

K. Zheng, M. Li, and H. Jiang (Eds.): MOBIQUITOUS 2012, LNICST 120, pp. 37–49, 2013.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Collaborative Framework of Enabling Device
Participation in Mobile Cloud Computing

Woonghee Lee, Suk Kyu Lee, Seungho Yoo, and Hwangnam Kim*

School of Electrical Engineering, Korea University
Seoul, Korea

{tgorevenge,sklee25,pen0423,hnkim}@korea.ac.kr

Abstract. Cloud Computing attracts much attention in the community of
computer science and information technology because of resource efficiency
and cost-effectiveness. It is also evolved to Mobile Cloud Computing to serve
nomadic people. However, any service in Cloud Computing System inevitably
experiences a network delay to access the computing resource or the data from
the system, and entrusting the Cloud server with the entire task makes mobile
devices idle. In order to mitigate the deterioration of network performance and
improve the overall system performance, we propose a collaborative framework
that lets the mobile device participate in the computation of Cloud Computing
system by dynamically partitioning the workload across the device and the
system. The proposed framework is based on it that the computing capability of
the current mobile device is significantly enhanced in recent years and its multi-
core CPU can employ threads to process the data in parallel. The empirical
experimentation presents that it can be a promising approach to use the
computing resource of the mobile device for executing computation-intensive
tasks in Cloud Computing system.

Keywords: Mobile Cloud Computing, Multi-Thread, Parallel Computing.

1 Introduction

Cloud Computing is the technology, the service or the system for serving computing
and storage capacity to the end-recipient [1]. One of important usage scenarios for
Cloud Computing system is that the system executes computation-intensive tasks
instead of the mobile device with the data which a user provides. This scenario
assumes that the Cloud server has very high computational power and it produces the
required results in a shorter time1. Mobile Cloud Computing (MCC) is the system
concept added the mobility feature to Cloud Computing, where the transmission
involves to wireless connectivity [2]. Therefore, the transmission delay becomes an
additional important factor determining the overall system performance.

On the other hand, the hardware and the software of mobile devices have been
developed significantly in recent years. For example, the smart-phone equipped with

* Corresponding author.
1 Note that we focus on this scenario in this paper.

38 W. Lee et al.

quard-core-CPU and 2GB RAM has been released recently. The enhanced mobile
device can do multitasking -- it can run several programs at the same time such as
surfing the Internet with listening to music -- and it can process the data in parallel
with the multi-thread. Users can thus exert high performance and the latest mobile
device can handle much higher computation than those of the past. Therefore, the
MCC system should pay attention to this development at the mobile device side in
order to overcome the current limitations that (i) the network delay may negatively
affect the overall performance when the entire user data is transferred back and forth
between the Cloud server and the mobile device and (ii) the mobile device wastes its
computing cycles till it receives any response from the server.

These observations motivate us to devise a collaborative framework on
computation for MCC, which exploits the mobile device as an additional computing
element of MCC. Thus, we propose in this paper a collaboration framework of using
the computational power of the mobile device as an additional resource of MCC in
order to improve the system performance by using the mobile device’s resource to the
fullest. We constructed an empirical test-bed to present that the proposed framework
can outperform the traditional computing framework for Cloud Computing. The
experimentation results indicate that the proposed framework can enhance the
performance of most Cloud Computing system. Note that the proposed framework
can be applied to computation-intensive services, not simple browsing or accessing
data services.

The remaining part of this paper is organized as follows. We briefly explain the
MCC system and the related works in Section 2. We then present the proposed
framework and detail the process of framework in Section 3. We evaluate the
proposed framework and also state a brief scheduling scheme in Section 4. We
conclude the paper with Section 5.

2 Preliminary

In this section we describe some features of Mobile Cloud Computing system, remind
that the fundamental strength of parallel computing for computation-intensive tasks,
even in the mobile device, and summarize the relevant work that are used in
subsequent sections.

2.1 Computation-Intensive Service at Mobile Cloud Computing

The MCC is the newest mobile computing technology for overcoming the limitation
of resource shortcomings at the mobile device [3]. As for the computation intensive
services at MCC, the entire data is transferred to the Cloud server from the mobile
device, the server then processes it with its own resources, and finally the device
receives the processed data. In this procedure, MCC has the following features:

1. Network environment dependency: MCC is a concept that the wireless feature is
added to Cloud Computing, so that the data transmission involves to the wireless
medium. Therefore, the transmission delay dependent on underlying network
conditions becomes a more important element of MCC. Note that the wireless
network condition is time-varying and hard to estimate [4].

2. Cloud server dependency: To overcome the limitation of the mobile device such as
processing and memory capabilities, almost the whole data processing is

 A Collaborative Framework of Enabling Device Participation in MCC 39

performed on the Cloud server, so that the entire processing performance relies on
Cloud server’s capability. However, the capability may dynamically change with
several reasons such as the difference in number of users, which also cannot be
controlled and managed by the end mobile device.

3. Service availability: The Cloud server is responsible for responding to millions of
user’s requests with processing the massive data simultaneously. It is an essential
prerequisite to continuously support the MCC services even when the number of
users exceeds the maximum allowable limit, which should be possible with
acceptable performance degradation [5].

We can discover additional features derived from the above main features. (i) We
cannot expect the constant service turn-around time because the number of service
users and the amount of resources for each user request are dynamically changing. (ii)
Computing resources of the mobile device may be wasted till any response from the
Cloud server arrives even though it can be used and more productive in the service
provisioning. (iii) The communication procedure between the MCC system and the
user is fixed, regardless of the device capability, the service type, the network
condition, and the current usage of the Cloud server.

2.2 Parallel Processing Schemes for Mobile Device

We briefly explain the current state of the art of parallel processing that we would like
to apply to the proposed framework.

Threads. Due to the development of software and hardware, the average size of data
is bigger than before and a number of computation-intensive processes appear.
Especially, any work that deals with images or videos such as the digital image
processing needs many arithmetic operations in handling big data and furthermore
requires real-time processing. Therefore, it is possible to process the data using multi-
core or multi-thread owing to improvement in hardware like CPU and memory.
Parallel computing using multi-thread to process the work divided up into small
segments is suitable for computation-intensive processes and it has become the
essential method for improving the computing performance [6].

Simultaneous Processing and Transmission. We conducted a simple experiment for
processing and transmission using multi-thread simultaneously before we propose a
collaborative framework. There are the sender and the receiver in the experiment. The
sender starts the process with setting to work. The sender does processing and sends
some parts of the processed data at the same time, and then the receiver receives them
from the sender and simultaneously does other processing with the received data. All
processes are performed by using multi-thread.

2.3 Edge Detection and Discrete Cosine Transform

We used two tasks in our empirical studies in order to demonstrate the benefit of the
proposed collaborative framework. One is Edge Detection and the other is Discrete
Cosine Transform (DCT). Edge Detection is a fundamental tool in the computer
vision and image processing and it is a process for extracting the significant properties
of objects in the image. It can be used to do feature detection, feature extraction and
identification of the physical phenomena, and therefore it can be employed by any

40 W. Lee et al.

application in 3D reconstruction, motion recognition, image enhancement, image
restoration, image compression and so on [7]. DCT is a mathematical tool to express a
sequence of finite data using the combination of cosine functions. It is very important
in science and engineering such as image processing and compression of audio/image
data [8].

Both tasks are widely used for image processing and image compression. Image
processing on mobile devices is a new field because the latest phones are equipped
with camera, and high performance CPU [9]. Additionally, in terms of the wireless
network, image compression is an essential process. Therefore, we choose them as
feasible tasks in mobile devices. However, the proposed framework can be applied to
any other task in mobile computing environment in order to achieve performance
improvement.

2.4 Advantages of Parallel Processing

In order to present the advantages of the proposed framework of letting the mobile
device participate in computation in Mobile Cloud Computing environment, we
conducted an empirical test with two scenarios. In case A, Sending/receiving are
performed after processing is complete, and in case B, they are performed
simultaneously. Each of the sender and the receiver has the 4 threads for processing
and 1 thread for sending/receiving in case B. As for the task, we use the Discrete
Cosine Transform. The DCT for image is generally performed for the block resulted
from splitting the image. The block is a square 8 pixels on a side. The sender
performed 2D-DCT using 4 threads in parallel and sent the processed blocks, and then
the receiver received the processed blocks and performed 2D inverse DCT using 4
threads in parallel. This experimentation was performed in a single PC using two
terminals for the sender and the receiver.

We present the empirical result in Table 1. The total processing time of Case B is
much shorter than that of Case A. These results show that it is very efficient to do
processing image blocks and sending/receiving them simultaneously.

Table 1. The result for processing and sending/receiving simultaneously

 A B

Sender Receiver Sender Receiver

1 240 253 42 69
2 237 257 42 59
3 240 253 52 75
4 239 257 54 61
5 237 253 53 77
6 238 257 56 56
7 241 248 46 61
8 242 260 46 70
9 246 263 54 73

10 238 254 49 67

mean 239.8 ms 255.5 ms 49.4 ms 66.8 ms

 A Collaborative Framework of Enabling Device Participation in MCC 41

Since the latest mobile devices are able to deliver high performance and to use
multi-thread like PCs, we were motivated to use the computation capability of the
mobile device to improve the overall performance of MCC.

3 Collaborative Framework

As shown in Section 2.4, we have got a hint that we could improve the service
performance by letting the mobile device take some parts of the high computational
processes.

3.1 Assumed Configuration

It is fundamental to employ threads for all processing in the proposed framework.
There are two thread types. One is the task thread for processing the data and the
other is the transmission thread for sending/receiving the data. We just use one thread
for transmission thread, but one or more number of task threads for processing the
data. Even though the processing performance is generally increased with the number
of threads, the improvement becomes stalled and then degraded after reaching a
threshold. The main reasons of such the degradation are stretching the CPU to handle
too many threads and managing the memory access [6]. We found through much
experimentation that the optimum number of threads is in the range between 3 and 5
in our experiments. Naturally, the tasks (edge detection and DCT) that we have
chosen for the experimentation are processed in parallel.

There is a pair of the server and the client, the server takes the role of MCC and the
client takes the role of user’s mobile device. The server is a virtual server whose
capability represents the overall capability of the Mobile Cloud Computing infra. The
total processing starts if the client initiates the processing and it ends when the client
has total processed data. The overall performance means the turn-around time,
meaning the time required for finishing all processes. The overall performance is
influenced by network conditions because MCC is running in wireless network
environment in which there are many unpredictable variables. Note that the
underlying network is assumed to have a wireless connectivity.

The client can choose the amount of data to process at the client and the rest of data
is processed at the server. Therefore, the amount of data to be processed at the client
varies depending on the situation: network conditions, the mobile device’s
performance, and the server’s state.

3.2 Operational Procedure

The procedure of the proposed framework is described in what follows. (i) First of all,
the client partitions the task into two parts (where the one is to be processed in the
server and the other is to be done at the mobile device). The ratio varies depending on
factors influencing the performance of the system such as the capability of the client
and the server, and network situations. It is the most important stage for improving
the efficiency for the client to decide the optimal ratio. (ii) After the ratio has been
chosen, the client transfers the server part of data to the server via the transmission
thread and starts processing the rest of data with the task threads simultaneously.

42 W. Lee et al.

Fig. 1. An execution flow of the proposed framework

(iii) The server starts the work with received data. Once all the data is processed, the
transmission thread sends the data back to the client. (iv) The client receives the
server data from the server. When all processes of both sides are finished, the client
converges the two parts from different locations into the final data. After that, all of
the processes are done. Figure 1 shows the procedure briefly.

The pseudo code of the proposed framework is presented in the Algorithm 1.

4 Performance Evaluation

We employed two evaluation scenarios according to the amount of data processing in
order to evaluate the proposed framework. One is the low computational task (Task
A) and the other is the high computational task (Task B). Edge detection is used for
the low computational task, and DCT is added to the low computational task for the
high computational task. Edge Detection mainly consists of integer computations and
has few processes, whereas DCT is composed mainly of real number computations
and has a large amount of processes. The PC is equipped with ‘Intel core i5-2410M’,
DDR3 4GB RAM, and the mobile device runs Google Android OS version 4.03 in
the platform of ‘Qualcomm 1.5GHz dual-core MSM8660 Snapdragon’, 1GB DDR2
SDRAM. Table 2 shows the approximate average run-time difference between the PC
and the mobile device used in the experiment.

 A Collaborative Framework of Enabling Device Participation in MCC 43

Table 2. The average run-time in diverse cases

 Task A Task B

Mobile device 1000 ms 12600 ms
PC 80 ms (x 12.5) 280 ms (x 45)

 Algorithm 1. Pseudo code of the framework
 Server Client
A = The data assigned to the server;
B = The data assigned to the client;
byte buf[]; // buffer array for receiving the data
byte Dprocess[]; //array for the processed data

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

class ProcessThread{
P = first position;
while (true){

if(P >= size of A)then
break;
if(buf[P] != null)then
do processing buf[P];
save the processed
 data to Dprocess[P];
P += next position;

}
}
class TransThread{

connect to client;
receive the A;
while(true){
if(Dprocess != null)then
send Dprocess to Client;
break;

}

class ProcessThread{
do processing B;
P = first position;
while(true){

if(P >= size of A)then
break;
if(buf[P] != null)then
move the data in
 place;
P += next position;

}
}
class TransThread{

connect to server
send the A;
T = 0;
while(true){

if(T >= size of A)then
break;
receive the data;

21
22
23
24
25
26
27
28
29
30
31
32
33

}
class Mainclass{

void main(){
 ProcessThread Pthread;
 TransThread Tthread;
 Pthread.start();
 Tthread.start();
 Pthread.join();
 Tthread.join();
}

}

T += received data;
}

}
class Mainclass{

void main(){
 ProcessThread Pthread;
 TransThread Tthread;
 Pthread.start();
 Tthread.start();
 Pthread.join();
 Tthread.join();
}

}

44 W. Lee et al.

PC’s performance is much better than that of the mobile device. In comparison
with the run-time, the PC shows better computation capability in Task B (45 times)
than in Task A (12.5 times). It means high computational processes such as real
number computations overhead much upon the mobile device and processing the high
computational operations at the server is more desirable. As mentioned in Section 3,
there are the server and the client in our experiments. The PC takes the role of the
server and the mobile device takes the other.

Performance Evaluation w.r.t. Low Computational Task. First experiment is
performed with 7 configurations in each of which the ratio of data partitioning is
changed by 1/6. Both the server and the client have 3 threads for processing. We
conducted 5 experimentation runs for each configuration, and so the experimentation
results in subsequent explanation are average values. Connectivity between the server
and the mobile device is established through Wi-Fi.

1 2 3 4 5 6 7

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

case

pr
oc

es
si

ng
 ti

m
e

(m
s)

Fig. 2. Turn-around time for each configuration of task partition for Task A

Figure 2 presents the turn-around time of the whole task for each configuration. As
shown in the figure, the case 1 (where the entire data is processed at the mobile
device) took shorter time than case 7 (where the server is entitled to process the total
data). This is because the transmission part took more time than the processing part
due to wireless environment; in other words, the delay in the transmission part
became the dominating value because of the short processing time.

Additionally, we observed that the time required for sending/receiving total data is
over 1 second and the time required for processing total data at mobile device took 1
second approximately, and so it looks inefficient using Mobile Cloud Computing.

 A Collaborative Framework of Enabling Device Participation in MCC 45

Fig. 3. An execution procedure at case 2 for Task A

However, the computational power of the PC (Server) is much better than mobile
devices as shown Table 2, so that it could improve the overall efficiency of processing
if the proper allocation of data processing is made for the server. It is shown in the
case 2 where one sixth of the data is processed at the server and results in the shortest
total processing time. The turn-around time of case 2 is shorter than that of the case 1
by about 150ms. It means one sixth of the data is the best allocation between
processing and sending/receiving in this experiment. Figure 3 shows the execution
procedure for the case 2 of task A.

Performance Evaluation w.r.t. High Computational Task. The next
experimentation is done with the high computational Task. Figure 4 shows the result
of the experiment in this case. The experiment was conducted in the similar way to
the previous one. As shown in the figure, the case 7 where the entire data is processed
at the server took shorter time than the case 1 where the data is processed only at the
mobile device. This comparison shows that mobile device’s computational capability
could be overwhelmed by the plenty of computation such as DCT. It is more efficient
to exploit server computation facility to the fullest. It looks like the advantage
assumed in general Cloud Computing system. However, it is not quite the same with
that. Even though the case 7 has to show the most efficient result (according to the
intention of the current Cloud Computing system), the case 6 (where the mobile
device took part in the required computation) shows the shortest time in this
experiment. Thus, the ratio of data in case 6 is most pertinent.

46 W. Lee et al.

1 2 3 4 5 6 7
2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

case

pr
oc

es
si

ng
 ti

m
e

(m
s)

Fig. 4. Turn-around time for each configuration of task partition for Task B

Remarks on Advantages. Recall the issues of existing Mobile Cloud Computing
presented in Section 2. The proposed framework can alleviate those issues as follows.

• Low network dependency: The mobile network environment is relatively unstable
so its quality cannot be guaranteed. As the occasion, transmission time can be a
more dominant factor deciding the overall performance than processing time as
shown above. When the network state is stable, sending more data to the server is
reasonable. If not, processing more data at the mobile device improves the overall
system performance. Also, it can be entirely processed by the mobile device in the
extreme case that any connection is not feasible.

• Low Cloud server dependency: Cloud Computing aims at improving the overall
performance of processing using the server’s computation capability and resources
but it is useless if the server could not provide those sufficiently. In this case, it is
better to use more resources of the mobile device. Mobile device’s resource can be
controlled by users and its state is easily ascertainable than that of the server.
Processing the data at the mobile device reduces the Cloud server dependency.

• Maximization of mobile device’s resources: Entrusting the server with the entire
task causes mobile devices idle. Processing some parts of data at the mobile device
is one of the ways that optimize the resource usage at the device.

• High flexibility: Factors influencing the performance of Cloud Computing are
various. The fixed way for providing services to users is one of causes degrading
the overall stability of the service. Users can choose the degree of participation of
the user’s device in computation in the light of the mobile network condition,
device’s and server’s performance, characteristics of processing. Therefore, these
make system flexible and stable, which allows the Cloud server to provide more
guaranteed services for users.

• Optimization of Efficiency: It is most important to determine the optimal workload
partitioning as shown above, and the efficiency can be achieved by changing the

 A Collaborative Framework of Enabling Device Participation in MCC 47

ratio. The empirical results show that the optimal ratio can be determined and to
what extent the optimization is possible.

• Reducing the burden of the server: Distributing the workload across the server and
the mobile device can save the server capacity, so that the server is able to serve
other users’ requests and thus it achieves higher service availability.

A Sketch on Scheduling Algorithm. There are several factors that influence on the
proposed framework: the processing capability of the mobile device and the server,
network conditions, and characteristics of processing. By considering those factors,
we can present a sketch on how to partition workload across the device and the Cloud
server based upon the premise that the server maintains steady-state.

Firstly, we determine scheduling parameters as specified in Table 3, which can be
estimated by the current network conditions and the computational capability of the
server and the device, and then we decide the optimal ratio with those parameters as
follows.

Table 3. Scheduling parameters

Notation Description

Td The time required for processing the entire data at the device
Ts The time required for processing the entire data at the server
Tt The time required for sending the entire data between the server and the device
Tc The time required for converging the two parts from different locations.
X The ratio of work for processing at the server (0 ≤ X ≤ 1)

The total time required at the server is shown in equation (1), whereas the total

time required at the device is shown in (2).

2XTt + XTs .

(1-X)Td +XTc .

(1)

(2)

If the work of the server is finished earlier than that of the device, it means that we do
not utilize the server’s resource efficiently. On the other hand, if the work of the
device is finished earlier than that of the server, it means that the more work can be
processed at the device. Therefore, the work can be done most efficiently when either
the server or the device is not idle. The optimal ratio X is obtained by using (4).

2XTt + XTs = (1-X)Td +XTc .

X = Td / (2Tt + Ts + Td - Tc) .

(3)

(4)

In Eq. (4), 2Tt + Ts means that the time required in case 7, and Td stands for the time
required in case 1. Tc can be negligible for obtaining the X approximately in (4)
because Tc is much smaller compared to Td, Ts, Tt. Therefore, we disregarded Tc to
obtain the X more easily. The ratio X is roughly 0.29 in the experimentation for low
computational Task and it is between 1/6 and 2/6. Additionally, The X is roughly 0.75
in the experimentation for high computational Task and it is between 4/6 and 5/6.
Therefore, the optimal ratio obtained by using (4) accords closely with results of our
experiment.

48 W. Lee et al.

Figure 5 shows the change of X depending on the alteration of Tt, Ts, and Td.
The bigger Td/Ts means that the Cloud server has more computational power than the
device and the smaller Tt/Ts means that the network condition is better. Therefore,
the bigger Td/Ts or the smaller Tt/Ts is, the more data can be processed at the Cloud
server more efficiently.

0
10

20
30

40
50

60

51015202530354045
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Td/Ts

Tt/Ts

X

Fig. 5. The change of X depending on the alteration of factors

5 Conclusion

Based on the observation that there are several disadvantages of existing Cloud
Computing such as high network environment dependency, high Cloud server
dependency, idle mobile devices, low flexibility, and large burden of the server, we
proposed a new collaborative framework of letting the mobile device participate in
computation-intensive tasks in Mobile Cloud Computing environment. The
participation ratio is determined depending on the factors of the system capability, the
mobile device’s performance, the network state, and characteristics of processing. We
ascertained with empirical studies that the proposed framework makes the system
achieve better performance and more flexible. It can also alleviate the server
workload by using the device capability.

We have several directions as future work. We will elaborate the scheduling
algorithm for the proposed framework. We plan to implement the proposed
framework in the specific Mobile Cloud Computing infra such as Hadoop-based
Cloud Computing system. We also would like to implement the proposed framework
in various mobile device platforms such as iPhone and Windows phone.

 A Collaborative Framework of Enabling Device Participation in MCC 49

Acknowledgement. This research was supported in part by the National Research
Foundation of Korea (NRF) Grant funded by the Korea government (MEST) (No.
2010-0014060), and in part by the KCC (Korea Communications Commission) Korea
under the R&D program supervised by the KCA (Korea Communications Agency)
(KCA-2012-08-911-05-001).

References

1. Buyya, R., Yeo, C.S., Venugopal, S.: Market-Oriented Cloud Computing: Vision, Hype,
and Reality for Delivering IT Services as Computing Utilities. In: 10th IEEE International
Conference on High Performance Computing and Communications, HPCC 2008 (2008)

2. Sanaei, Z., Abolfazli, S., Gani, A., Khokhar, R.H.: Tripod of requirements in horizontal
heterogeneous Mobile Cloud Computing. In: Proc.1st Int’l Conf. Computing, Information
Systems, and Communications (2012)

3. Sanaei, Z., Abolfazli, S., Gani, A., Shiraz, M.: SAMI: Service-Based Arbitrated Multi-Tier
Infrastructure for Mobile Cloud Computing. In: Mobicc. IEEE Workshop on Mobile Cloud
Computing, Beijing, China (2012)

4. Woo, S., Kim, H.: Estimating Link Reliability in Wireless Networks: An Empirical Study
and Interference Modeling. In: 2010 Proceedings IEEE INFOCOM (2010)

5. Zhu, J., Jiang, Z., Xiao, Z.: Twinkle: A fast resource provisioning mechanism for internet
services. In: Proceedings of IEEE INFOCOM (2011)

6. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximizing on-chip
parallelism. In: Proceedings of the 25th Annual International Symposium on Computer
Architecture, ISCA 1998, pp. 533–544 (1998)

7. Vincent, T.: On Edge Detection. IEEE Transactions on Pattern Analysis and Machine
Intelligence (1986)

8. Ahmed, N.: Discrete Cosine Transform. IEEE Transactions on Computers (1974)
9. Wells, M.T.: Mobile Image Processing on the Google Phone with the Android Operating

System, http://www.3programmers.com/mwells/main_frame.html

	A Collaborative Framework of Enabling Device Participation in Mobile Cloud Computing
	1 Introduction
	2 Preliminary
	2.1 Computation-Intensive Service at Mobile Cloud Computing
	2.2 Parallel Processing Schemes for Mobile Device
	2.3 Edge Detection and Discrete Cosine Transform
	2.4 Advantages of Parallel Processing

	3 Collaborative Framework
	3.1 Assumed Configuration
	3.2 Operational Procedure

	4 Performance Evaluation
	5 Conclusion
	References

