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Abstract—Due to enormous complexity of Internet topology and 
diversity of nodes’ behavior, some important attributes of IP 
packet flows are not measurable in real world with existing 
technologies.  However, by adequately simulating network nodes’ 
behavior and evaluating their performance, new insights into IP 
packet flows can be gained.  With a brief review on today’s 
Internet architecture and recent development of the Visualized 
IP-based Network Simulator (VINS), this paper applies VINS to 
measure IP packet flows in a simulated network.  We investigate 
the causes of packet loop and find the Time-To-Live (TTL) 
control may not work as expected in some circumstances.  A 
slight modification of TTL control is proposed and tested with 
VINS, which may strengthen the capability of loop detection in a 
domain of nodes. 
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I.  INTRODUCTION 
Each individual node in IP-based networks must be able to 

handle packets arrive at non-deterministic time, whose source 
and destination addresses can also be random.  A router node’s 
functionalities include packet queuing, Time-to-Live (TTL) 
control, ICMP error control, routing table lookup and relaying.  
These nodes shall be organized properly.  As a number of IETF 
RFCs required, the Classful Networks [1] and Classless Inter-
Domain Routing (CIDR, [2]) schemes coexist as the 
architecture of today’s Internet.  Mis-addressed or mis-
subnetted nodes and domains may not be functional as a part of 
the entire IP network. 

However, these important addressing and subnetting 
schemes are not properly considered in many existing network 
simulation tools, e.g., NS-2 [3] and OPNET [4].  The 
Visualized IP-based Network Simulator (VINS) is proposed [5] 
aimed at validated IP-based network simulation, protocol stack 
behavioral analysis and performance evaluation.  This paper 
briefly introduces the new progress made in VINS development 
and applies it in investigating some issues in IP packet flows in 
a simulated network. 

Section 2 introduces packet loop analysis and measurement 
made in real systems as related work.  Section 3 presents a 
review on Internet architecture required by RFCs.  Section 4 
introduces the flow level evaluation techniques employed in 
VINS.  Verification is made in section 5 by comparing VINS’ 
simulation results with mathematical expectations in a simple 
scenario.  In section 6 we apply VINS to measure IP packet 

flows and discuss the causes of loop.  In section 7 a new TTL 
control is proposed and tested with VINS, which may improve 
the loop detection.  We conclude in section 8 and list a plan of 
future work. 

II. BACKGROUND AND CONTRIBUTION 
In today’s Internet, inter-domain routing widely relies on 

the Border Gateway Protocol (BGP, [6]).  Routers exchange 
BGP route announcements that consist of a network prefix and 
a list of nodes with its neighbors to update the new routing 
states.  R. Dube [7] and J. Scudder [8] analyzed the probability 
of persistent loop that may be caused by a number of routers 
share the same network mask and prefix.  U. Hengartner et al. 
made an analysis on transient routing loops caused by 
inconsistencies in routing state among a set of routers [9].  R. 
Mahajan et al. studied the persistent loops in real ISPs and the 
influences [10], and found that the “BGP misconfiguration” 
errors are pervasive in Internet and may cause connectivity 
disruption. 

In this paper VINS is applied to measure some attributes of 
packet flow that have not been well-measured in real systems 
or other simulators. We discuss the causes of loop and propose 
an optimization of TTL control to improve the capability of 
loop detection in an autonomous domain. 

III. MODELING AND ENCODING 
Based on 4.4BSD’s architecture [11] that the entire TCP/IP 

stack uses a single queue to enqueue all incoming packets’ 
headers (ipintrq, with default capacity to 50), each node can 
be abstracted as a single-queue system with a routing table and 
a number of service routines.  In VINS, a node is simulated 
with a software object [5], which is assigned with a class value 
{HOST, CLASS_A, CLASS_B, CLASS_C} as forwarding 
prefix length.  Complying with the Classful Networking 
scheme, VINS enables inter-domain network simulation with 
complex topology. 

Let a router node be named as ‘5’ with class B, IP address 
12.34.75.23, and its routing table records the neighboring nodes 
by name: {4, 6, 7}. This node owns a FIFO (First-In-First-Out) 
queue with capacity as 55, and the service time to each 
incoming packet has a mean value 25 ms, in Gaussian 
distributed with deviation 21.100, as shown in Figure 1: 



 
Figure 1. Single Queue Model of Node 

This node can be encoded with XML syntax as presented in 
Figure 2: 

<Node> 
<Name>5</Name><Address>12.34.75.23</Address><
Type>CLASS_B</Type><Pos>433,452</Pos><Capacit
y>55</Capacity><Mean>25</Mean><Dev>21.100</De
v><PDF>GAUSSIAN</PDF> 
<RtTab>4,6,7</RtTab> 
</Node> 

Figure 2. Node Encoding Sample 

Currently a packet’s travel time on a link between two 
nodes is 0 by default.  For long distant links that latencies 
become considerable, it is recommended to use the following 
expression to encode the time to different directions 
(millisecond as unit): 

<RtTab>4|10,6|15,7|20</RtTab> 

This expression tells that the link latency from node 5 to 
node 4 takes 10 ms, to 6 takes 15 ms and to 7 takes 20 ms. 
When an IP packet goes through Node 5, its TTL is 
decremented by 1 on the node, and the latency of the link it 
traverses will be added to its “one trip time” (from its source to 
destination nodes). 

VINS application objects can be mounted over host nodes 
using UDP or TCP to exchange data.  An IP packet flow can be 
generated either with a pair of applications, or with two 
fictional nodes: SUPPLIER and CONSUMER.  A 
CONSUMER only receives arrival IP packets without relaying; 
a SUPPLIER generates IP packets destined to its CONSUMER 
specified in the scenario file [5].  The interval between two 
successively generated packets is a stochastic number, 
distributed following SUPPLIER’s PDF (Probability Density 
Function) option, deviation and mean value.  VINS presently 
support four PDF options: 

1) Uniform 
2) Gaussian 
3) Exponential 
4) Deterministic 

A router performs Longest Prefix Match (LPM, [12]) 
lookups to find the best matched neighbor.  For a Classful 
network node, it firstly searches leaf-nodes (hosts) in the 
routing table for an exact match; if failed, it searches its sub-
class nodes, then peer-class and super-class ones, till an 
adequate node is found to relay, or this packet shall be 
discarded due to un-deliverable.  This routing behavior can be 
presented with a Petri-net diagram [13] as shown in Figure 3: 

 
Figure 3. VINS Routing Engine 

Figure 4 is a sample of a Classful network: 

 
Figure 4. A Classful Network 

IV. FLOW LEVEL STATISTICS 
The transportation of an IP packet flow is a contribution by 

the nodes in the route.  Packet flows can be isolated from each 
other if they dwell in exclusive routes, or meet at some nodes 
and engage in a competition for the services where they meet.  
As the crossed traffic may increase the queue length on the 
crossing node, there are two possible aftermaths: 1) the 
possibility of packet loss is increased; 2) the Mean One Trip 
Time (MOTT) of a packet is prolonged.  To measure the 
properties of each flow in a network with arbitrary topology, 
VINS employs a number of counters for flow level statistics: 

SENT counts the number of packets of a flow that have 
been injected into the network. 

RCVD counts the number of packets of a flow that have 
arrived at the destination. 

FS stands for Flow Size, counting the number of packets of 
a flow currently being relayed in the network instantly. 

SFS stands for Smoothed Flow Size.  As FS changes from 
observations, user can hardly estimate the average number of 
packets of this flow being relayed in the network. Instead, SFS 
might be a useful measurement, calculated as: 
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where 
itΔ  is the lifetime of packet i counted since its 

creation to vanish (being received, dropped or discarded); E is 
the Elapsed time of simulation; N is the number of packets of 
this flow that have been injected into the network. 

MOTT is the Mean One-Trip-Time, the average time that a 
successfully delivered packet takes (unit: ms), calculated as: 
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where 
itδ  is the one trip time of an arrived packet i, N is the 

number of arrived packets of this flow.  MOTT is not 
applicable to unreachable flows. 

V. MATHEMATICAL VERIFICATION 
In this section a sample scenario is built to study three 

elementary processes: M/D/1/K, M/M/1/K and M/G/1/K [14].  
Mean values are calculated with Little’s Law [15] and 
compared with VINS’ simulative result, as a mathematical 
verification to VINS.  The scenario can be found in [16] with 
name MD1K-MM1K-MG1K.xml.  A screenshot is shown in 
Figure 5: 

 
Figure 5. MD1K, MM1K and MG1K 

Scenario description: SUPPLIER A1, A2 and A3 generate 
IP packets destined to B1, B2 and B3.  The interval between 
two successive packets takes Exponential distribution with 
Mean values as 60 ms. CONSUMER B1 has deterministic 
service time as 50ms.  CONSUMER B2 has Exponential 
distributed service time with Mean value as 50 ms. 
CONSUMER B3 takes Gaussian distributed service time with 
Mean value as 50ms and Deviation as 20.000.  Thus, the 
processes on node C1 is M/D/1/K, on C2 is M/M/1/K and on 
C3 is M/G/1/K (“G” stands for General, which is set to 
Gaussian in this sample).  Table 1 is partial VINS’ system 
report: 

TABLE I.  SYSTEM REPORT OF MD1K-MM1K-MG1K.XML (PARTIAL) 

Node 
Name PDF Cap. X Dev A B D U 

A1 EXP 25 60 0.000 16.012 16.667 16.012 96.00%

B1 UNI 50 50 0.000 16.012 20.000 16.012 80.00%

A2 EXP 25 60 0.000 16.036 16.667 16.036 96.20%

B2 EXP 50 50 0.000 16.036 20.000 16.036 80.10%

A3 EXP 25 60 0.000 15.970 16.667 15.970 95.80%

B3 GAU 50 50 20.000 15.969 20.000 15.969 79.80%

Flow 
Route SENT RCVD FS SFS Reach-ability MOTT

A1->B1 289925 289925 3 2.69 True 167 

A2->B2 290368 290366 2 4.87 True 303 

A3->B3 289163 289157 7 2.82 True 176 

 

Little’s Law [15] tells that in a queuing system, the mean 
queue length N equals to system’s mean response time R times 
its arrival rate A: 

N = R · A                                        (3) 

Apply Little’s Law in this sample: each flow’s SFS equals 
to its CONSUMER’s mean queue length N; flow’s MOTT 
equals to its CONSUMER’s response time R; each node’s 
arrival rate A is printed in the column A.  The LL’s 
expectations of N on B1, B2 and B2 are: 

NB1 = RB1 · AB1 = 0.167 * 16.012 ≈ 2.67 (pkts) 
NB2 = RB2 · AB2 = 0.303 * 16.036 ≈ 4.86 (pkts) 
NB3 = RB3 · AB3 = 0.176 * 15.969 ≈ 2.81 (pkts) 

Comparing LL’s expectations on N with the values in 
column SFS {2.69, 4.87, 2.82}, the deviation has been 
controlled within 1%. 

VI. MEASUREMENT OF FLOWS 
In this section a scenario (flyingdutchman.xml at [16]) is 

built as an example to study some properties of IP packet 
flows.  We focus on the unreachable flows, especially the loop 
ones.  A discussion is made on the so-called 
“misconfiguration”, which shall be accounted for routers’ 
limited knowledge (routing table) about the entire network’s 
topology. 

This scenario consists of 3 top-class (CLASS_B) routers G, 
M and T with same forwarding prefix 128.34.xx.xx.  Their 
routing tables are: 

G: [C,H,D,T,M] 
M: [G,N,T,L] 
T: [M,G,H,C] 

SUPPLIER nodes (K, S, A and B) initialize TTL of packets 
as 64 by default.  The two isolated node R and Q are 
deliberately designed to let two flows be unreachable: B->Q 
and S->R.   Figure 6 is a screenshot, in which the loop one is 
highlighted with moving bullets: 



 
Figure 6. Scenario of Flyingdutchman.xml 

 
  A significant difference between two unreachable flows is 

that packets in B->Q are detected to be unreachable and thus 
discarded on node N; while S->R is trapped in a closed virtual 
circuit made up by G, M and T, and no one of them is aware of 
looping.  Packets in S->R keep consuming network’s service, 
slow down its performance and increase packet loss.  From the 
screenshot we can find they are flooded out instead of being 
discarded as TTL expires.  Table 2 is scenario’s system report: 

TABLE II.  SYSTEM REPORT, TTL=64 

Route SENT RCVD FS SFS Reach-
ability MOTT 

A->C->T->H->I 23057 16184 30 31.95 True 3478 
B->C->T->M->N 14023 0 48 20.96 False -- 

K->L->M->G->D->F 24498 12166 57 38.52 True 4758 
S->L->M->G->T->M 39196 0 120 116.19 False -- 

 
The delivery percentage (RCVD/SENT) of two reachable 

flows are: 
A->I: 16184 / 23057 ≈ 70.20% 
K->F: 12166 / 24498 ≈ 49.66% 

A VINS Net-Pie illustrates the SFS of each packet flow and 
the network resource they possess: 

 
Figure 7. Net-Pie of Flyingdutchman.xml 

In this sample the loop complies with the description in [6]: 
a number of routers share the same network mask and prefix.  
In advance, two conclusions can be made: 

1. Packet loop can take chance in a domain if it consists of 
more than one top-class routers.  The unreachable packets 



might be relayed among these routers without being detected 
to be looping; 

2. The long default TTL (64) may not work as expected in 
congested networks, because a looping packet might be 
flooded out before its TTL expires. 

At the meantime, forwarding among peer-class nodes is 
indispensable for providing shortcuts to the packets.  To detect 
the loop flows efficiently and reduce network’s burden, an 
enhanced TTL control might be expected.  

VII. NEW TTL CONTROL 
Networks with multiple top-class routers are subject to an 

attack when remote machine(s) deliberately sending packets 
destined to a non-existing node, e.g., using UDP programs to 
flood.  An improvement of TTL control can be made on the 
gateway nodes of a domain without changing current format of 
IP header: 

1. for a packet going out of the domain, stamp its TTL as 64 or 
256 so that it can go enough long distance (number of 
intermediate hops) before being discarded due to TTL 
expires; 

2. for a packet coming in the domain, stamp its TTL to a small 
number (e.g., 4 or 8) according to longest non-loop route in 
this domain, so that the loop one can be efficiently discarded.  

Figure 8 illustrates this idea: let G1 and G2 be gateways of 
a domain (an Autonomous System, AS).  Outgoing packets’ 
TTL are set to 64 while incoming ones are set to 4: 

 
Figure 8. New TTL Control 

A test of this idea is made in the same scenario as figure 6. 
Let K, S, A and B be gateways.  TTL of incoming packets are 
set to 6.  Figure 9 is a screenshot, which shows node G is able 
to discard the loop packets in flow S->R: 

 
Figure 9. Scenario of Flyingdutchman.xml with New TTL Control 



TABLE III.  SYSTEM REPORT, NEW TTL CONTROL 

Route SENT RCVD FS SFS Reach-
ability MOTT

A->C->T->H->I 21771 17109 43 30.75 True 3179
B->C->T->M->N 13316 0 55 15.82 False -- 

K->L->M->G->D->F 23290 12993 88 41.08 True 4834
S->L->M->G->T->M 36560 0 92 87.48 False -- 

 
System report shows the delivery percentage of two 

reachable flows have been promoted: 

A->I: 17109 / 21771 ≈ 78.59% (from 70.20%) 
K->F: 12993 / 23290 ≈ 55.79% (from 49.66%) 

Figure 10 is the Net-Pie under new TTL control, which 
shows the SFS of unreachable flow S->R is reduced from 
116.19 pkts (56% of used network resource) to 87.7 pkts 
(49.9% of used network resource): 

 
Figure 10. Net-Pie of Flyingdutchman.xml with New TTL 

Control 

VIII. CONCLUSION AND FUTURE WORK 
In this paper we apply VINS to study and measure IP 

packet flows.  We investigate the causes of packet loop and 
conclude that the loops shall be accounted for the limitation of 
nodes’ knowledge of the entire network’s topology, instead of 
“misconfiguration”.  Packet loops may occur in a domain 
where there are more than one top-level routers coexist. 

A new TTL control mechanism is proposed to protect a 
domain of nodes from being flooded by deliberately made or 
unintentional loop flows.  This mechanism requires the 
recompilation of kernel (ip_input in 4.4BSD), and 
knowledge of the depth of the domain to be protected.  We test 
this idea in a simulated network and it proves the network 
performance can be improved. 

VINS development focuses on the following tasks: 1) re-
implementation of the transport layer modules, especially to 
support more TCP variants; 2) more queue scheduling 
techniques, such as Random Early Detection (RED) [17]; 3) 
encoding time-event to support dynamic network topology and 
node status. 
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