information sharing in mobile peers. In most
interesting cases there is great value to eliminating from
candidacy the set of peers who will not be in range long enough to
allow a complete information exchange transaction. Through
simulation and design this work has resulted in an intuitive visual
notation – called MotionMaps - for expressing geospatially-
sensitive policies on the mobile handset itself, and a way for
mass-market users to visualize, test and tune these policies.
When enabled in the middleware of the mobile handset the
policies provide continuous and user-transparent green-light and
red-light decisions to inter-peer bindings. This work has high
relevancy in mass-market and commercial senses as new devices
emerge that are specifically aimed at ad hoc media sharing.
Ongoing and future work includes a) keystroke level modeling
and user assessments of the visual tool, and b) by way of models
enabling the system to “advise” the user on potential utility or
ineffectiveness of the filter she has created.

7. REFERENCES
[1] A.Kobsa, “Privacy Enhanced Personalization”, Comm. of the

ACM, 50(8), pp.24-33, Aug., 2007

[2] S.Avancha, A.Joshi, and T.Finin, “Enhancing the Bluetooth
Service Discovery Protocol”, Technical report, University of
Maryland Baltimore County, TR-CS-01-08, August 2001

[3] H.Ishikawa, Y.Ogata, K.Adachi, T.Nakajima, “Building Smart
Appliance Integration Middleware on the OSGi Framework”,
Proc. IEEE Int’l. Symp. on Object-Oriented Real-time Dist’d
Computing, Vienna, May 2004.

[4] B.Falchuk, D.Marples, “Ontology and Application to Improve
Dynamic Bindings in Mobile Distributed Systems”, Proc. 2nd
Int’l. IEEE Wireless Internet Conference (WICON’06),
Boston, 2006

[5] D.Famolari, P.Agrawal, “Architecture and performance of an
embedded IP Bluetooth personal area network”, Proc. IEEE
Int’l Conf. on Wireless Communications, pp.75-79, India,
2000

[6] Anything but iPod, Microsoft Zune Review,
http://www.anythingbutipod.com/archives/2007/04/
microsoft-zune-review.php

[7] Vehicle Expert Group (VEG), OSGi Alliance,
http://www2.osgi.org/VEG/HomePage

[8] T. Camp, J. Boleng, and V. Davies. “A Survey of Mobility
Models for Ad Hoc Network Research”, Wireless Comm. &
Mobile Computing, 2(5), pp.483-502, 2002.

[9] Sun Java Wireless Toolkit for Connected Limited Device
Configuration, http://java.sun.com/products /sjwtoolkit/

[10] Netbeans Integrated Development Environment,
http://www.netbeans.org/

[11] Java2D API Specifications,
http://java.sun.com/j2se/1.4.2/docs/guide/2d/spec.html

[12] L. Cranor, M.Arjula, P.Guduru, “Use of a P3P User Agent by
Early Adopters”, Proc. of the ACM Workshop on Privacy in
the Electronic Society, Washington, 2002

[13] J.Koolwaaij et al, “Context Watcher - Sharing Context
Information in Everyday Life”, Proc. IASTED Web
Technology., Applications and Services, Calgary, 2006

[14] Y.Takeuchi, M.sugimoto, “Intelligent City Guide with Metal
Detector Interface”, Proc. ACM UIST, Oct., 2006

[15] M.Dantzich, D.Robbins, E.Horvitz, M.Czerwinski, “Scope:
Providing Awareness of Multiple Notifications at a Glance”,
Proc. 6th Int’l. Working Conf. on Advanced Visual Interfaces
(AVI '02), Italy, 2002

[16] L.Fang, P.Antsaklis, L.Montestruque, M.McMickell,
M.Lemmon, Y.Sun, H.Fan, I.Koutroulis, M.Haenggi, M.Xie,
X.Xie, “Design of a Wireless Assisted Pedestrian Dead
Reckoning System”, IEEE Transactions on Instrumentation
and Measurement, 54(6), Dec. 2005, pp.2342 - 2358

[17] Y.Luo, O.Wolfson, B.Xu, “Spatio-temporal Approach to
Selective Data Dissemination in Mobile Peer-to-peer
Networks”, Proc. Int’l. Conf. on Wireless and Mobile Comm.
(ICWMC’07), March, Guadeloupe, 2007

[18] C.Ververidis, G.Polyzos, “Extended ZRP: a routing layer
based service discovery protocol for mobile ad hoc networks”
Proc. 2nd, Second Int’l Conf. on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous’05), San
Diego, July 2005

