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ABSTRACT 
In mobile peer-to-peer information sharing, binding to - and 
sharing with - another device uses up computing resources and 
makes sense only when certain conditions are met. We propose a 
visual notation and an software tool for mobile devices that 
address the need for a simple and intuitive way to allow the 
setting and testing of policies for on-the-go information exchange 
(e.g., playlists).  This intuitive and visual approach - called 
MotionMaps - is well-suited for small screens and helps ensure 
efficient use of device and network resources.  This last claim is 
supported in this paper by simulation and analysis that makes 
clear the impact of these policies on the effectiveness of 
information exchange across several mobile use cases. 

Categories and Subject Descriptors 
H.5.2 [User Interfaces]: screen design, user-centered design, 
C.2.1 [Network Architecture and Design]: wireless comm.. 

Keywords 
Peer to peer communications, On-the-go information sharing. 

1. INTRODUCTION 
   The mobile distributed computing paradigm, in which 

communications devices are on-the-go and enter into ad hoc peer-
to-peer communications with other such devices, is more and 
more prevalent.  Recent and newly widespread underlying 
consumer electronics technologies making this possible include: 
Global Positioning System, IEEE 802.11 (Wi-Fi) and Bluetooth 
(now shipping with a majority of new smartphones), rich graphics 
and user interfaces capabilities (e.g., Java2ME), availability of 
dual-mode (Wi-Fi/cellular) smartphones, and middleware such as 
that from the OSGi Alliance that allows a device to use software 
components as they become available, without a restart or 
disruption.  Thus, ad hoc device discovery and binding are real, as 
are rich services and applications.  Currently, a large number of 
mass-market mobile devices are overtly intended for consumers 
who want to not only carry their media with them at all times but 
also connect opportunistically to local networks and peers.  Most 
notably, this device-class includes Microsoft’s ZuneTM, whose 
WiFi capabilities allow and encourage playlist and song sharing 

amongst nearby users.  Other devices include ultra-mobile PC’s 
by Apple, Wibrain, and Kohjinsha.  In addition to mass-market 
hardware trends, social networking trends which have pushed the 
Web into the so-called Web2.0 phase are now making the notion 
of sharing user-generated content between small mobile devices 
very desirable.  True, some users remain concerned about privacy 
and security during these exchanges but studies have shown that 
passionate content-producers are more willing than ever to share 
content, demographics, lifestyle and personal tastes information 
despite the small but real risks of breach, malware, and so on [1].  
Heavily trafficked Web sites reinforcing this notion include 
Flickr, Blogspot, YouTube, and MySpace, while BitTorrent, 
eDonkey and other file-sharing tools still comprise a great deal of 
all Internet traffic.  

 Our work addresses several key concerns and open 
issues in peer-to-peer connectivity for information sharing.  First, 
even though wireless devices proliferate, none have simple, 
intuitive, user-centric tools that allow the fine-grain tuning of 
geospatially-based sharing policies.  None offer users the ability 
to visualize and test these policies for6 mobile use cases.  
Secondly, in a mobile setting every act of sharing uses (and 
drains, in the case of battery) resources such as network capacity, 
computing capacity, and battery life.  Thus, the current art of 
geospatially-insensitive exchanges actually sets up the device to 
waste valuable resources.  Our work, then, has the following 
contribution and highlights: 
• applies principles of interface design for small devices to the 

new and highly germane problem of geospatially-sensitive 
information sharing 

• a visual “language” with which policies are built and tested 
• proof-of-concept developed on Windows Mobile 5 device 
• a simulation and analysis that convincingly draws out the 

benefits of using geospatially-sensitive binding policies to 
police peer-to-peer information sharing 

 

2. GEOSPATIAL BINDING 
Geospatially-based binding can be thought of as any binding 

methodology that includes - and takes into account - information 
about one or more of the following attributes of the “binder”, the 
“bindee”, or both: their position, their speed, or their direction, in 
either a relative or absolute sense.  Human interactions intuitively 
follow geospatial rules:  When bicyclists cross paths they usually 
do not begin what will be long conversations; instead they 
anticipate future resource availability and modify their exchange 
accordingly.   With device-based information-sharing, both 
binding and information sharing consume valuable computing 
resources and this makes intelligent trade-offs, analogous to the 
human-case, all the more important.  Consider the following:  A 
device and its user, C, are on a bicycle.  C is interested in sharing 
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her playlists and also in receiving playlists from people she passes 
near (as are D and E).  As C’s device comes into range of D and E 
P2P sharing becomes possible between the three.  However, 
geospatial properties of the devices - namely their relative speeds 
and relative directions to each other - should also come into play.  
Why?  Because if C and a given peer are not in range of each 
other for long enough, no successful sharing session can occur; in 
this case no sharing attempt should even be initiated as it will 
abort and fail (as an incomplete transaction) the moment that the 
peer goes out of range.  Additionally, binding should not occur if 
C and the peer do not have compatible sharing preferences or 
privacy settings.  Hence four main dimensions can be 
instrumented to help ensure efficient resource utilization: 1) 
relative speed, 2) relative direction, 3) binding preference, and 4) 
shared information type.  A tacit goal, then, is to maximize the 
number of successful sharing transactions made in a given time 
while avoiding those peerings that will probably result in 
interruptions or won’t result in completed transactions.  Consider 
the case of trying to share information in a busy street full of 
candidate peers.  Without any geospatial tempering, the device is 
likely to use a greedy algorithm (first come first bound to); 
assuming a variety of speeds and wireless signal strengths the 
greedy algorithm is likely to result in the device continually 
binding to peers, beginning information transfer, and aborting 
when the peer goes out of range before the transfer is complete.  
Therefore, “return on information” with respect to battery usage is 
very low and a real practical application of our work is its 
embodiment into device middleware as a battery-usage optimizer.  

 Even though today’s mass market devices are notorious 
for short battery-life, none presently support power-based binding 
for playlist, song, and favorites sharing. But this work has 
applicability in other realms too, including, but not limited to: 
• Military - in dismounted troop movements it can be 

beneficial to exchange information only with those traveling 
in certain directions (e.g., are they on my trajectory or not?). 

• Manufacturing - automated manufacturing floors employ 
both mobile and stationary robots for which directional-
sensitive sharing may be useful. 

Meanwhile, applications of positioning and trajectory are seen in: 
guidance systems (tourism), public safety, and aids for visually 
impaired users.  This paper focuses on the following mass-market 
cases: 
1. Walking on 5th Ave. – A user and device walk on a busy 

sidewalk.  The user is mobile in a fixed direction and peers 
likely to be either in opposite or co-directional.  Peers’ 
speeds are fairly predictable. 

2. Sitting on Campus Green – stationary on an active lawn.  
Peers approach from relatively random directions with a 
wide variety of speeds (e.g. on bikes, foot, etc.) 

3. Walking in Grand Central Station – the user is mobile (on 
foot) and encountered peers from random directions with 
predictable speeds. 

We study the merits of our approaches in each of these 
representative use cases1.  Note that if we assume that media 
transfer times are small (more on this later) our technologies will 
tend to be less useful when very few peers are encountered per 
time interval, or when all parties are nearly stationary.  In these 
cases, even without our technology the device will see good 

                                                                 
1 New mobility models [8] themselves are not the goal of this work 

results by simply using a greedy approach. 

2.1 Metadata Exchange 
We assume that a given device has access to the metadata it 

needs in order to decide go/no-go for a given exchange.  Link 
level and service discovery protocols such as Universal Plug and 
Play, Service Location Protocol (SLP), Jini, and Salutation, 
employ registries and string-matching to match client’s needs with 
registered services.  Much past work has expanded registry/search 
semantics to allow for rich service querying - e.g., in [2] the 
authors extend Bluetooth discovery with additional semantics.  In 
[3] the authors similarly extend the OSGi framework.   802.11 
access points broadcast beacon frames about every 100ms; they 
are 50 bytes long and carry SSID, rates, timestamps and other 
information.  In this paper we assume that devices have both a 
low-level way of emitting and detecting beacons (for inter-
discovery) but also - since it will be a basis for decision-making - 
an efficient way of exchanging geospatial and other service 
metadata which may be comprised of:  
• GPS (or other location) coordinates 
• Instantaneous or average speed, direction  
• Other service attributes - such as sizes of media that are 

ready to be exchanged 
Our past work [4] has shown that a rich ontology (and 

parser) can be an enabler, at the cost of computational complexity.  
In such a scheme peer metadata is read as instances of ontology 
elements and interpreted accordingly.  One advantage of this 
approach is that unit equivalence may be inferred (e.g., direction 
may be provided in any number of ways: compass direction (e.g., 
“NE”), a set of LAT/LONG’s comprising a vector, degrees (e.g., 
“270 degrees”), etc.   In this paper we are concerned only that a 
peer’s geospatial metadata is understood, not with the actual 
format or mechanism of this exchange. 

Table 1. Media and inter-device transfer times (TT) 

Type Size TT for rate  
0.5 Mbit/sec 

TT for rate  
10 Mbit/sec 

Movie 500 MB 8000 sec (2.2 hr) 400 sec 

Episode 250 MB 4000 sec (1.1 hr) 200 sec 

Music video 30 MB 480 sec (8 min) 24 sec 

Song 3 MB 48 sec 2.4 sec 

Component 500 KB 8 sec 0.4 sec 

Favorites 200 KB 3 sec 0.15 sec 

Playlist 20 KB 0.3 sec 0.015 sec 

 
2.2 Devices and media 

Today’s mobile smartphones, mobile media players, and 
ultra-mobile PC’s (UMPC) have widely varying capabilities as 
their manufacturers strive to create design and feature 
combinations that appeal to market niches.  A core set of 
functionality is emerging that ultimately embodies enough 
functionality to allow peer-to-peer sharing of various sorts.  A key 
one is clearly WiFi networking, which enables peer-to-peer 
sharing at high speeds (Bluetooth is ubiquitous but has limited 
utility as a file-sharing transport and can experience interference 
near WLAN networks [5]).  A mobile device with WiFi 
technology has varying effective ranges; for example a laptop with 
WiFi can expect about 90 feet of range while some users have 



seen the Zune’s range to be about 30 feet.  Practical WiFi transfer 
rates also vary in real-world conditions. Other experimentation 
with Zunes has shown effective transfer rates to be about 0.5 
Mbps [6].  Transfer rates are less important when the basic 
currency of exchange is a playlist or Internet favorites but they 
become a concern when the currency is songs and episodic 
television shows, for example.  Today’s consumers are already 
buying and sharing many types of information.  Table 1 
summarizes these types, their typical sizes, and estimated transfer 
times (TT) for several relevant bitrates. 

Episode refers to episodic television such as NBC’s ‘The 
Office’, or short films.  Components refer to exchangeable, 
reusable software objects - within OSGi and other Java (and even 
non-Java) frameworks, software objects can be bundled and re-
used across platforms in a very dynamic fashion [7]; e.g., a 
running application on one device may require an object present 
on another device (a specific media-player component, or 
temperature-converter) - OSGi provides the foundations for 
seamless run-time use of this object.  Favorites refers to Internet 
browser favorites.  

 

3. SIMULATION AND RESULTS 
This section describes our simulation of the 3 use-cases and 

the merits of using geospatial policies to filter out mobile binding 
candidates that are “undesirable” while binding to those that are 
likely to result in successful media transfers.  This section relies 
upon a visual metaphor with which filters will be presented.  

 
Figure 1.  Simulation details are presented in a simplified 

MotionMaps style; a colored coordinate space  

Filters are represented on a radial coordinate space in which 
the up-facing angle is a given users current bearing and the other 
angles correspond to relative bearings.  Similarly, distance from 
the center indicates increasing relative speed.  Figure 2 shows 7 
peers mapped onto a user’s filter-space - three (smiley faces) map 
onto green regions and the filter lets these pass through to the 
binding phase, while four map to red regions indicating their 
undesirability for binding (either because their speed or angles are 
large). 

We implemented a discrete-event simulation to evaluate the 
effect of using filters for the three use cases described above, and 
the required transfer times corresponding to all combinations of 
the “song” and “favorites” media types with exchange rates of 10, 
5, and 0.5 Mbps.  For the simulation, the user was taken as 
moving at the fixed speed given in the table below for each use 

case.  For each use case, the peers were placed at random 
according to a Poisson point process in the plane with the average 
density given in the table and were assigned speeds uniformly at 
random between the minimum and maximum speeds given in 
table 2.  In the 5th Avenue case, directions were chosen as parallel 
or anti-parallel to the user with equal probability.  In the other two 
cases, directions were chosen uniformly at random.  The effective 
range of the connection was taken to be 9.14 meters (30 feet).  
The simulated duration of the experiments was 1000 seconds. 

 
Table 2. Simulation use cases and characteristics  

Peer Speed Use Case User 
Speed 

Peer 
Density minimum maximum 

5th Ave. 0.91 m/s 1.0/m2 0.91 m/s 1.8 m/s 

Campus 
green 

0 0.25/m2 0.25 m/s 2.0 m/s 

Grand 
Central 

0.91 m/s 3.0/m2 1.8 m/s 1.8 m/s 

 

For each total transfer time we chose a sample filter by hand, 
as a user might. We tried to maximize the number of successful 
transfers, using as a rule of thumb the ideas that the expected rate 
of arrival of peers that pass the filter should be a small multiple of 
the rate at which complete information transfers can occur, and 
that we want to filter out the peers that are likely to stay in range 
for the least amount of time.  No formal or analytical optimization 
was done.  Any such optimization could only improve the 
performance of the filters beyond the promising results we report. 

After generating a set of peers, we can measure how many of 
them are within range of the user during the duration of the 
experiment.  We can also divide the duration of the experiment by 
the required duration of a successful transfer, giving the number 
of transfers we could achieve if we always had an available peer 
within range, who would wait within range until the transfer were 
complete.  In the particular cases whose results are described here, 
the latter number is almost always smaller.  The minimum of these 
two values gives an upper bound on the number of possible 
transfers, and a good benchmark to which to compare the actual 
numbers of successful transfers. 

At time zero the user starts out free.  During the experiment, 
whenever the user is free, she picks a peer at random from the set 
of unused peers that are within range and, if a filter is active, that 
pass the filter.  If there are no unused peers within range, she 
waits until a peer comes within range, and then selects that peer.  
She attempts information transfer until either the required 
duration elapses, giving a success, or until the peer moves out of 
range, giving a failure.  The peer is then marked used, and the user 
does not attempt to connect to that peer ever again.  At the end of 
the experiment, any peer still in transfer is recorded neither as a 
success nor as a failure. 

For each use case, we give the value of the bounds described 
above, and the numbers of successful and unsuccessful transfers 
both without and with filters. 

 



 

 
Figure 2.  Filters and results: Sharing favorites and songs across 3 different data connections 



Table 3. Effects of varying filters in Campus Green use case   

 

Table 4. Effects of filters across all use cases  

 

3.1 Discussion 
Figure 2 illustrates 5th Avenue (top) and Campus Green 

simulation results.  We note significant reductions in sharing-
sessions that fail (after starting, thereby wasting resources) when 
using geospatial filters.  In the Grand Central use case (not 
shown), total failures without and with filters amounted to 7.1% 
and 0.43% resp.  In the 5th Avenue and the Grand Central cases, 
the density of peers is high, and so we can tightly filter them to 
bring the number of successful transfers to the maximum possible, 
while greatly reducing the number of failed transfers.  On average, 
failures were reduced by 91% in the 5th Avenue case and 93% in 
the Grand Central case by using filters as opposed to without 
filters.  In the campus green case, the peers are sparser, but we 
still can increase the successful transfers and reduce the failed 
transfers, using filters.  In this case, on average, failures were 
reduced by 75% by using filters as opposed to without filters.  

In the campus green case, useful filters can be characterized 
by a single parameter α -- the maximum speed that will be 
admitted. Table 3 shows how the numbers of successes and 
failures vary with respect to α, for the 2.4 sec. transfer time.  We 
take 5 trials per α value in order to handle the randomized choice, 
when the user becomes free, of the next peer from among the 

peers in range.  At α = 2.0 m/s, all peers pass the filter, so the 
results are the same as without filters. As α decreases, failures 
decrease and successes increase, until about α = 1.02 m/s.  At this 
point, failures and success both swiftly decrease as α decreases.  
Filters with α near 1.02 m/s can be seen as "good" filters. Table 4 
summarizes the clear value of filters by aggregating across all use 
cases. 

4. DESIGNING AND IMPLEMENTING 
THE TOOL ON A MOBILE HANDSET 

Our simulation and analysis have shown that the ability to 
edit and manage personal geospatially-sensitive sharing policies 
on the device is advantageous.  This section describes the 
MotionMaps tool, which allows exactly that.  In effect, we 
propose a visual “language” with which geospatial policies are 
built and tested.  The tool is intended for a user - either the device 
owner or an administrator. The key goals and design 
considerations were: 
• Present the three independent variables (i.e., speed, direction, 

and binding preference) in a single visual notation. 
• Clearly distinguish between information type (i.e., playlist, 

Internet favorites, components). 
• Make use of the intuitive red-yellow-green “traffic-light” 

color scheme for indicating binding preference 
• Allow immediate policy creation, saving, and testing; also 

allow easy changes to the angular and speed boundary 
settings found on the interface 

• Compact design compatible with small color screens 
We make several reasonable assumptions: (1) Velocity 

information is directly or indirectly accessible from the device or 
a service provider and, given this, directions and speeds can be 
computed for any two peers, (2) Binding is an opt-in feature and 
user privacy is guarded, (3) The device’s screen must display 
color at (least) 160x160 pixels, (4) the device is, for the most part, 
on-the-go, not stationary. 

4.1 The MotionMap Tool 
The MotionMap visual notation is annotated in Figure 3 and 

is the main visual metaphor with which device users design 
sharing policies.  The notation is meant to be interpreted with an 
orientation so that the user should take the upward Y-axis as 
pointing in the direction of travel; thus the relative bearing 90° is 
off perpendicular to the user’s right (no matter which way she’s 
traveling).  The notation serves as a coordinate space in which 
other dynamically encountered mobile peers can be plotted and 
the color at that point on the MotionMap indicates the binding 
preference for the encountered peer2.  Configurable concentric 
circles in the notation represent increasing speeds; the faster a 
peer is “passing” the user (or visa versa) the further out toward the 
edge it will be plotted on the MotionMap. The concentric regions 
are subdivided into regions by a set of angular lines corresponding 
to relative bearings.  In the figure, the lines are at angles of 30°, 
60°, (90°), 120°, 150°, (180°) in both positive and negative 
values, however these settings are configurable from the tool itself 

                                                                 
2 Though vaguely compass-like, the tool does not act like a compass for 

the user at bind time.  The compass-like metaphor is used only at 
policy-authoring time; at encounter time, binding decisions follow the 
specified policies and are likely to happen invisibly to the user. 



allowing, for example, alternate angular divisions such as -10° 
and 10°.  In Figure 3, “region A” corresponds to the speeds 
between 0 and 10 (km/h) and the relative bearings of -30 to -120°.  
In creating binding preferences from scratch, the user begins with 
a “blank” MotionMap (white, as in Figure 3) and proceeds to 
color-in the regions.  The meanings of the assignable region-
colors are taken from the traffic-light semantic: 

 

 
Figure 3. MotionMap notation on a “capable” device with a 

240x320 color screen and a 5-way joystick 

• Green - “bind to the candidate under these conditions” 
• Red - “never bind to the candidate under these conditions” 
• Yellow- “possibly bind” (e.g., probabilistically)  
• White - no preference specified yet 

To change the color of a region the user moves the cursor 
with the joystick to the region and clicks. Each subsequent click 
changes the color of the region, alternating through: white, green, 
yellow, red (then back to white) - multiple regions can also be 
selected and changed with a “change all” command.  The visual 
notation captures bearings relative to the user in question, where 
0° is co-incident with the bearing of that user.  Thus, many 
MotionMaps will tend to be symmetric in the Y-axis since users 
will not likely want to distinguish peers approaching “from the 
left” versus “from the right” (though it is possible and more 
desirable in other commercial and military applications).   

A small consistently-used icon on the editing screen’s 
bottom left indicates the application type to which the policy is 
applicable (playlists, favorites, & components).  Figure 4 shows 
user-created MotionMaps that reflect conservative and aggressive 
binding policies. In Figure 4 (left), the user paints green regions 
corresponding to peers traveling 15 km/h or less and traveling 
with a bearing that differs by no more than about 60°.  By 
painting only in and around the co-incident angle the user ensures 
that binding will occur only with peers traveling the same or very 
similar direction.  Yellow regions could allow for “random” 
binding to peers whose geospatial coordinates place it elsewhere 
in the MotionMap.  Figure 4 (right) shows some of the menu 
commands available to the policy designer; at the right (partially 
obscured) the user specifies a “liberal” binding policy whose 
green binding area includes any peers with speeds in the range 

[0,20 km/h] at any relative bearing.  The only binding situations 
this policy author rules out are when the candidate peer has a 
relative bearing in the range [120,240] and has speed greater than 
15 km/h.  “Moderate” binding policies would fall somewhere in-
between these two MotionMaps while an unlikely or erroneous 
MotionMap might lack symmetry across the Y-axis. 

 

 
Figure 4. User-created playlist MotionMaps: (left) 

conservative, (right) liberal (colors are called-out for clarity) 

4.2 Navigating through to Design 
The tool’s GUI asks the user to: 1) choose the relevant 

application, 2) choose either “design” or “test”, 3) if “design” then 
choose the user’s mobility level (e.g., foot, bicycle, car - i.e., slow, 
medium, fast), 4) choose to begin with a blank MotionMap, begin 
with a pre-populated one and edit it, or load a MotionMap from 
the storage card or a server.  The user’s choice of mobility level 
affects the speed boundaries that are drawn on the MotionMap 
canvas. 

When a given MotionMap is ready to be employed by the 
user she must first save it and then activate it.  The interface 
menus provide these features.  Saving can be done onto local 
mobile storage or up onto a remote server if the device has an 
TCP/IP connection.    As mentioned, we have also experimented 
with storing a rich representation of metadata using Semantic 
Web technologies [4]. 

4.3 Intuitive and Immediate Policy Testing 
Once users are familiar with the MotionMap notation our 

tool makes the process of creating binding policies easy and 
repeatable. While the intuitive representation affords users a good 
understanding of the policy just by looking at it, sometimes just 
looking is not quite enough.  An effective way to visualize and 
test policies before saving and activating them is to see them in 
simulated action.  To this end, we have designed and integrated a 
mini-simulation screen on which MotionMap designers can test 
their sharing policies. They do so by choosing the “Test” choice 
instead of the “Design” choice during setup.  The salient points of 
the subsequent test screen are: 
• The “user” is represented at screen’s center as an icon - 

(same screen coords that the MotionMap had) 
• A small circle around the user symbolically represents the 

outer border of the user’s wireless realm. That is, users 



outside of this circle are not yet known to the user; as they 
enter this region they become binding candidates (as in real 
wireless discovery, such as 802.11b). 

• Simulated mobile peers (initially red) move towards and 
across the user’s realm.  Upon entering the realm they change 
color according to their trajectory and speed and the sharing 
policy being tested - as they leave the realm (on the other 
side) they change back to red.  Therefore a red peer indicates 
that no binding occurs with it - a yellow peer indicates 
“maybe” and a green peer indicates a “bind”.  These 
correspond precisely to the MotionMap policy designed in 
the previous step. The manner and number in which peers 
move at the user correspond to the user’s mobility type 
Figure 5 illustrates these concepts with an annotated diagram 

of the test screen (the added streak behind the peers illustrates 
their trajectories).  The simulation is intended to be watched by 
the user who, in turn, as various simulated peers cross her path, 
gets an intuitive idea of the value of her MotionMap policy.  In 
Figure 6 the first peer comes into the realm and changes to green 
indicating that the user would bind to this device if using the 
MotionMap policy being tested.  At any time the user can add or 
remove peers into the simulation by nudging the device joystick 
right or left (resp.).   

 
Figure 5. Annotated diagram of the test screen 

Figure 7 shows a test after   significantly   more   peers have been 
added.  If not satisfied with the simulation results the user returns 
to the design screen where the MotionMap can be modified. 

4.4 Technical Notes 
The MotionMaps framework has been developed on a Java2 

platform.  Although today’s mobile handsets have varying support 
for open (e.g., Java) and propriety (e.g., BREW) development 
middleware, Java’s penetration into the market is great.  In 
addition, the Java-based OSGi framework has a strong presence in 
the automotive market [7].  We have built the running prototype 
on a Windows Mobile 5 Sprint 6700 mobile handset as well as on 
Cingular HTC-based devices.  The system is largely implemented 
as a Java MIDlet application, thus a MIDlet manager must be 
present on the MH Operating System.  We have used the Tao 
Group’s beta Intent MIDlet Manager on the mobile handsets but 
others exist, such as IBM’s J9 MIDlet Manager; all provide fill-in 
support for MIDlets on mobile handsets that do not natively do 
so.  The Sun Java Wireless Toolkit [9] and the open source cross-
platform NetBeans IDE [10] have been used to build and test the 
project, first on software emulators and then on Connected 
Limited Device Configuration (CLDC) and Mobile Information 

Device Profile (MIDP) compatible devices.   Software-wise the 
Policy Testing tool and interface makes use of Java objects called 
MobilePlatforms implementing Runnable (threads).  These 
objects are created on demand and seeded with the geospatial 
attributes according to the test pattern; once seeded they follow 
their intended “trajectory” across the user’s simulated wireless 
realm.  Threads are destroyed as appropriate keypad buttons are 
pressed.  The MotionMaps Policy editor makes extensive use of 
the Java2D [11] capabilities of the device.  It manages a dynamic 
array of map segments and their attributes (e.g., their screen 
positions, their fill color) and uses methods such as g.fillArc( ) to 
draw segments.  

 

 
Figure 6. As simulated peers cross into the wireless realm of 

the user they change color according to the policy in test 

 
Figure 7. More peers created by tapping on the button 

 



5. RELATED WORK 
Little previous work addresses mobile UI design and 

geospatial sharing preferences for mobile devices.  Today’s 
Instant Messaging (IM) tools use simple policies to block or 
enable incoming messages and location-enabled IM add-ons can 
offer notifications when any buddies are nearby [12].  Similarly, 
mobile location-based dating services send alerts when other 
compatible singles are nearby.  In [13], a small representation of a 
bird on a browser toolbar is a dynamic visual cue and changes 
color (from green, to yellow, to red) according to how closely a 
web site’s and user’s privacy policies correspond. That users can 
grasp compass-like metaphors is known: in Japan, a deployed 
wireless service by KDDI uses a compass metaphor to “point” 
users to interesting locations and a different system successfully 
uses a (similar) metal-detector metaphor for location-sensitive 
services [14].  Microsoft Research’s Scope uses a compact 
circular radar-like interface to display notifications to computer 
users [15].  However, these and others do not use nor require rich 
geospatial policies nor testing, and visual edit and test tools are 
not proposed.  [8] and others survey the wide variety of user 
mobility models; in comparison, our work uses straightforward 
mobility models and constrains them to three distinct use-cases, 
each of which has particular geospatial characteristics.   Wireless 
positioning technologies such have used accelerometers and 
gyroscopes to gage direction and speed in order to better track 
mobile wireless users [16].  Research into Mobile Ad Hoc 
Networks (MANET) and mobile peer-to-peer address related 
issues to those described here but also take into account Layer 2 
and 3 concerns.  For example, [17] describes how to exploit both 
information age and its position relative to where it was created in 
order to disseminate more effectively.   

6. CONCLUSIONS 
Through simulation this work has put a pragmatic 

explanation point on the importance of geospatially sensitive 
policies for information sharing in mobile peers.   In most 
interesting cases there is great value to eliminating from 
candidacy the set of peers who will not be in range long enough to 
allow a complete information exchange transaction.  Through 
simulation and design this work has resulted in an intuitive visual 
notation – called MotionMaps - for expressing geospatially-
sensitive policies on the mobile handset itself, and a way for 
mass-market users to visualize, test and tune these policies.   
When enabled in the middleware of the mobile handset the 
policies provide continuous and user-transparent green-light and 
red-light decisions to inter-peer bindings.  This work has high 
relevancy in mass-market and commercial senses as new devices 
emerge that are specifically aimed at ad hoc media sharing.  
Ongoing and future work includes a) keystroke level modeling 
and user assessments of the visual tool, and b) by way of models 
enabling the system to “advise” the user on potential utility or 
ineffectiveness of the filter she has created. 
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