
CooS: Coordination Support for Mobile Collaborative
Applications

Mario Henrique Cruz Torres, Robrecht Haesevoets, and Tom Holvoet

iMinds-DistriNet, KU Leuven, 3001 Leuven, Belgium
{MarioHenrique.CruzTorres,Robrecht.Haesevoets,

Tom.Holvoet}@cs.kuleuven.be

Abstract. The advent of mobile devices, such as smartphones and tablets, and
their integration with cloud computing is turning ubiquitous computing into re-
ality. This ubiquity opens doors to innovative applications, where mobile devices
collaborate on behalf of their users. Applications that leverage this new paradigm,
however, have yet to reach the market. One of the reasons is due to the inherent
complexity of developing such collaborative applications on mobile devices.

In this paper, we present a middleware that enables coordination on mobile
devices. Our middleware frees applications from directly managing the interac-
tion between collaboration partners. It also uses contextual information, such as
location, to dynamically determine possible collaboration partners. We focus on a
particular class of applications in which mobile devices have to collaborate to al-
locate tasks (e.g., picking up passengers) to physically distributed resources (e.g.,
taxis). The technical feasibility of our middleware is shown by the implementa-
tion of our middleware architecture, a deployment of our middleware on a real
cloud environment and operating it with over 800 clients.

1 Introduction

Every day, developers create dozens of new applications for smartphones and other
mobile devices. Two important trends are making mobile devices the platform of the
future. First, they provide a hardware platform, filled with technology, that is getting
cheaper everyday. Modern devices come with communication technologies, like Blue-
tooth, GPRS, EDGE, and WiFi, and an abundance of sensors, such as accelerometers,
compasses, altimeters, and GPS (Global Positioning System). Second, with the advent
of cloud computing, it is possible to create applications that scale to serve hundreds of
thousands of clients, while providing minimum delays, needed for near real-time mo-
bile collaborative applications. In fact, cloud computing is changing the way computing
is offered. Computing power has become a utility that applications can consume at will,
facilitating the deployment of large scale mobile collaborative applications. Ubiqui-
tous computing [17] is finally reality due to the advent of mobile devices and cloud
computing, opening doors to innovative applications.

One particularly promising type of applications, are applications where mobile de-
vices closely collaborate, on behalf of their users. These applications include crowd
sourcing internet connections [9], collaborative traffic routing [1], collaborative
scheduling of resources (e.g., cars) [7, 11], search and rescue systems [8], or allocating

K. Zheng, M. Li, and H. Jiang (Eds.): MOBIQUITOUS 2012, LNICST 120, pp. 152–163, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013



CooS: Coordination Support for Mobile Collaborative Application 153

taxis to passengers in a dial-a-ride problem [6]. In the resource sharing problem, users
can use the location information from their mobile devices to collaborate with other
users in their vicinity, to organize on-the-spot car pools, for instance. Another very
useful application is for improving public transportation with the use of autonomous
vehicles, that could collaborate to find the best way to pick passengers [11].

Despite today’s pervasiveness of mobile devices and the challenging problems that
could be addressed using collaborations, applications that truly leverage the power of
collaboration on mobile devices are still missing. One of the main reasons for this lack
of applications is due to the inherent complexity of developing such applications. Mo-
bile collaboration may also require users coordination. Existing coordination mecha-
nisms, such as ContractNet [15], or MASCOT [12], require specific interaction flows
involving large amounts of messages between coordination partners. Ensuring the cor-
rect implementation and execution of such mechanisms can be time consuming and
error prone. Another problem is that collaboration partners are often not known in ad-
vance, but have to be determined dynamically, for example, based on their location. In
addition, all these problems take place in a very dynamic environment, where everybody
is moving, and where disconnections and changes in commitment are widespread.

To stimulate the future development of mobile collaborative applications, we need
good middleware support that relieves developers of such complexities. In this paper,
we present CooS1, a middleware that operates providing common-middleware services
[14] that enable the creation of decentralized collaboration of mobile devices. CooS
targets a particular class of applications in which mobile devices have to collaborate
to allocate tasks (e.g., picking up passengers), to physically distributed resources (e.g.,
taxis, autonomous cars). CooS addresses three key challenges:

1. dynamically determining collaboration partners (e.g., based on their location),
2. achieving scalable collaborations,
3. managing the interactions between collaboration partners.

The main contribution of this paper is a middleware to enable the creation of large-
scale mobile collaborative applications. The novelty of our approach is to integrate
location-based participant selection with coordination mechanisms, and offering this
functionality as a reusable middleware service. The middleware service is designed to
be deployed on any cloud computing provider.

Overview. The remainder of this paper is organized as follows: Section 2 describes
the challenges faced to create mobile collaborative applications. Section 3 details the
design goals and Section 4 the architecture of our middleware. We describe experiments
of an application developed on top of CooS, and analyze their results, at Section 5.
Section 6 discusses related work. Finally, in Section 7 we present our conclusions.

2 Problem Statement

Our goal is to provide a middleware that supports the development of collaborative
applications on mobile devices. Such applications typically require coordination of mo-
bile devices to set up and execute the required collaborations. To illustrate the type

1 CooS: Coordination on Clouds.



154 M.H. Cruz Torres, R. Haesevoets, and T. Holvoet

of applications we want to address, we focus on the dial-a-ride problem for taxis. In
this problem mobile devices have to collaborate to allocate tasks (i.e., picking up and
dropping off passengers), to physically distributed resources (i.e., taxis).

The dial-a-ride problem has been extensively studied due to its applicability in var-
ious domains. The problem is computationally demanding, even for small scale in-
stances [10], and can involve various stakeholders with opposing goals. In the taxi
problem, for example, taxi companies want to maximize their profit, typically at the
expense of competing companies, and are even willing to compromise their quality of
service (e.g., picking up a passenger on time). Passengers, however, want to be picked
on time and reach their destination as soon as possible. The goal of the dial-a-ride prob-
lem is to pick up passengers in time, while maximizing the profit of all taxi companies.

Resources have a physical location and are mobile. Tasks are also location-based.
Resources can commit to tasks (e.g., a taxi agreeing to pick up a passenger), de-commit
to tasks (e.g., a taxi taking an alternate route), and can break down (e.g., a taxi breaking
down). The number of involved resources and tasks can vary dynamically and scale up
to thousands, for large collaborations.

In the rest of this section, we elaborate some key challenges in building mobile
collaborative applications.

2.1 Key Challenges

Dynamically Determining Collaboration Partners Based on Location. Classic co-
ordination mechanisms, such as ContractNet or auctions, do not take location into ac-
count when determining possible collaboration partners. In our taxi problem, this would
result in mobile devices of passengers interacting with the devices of all taxis in the sys-
tem to find a possible resource. This leads to our first challenge.

Challenge 1. A device should only collaborate with those devices whose loca-
tion fits within the solution space of the underlying problem.

In our taxi problem, the mobile device of a passenger should only collaborate with the
devices of taxis that are within a feasible range to pick up the passenger. Since both
taxis and passengers are mobile, collaboration partners can change dynamically.

Scalable Collaboration. Each mobile device, active in the system, will have a com-
munication overhead. This overhead can be related to the actual collaborations a device
is involved in, but also to the process of finding the right collaboration partners. While
a device may only have to collaborate with a few dozen of other devices, there can be
thousands of devices that are all potential collaboration partners. Finding the relevant
collaboration partners may induce a communication overhead that is disproportionate
to the overhead induced by the actual collaboration. This defines our second challenge.

Challenge 2. The communication overhead of a device in the system, related
to finding relevant collaboration partners, should be independent of the total
number of devices in the system.

The communication overhead of each device in the system is only dependent on the
number of devices it directly collaborates with.



CooS: Coordination Support for Mobile Collaborative Application 155

Managing the Interactions between Collaboration Parters. Coordination mecha-
nisms tend to get complex, requiring asynchronous interactions with complex message
flows. Current technologies, such as GCMA (Google Cloud Messaging for Android)
2, only provide a basic messaging mechanism for the interaction of cloud services
and mobile devices. Managing these interactions can be time consuming and error-
prone. Reuse existing coordination mechanisms could greatly improve these problems.
Achieving such reuse, however, requires a clean separation between application logic
and coordination logic, which poses an even bigger problem. This leads to our final
challenge.

Challenge 3. Coordination mechanisms and their required interactions should
be easy to manage, allowing developers to separate application logic from co-
ordination logic, while promoting reuse of existing coordination mechanisms.

2.2 Requirements for the CooS Middleware

Given the challenges for developing mobile collaborative applications, we can derive a
set of functional and non-functional requirements for the CooS middleware. There are
two main functional requirements for the CooS middleware:

1. Dynamic Partner Selection. The middleware dynamically selects the relevant col-
laboration partners based on their location.

2. Managing Interactions between Collaboration Partners. The middleware en-
forces the coordination mechanisms, chosen by the application developer, ensur-
ing the required interactions take place without violating message flows or timing
constraints.

We can also derive two non-functional requirements for the CooS middleware:

1. Scalable Partner Selection. The middleware ensures that communication over-
head, of each device, related to participant selection is independent of the number
of devices in the system.

2. Encapsulation of Coordination Mechanisms. The middleware encapsulates the
coordination mechanisms and related interactions as reusable middleware services.
The middleware provides an API to application developers that allows to separate
application logic from coordination logic.

3 Design of the CooS Middleware

Before explaining the CooS Middleware architecture in detail, we provide a high-level
overview of its design and motivate the most important design decisions.

2 http://developer.android.com/guide/google/gcm/

http://developer.android.com/guide/google/gcm/


156 M.H. Cruz Torres, R. Haesevoets, and T. Holvoet

Providing Coordination Mechanisms as a Reusable Middleware Service. A key re-
quirement of the CooS middleware is to manage the interactions between collaboration
participants, relieving application developers from the related complexities. To do so,
the middleware provides a set of predefined coordination mechanisms as reusable mid-
dleware services. Applications can then choose the proper coordination mechanisms
according to their needs.

Using an Event-Driven Architecture to Enforce Coordination Mechanisms. To
provide the coordination mechanisms, the middleware needs to enforce the required
interactions between the collaboration partners. To do so, the CooS middleware relies
on an event-driven architecture. Each coordination mechanism is defined as a set of
interaction events (i.e., sending and receiving messages) that have to take place in a
specific order and within particular timing constraints.

The event-driven architecture is particularly suited to handle the continuous inter-
net connections and disconnections of mobile devices. It also allows to create a thin
middleware layer to be deployed on mobile devices, which are typically computational
constrained.

Using Location-Based Publish/Subscribe to Select Partners. Another key require-
ment of the CooS middleware is to dynamically select coordination partners based
on their location. This avoids interaction with irrelevant participants, such as taxis in
other cities. To achieve this dynamic partner selection, the CooS middleware employs a
location-based Publish/Subscribe mechanism [2]. The location-based Pub/Sub system
allows to subscribe to events, based on the location or region in which an event occurs.
Every time a new event is created in a location, the subscribers to that location or region
receive a notification. Publishers of events attach location information to their events,
so this information can be used to match interested subscribers.

Using the location-based Pub/Sub system, the middleware notifies the relevant ap-
plications whenever a new collaboration is triggered within their regions of interest. To
do so, the CooS middleware maintains the location of each mobile device active in the
system.

Offloading Coordination-Specific Functionality to Mobile Devices. Providing co-
ordination mechanisms and dynamically selecting coordination partners requires func-
tionality such as determining the location of mobile devices, or calculating the shortest
path from a passenger to a taxi. The CooS middleware relies on the capabilities of mod-
ern devices to offload these tasks to the devices themselves. The CooS middleware uses
the GPS of the device, for example, to determine the location of taxis or passengers,
and the locally available routing software to calculate possible paths.

Using a Cloud-Based Infrastructure. While mobile-devices can be used to offload
some of the coordination-specific functionality, the actual enforcement of coordina-
tion mechanisms and selection of collaboration partners can put a heavy burden on the
mobile devices, if done locally. To relieve the mobile devices, the CooS middleware
relies on a cloud-based infrastructure to enforce the coordination mechanisms and to
determine the possible collaboration participants.



CooS: Coordination Support for Mobile Collaborative Application 157

The cloud-based infrastructure also provides a more uniform communication chan-
nel. Many times, mobile devices cannot communicate directly with each other, because
they are situated behind proxies or firewalls. The cloud, however, is able to provide a
uniform messaging layer to all mobile devices.

To provide additional scalability to applications, middleware services deployed on
the cloud can easily be replicated to more computers. This allows to scale applications
to match the current number of users.

4 CooS Architecture

The runtime architecture of the CooS middleware consists of two main components: the
CooS Client Component, deployed on each mobile device, and the CooS Middleware
Component, deployed on a cloud provider.

The CooS Middleware Component has two main responsibilities: (1) dynamically
selecting relevant collaboration partners based on their location, and (2) enforcing a
particular coordination mechanism, chosen by the application developer, among the
selected partners.

The CooS Client Component serves as a mediator between the CooS Middleware
Component and the application. It provides an API that allows the application use the
coordination mechanisms provided by the CooS Middleware Component. A user has
two possible ways of collaborating with other users, as an initiator, triggering a collab-
oration, or as a participant, waiting for collaboration requests, the CooS Client Compo-
nent allows applications to play two possible roles: the initiator role or the participant
role. In the taxi application, for example, the application plays the initiator role at the
passenger’s device, and the participant role at the taxi driver’s device.

We illustrate the middleware architecture with ContractNet as coordination mech-
anism (Sect. 4.3), and briefly discuss the implementation of the CooS middleware
architecture (Sect. 4.4).

4.1 CooS Middleware Component

The CooS Middleware Component uses an event-driven architecture to enforce its coor-
dination mechanisms, and relies on a location-based Publish/Subscribe mechanism [2]
to dynamically select the collaboration participants. The internal architecture of the
CooS Middleware Component consists of four components: a Coordination Compo-
nent a Location-Based Publish/Subscribe Component, a Location Store, and an Event
Dispatcher (Fig. 1).

The Coordination Component is responsible for enforcing the selected coordination
mechanisms among the active participants. This includes making sure that interaction
events (i.e., sending or receiving message) take place in the right order without vi-
olating any timing constraints. The Coordination Component is also responsible for
maintaining the state the ongoing coordinations. Coordination mechanisms can define
constraints based on location information. The Coordination Component is a publisher
and a subscriber of events from the Location-Based Publish/Subscribe Component.



158 M.H. Cruz Torres, R. Haesevoets, and T. Holvoet

��� ��������	
���
���������������

����
������	
����

��������

�����

��������
���
�	�� ��
�����

�������	
������������
�
!

"��	
������#$�#

"��	
����
���

�������	
����
���

%���
�����	��

&�#���
����	#��	
����'�����	
���

����
������	
����

&�#���������� 
��	(�������%���
������

&�#����������

Fig. 1. Deployment view of CooS middleware on a cloud provider

The Location-Based Publish/Subscribe Component provides the functionality for
location-based participant selection. Active devices publish their location information
using the CooS Client Component. The location information is processed by the
Location-Based Publish/Subscribe Component and persisted on secondary storage.

The Event Dispatcher is responsible for receiving events and dispatching events from
and to the CooS Client Components. The Event Dispatcher relies on a unique DeviceID
to identify each CooS Client Component, allowing to have asynchronous interactions
between CooS Client Component and CooS Middleware Component. Interaction be-
tween the Event Dispatcher and the CooS Client Components is based on stateless
protocols, such as HTTP.

4.2 CooS Client Component

The CooS Client Component acts as a mediator between the CooS Middleware Com-
ponent and the application. It provides an asynchronous API to applications to use the
coordination mechanisms provided by the CooS Middleware Component. The main
API operations are illustrated below:

requestCollaboration(DeviceID device,
Coordinates location,
Payload payload,
InitiatorCallback cb)

registerAsParticipant(LocationCallback lcb,
ParticipantCallback pcb)

To start a collaboration the application uses the requestCollaboration operation of the
CooS Client Component. The CooS Client Component, in turn, creates an event includ-
ing the DeviceID, the location of the device, and an application-specific payload. The
CooS Client Component then dispatches this event to the CooS Middleware Compo-
nent. When invoking the requestCollaboration, the application needs to pass an Initia-
torCallback. This callback is specific to the coordination mechanism, and provides the
actual functionality of the application to be the initiator of the coordination. For exam-
ple, when using the ContractNet coordination mechanism, the callback should provide
the functionality to inform the application with the outcome of the ContractNet pro-
tocol. The Payload is application specific data not inspected by the middleware. The
middleware only passes this data back to the application.



CooS: Coordination Support for Mobile Collaborative Application 159

To participate in collaborations, applications have to register two callbacks, using
the registerAsParticipant operation of the CooS Client Component. The first callback
is the LocationCallback. This callback is responsible for providing the middleware with
the proper location information, required by the location-based participant selection of
the CooS Middleware Component. The second callback is the ParticipantCallback.
Like the InitiatorCallback, this callback is specific to the coordination mechanism,
and provides the actual functionality of the application to be a participant in the
coordination.

4.3 Illustration of the CooS Middleware Architecture

To illustrate the CooS middleware architecture, we show how applications can register
as participant and how applications can request collaborations. To register as partici-
pant, applications call the registerAsParticipant operation on the CooS Client Compo-
nent (Fig. 2). The local CooS Client Component then starts a process that will retrieve
the application-specific location on regular intervals from the application, and send lo-
cation updates to the CooS Middleware Component. The CooS Middleware Compo-
nent stores these locations in its location store. Once registered as a participant, the
CooS middleware will take these applications into account when selecting the relevant
collaboration partners for each new collaboration.

Mobile DeviceCloud

loop

Key: UML 2.0

CooS 
Middleware
Component

«Participant»
Application

CooS Client
Component

registerAs
Participant(...)

timer

getLocation(...)

Location Update
Event

Fig. 2. A sequence diagram showing how the CooS middleware maintains the location of each
potential collaboration participant

When an application starts a collaboration, it calls the requestCollaboration oper-
ation on the CooS Client Component (Fig. 3). The CooS Client Component sends
this request to the CooS Middleware Component, which selects the relevant partic-
ipants, among the registered applications, based on their stored location. The CooS
Client Component of each selected participant is then informed about the collaboration
request. These CooS Client Components will then start a coordination-specific interac-
tion with their local application (in Fig. 3, this interaction is shown as generic collab-
orationCalls and Coordination Events). All interaction events between participants pass
through the CooS Middleware Component, which uses the context of active
coordination sessions to act as an interaction hub.



160 M.H. Cruz Torres, R. Haesevoets, and T. Holvoet

Mobile Device [1..*]CloudMobile Device

Key: UML 2.0

select 
participants

retrieve 
coordination 

context

CooS 
Middleware
Component

CooS Client
Component

«Initiator»
Application

«Participant»
Application

CooS Client
Component

request
Collaboration

(...)

collaboration
Call(...)

Coordination
Event

Collaboration
Requested

Event

Request
Collaboration

Event

coordination
Call(...)

Coordination
Event

Fig. 3. A sequence diagram showing how an application can initiate a collaboration

4.4 Implementation

The CooS prototype uses off-the-shelf technologies. The CooS Middleware Compo-
nent uses Node.js3, a high-performance event-driven application server for networked
applications. The CooS Middleware Component maintains location and on-going coor-
dination information, which is stored on a mongoDB4 database. MongoDB is a scalable,
high-performance, open-source NoSQL database.

The CooS Client Component and CooS Middleware Component have bi-directional
communication, so that the coordination interactions can happen, with the cloud noti-
fying the mobile devices and vice-versa. The prototype communication is made using
the WebSockets [3] protocol.

5 Evaluation

5.1 Case Study: Using Smartphones for Coordinating Taxis in Brussels

We performed a case study in order to evaluate the technical implications of using our
middleware in a more realistic setting. We implemented a coordination application to
coordinate all the taxis in Brussels on their task of picking passenger and delivering
them at the requested locations.

Our goal with this case study was to check the technical feasibility of using our
middleware for such problem. Coordinating taxis consists in allocating the taxi that can
pick a passenger in the shortest time, that way minimizing the passenger waiting time.
Passengers have the application installed on their mobile phones. When a passenger
wants a ride, he simply indicates when he will need a taxi and where he wants to go. This
information, together with the location information given by the GPS of the passenger’s
mobile device, is sent to all taxis that are interested in picking passenger and delivering
them in a particular region.

3 http://nodejs.org/
4 http://www.mongodb.org/

http://nodejs.org/
http://www.mongodb.org/


CooS: Coordination Support for Mobile Collaborative Application 161

5.2 Evaluation System Model

We have implemented a prototype version of our middleware, and deployed the
EventSignaling part of our middleware on the Heroku5 cloud provider.

We setup 80 computers to participate in the emulation, executing the taxi application.
Every computer having 10 instances of the taxi application running as independent
processes. Besides the taxi applications, we also setup 8 computers to simulate the
passengers. Every computer executing 10 instances of the PassengerApp.

Hence, in our emulation we executed 880 instances of an application using our mid-
dleware. Each instance had a very simple simulator, responsible for issuing commands
to the application. The commands consisted in simulating a taxi driver driving a taxi
following a particular route and in passengers asking rides on their mobile phones.

We developed two simple components to simulate the behavior of a passenger and a
taxi driver using our application. The simulators have the following behavior:

– Passenger Simulator, reads a location from the destinations list and asks a new
ride to the PassengerApp. When the PassengerApp indicates the ride is done, the
Passenger Simulator requests a new ride. Otherwise, if the PassengerApp indicates
there is no taxi available, the Passenger Simulator chooses the following location
from the destinations list and issues a new ride.

– Driver Simulator, simulates a taxi moving into the location of a passenger. It does
this by virtually following a route given by the TaxiApp.

On a real world deployment of our application it would be possible to configure the
location updates issued by the middleware to one update every few seconds, or more.
However in our emulation we configured the middleware to issue a location update
every 100 ms. What in our experiments lead to 8800 requests per second without any
delay due to the number of requests. The application showed delays when handling
more than 14.000 requests per second. The operation of the middleware at the client side
is negligible, while the operations at the CooS Middleware Componentheavily relies on
the performance of the cloud provider. The main shortcoming can be the response time
due to the internet connection of the mobile devices.

Regarding the implementation of the taxi application, we learned that using the GPS
(Global Positioning System) of mobile devices has to be done carefully in order to
avoid draining the device’s battery. Another lesson we learned from implementing the
taxi client application is that delegating the communication complexity to the CooS
middleware facilitated the application development, however it was still complex to
manage all the callback functions needed by CooS.

6 Related Work

Our middleware does not deal with low level communication issues, instead it facili-
tates to coordinate the task allocation between several entities participating in an ap-
plication. [14] proposes a layered view to position the different types of middleware

5 http://www.heroku.com

http://www.heroku.com


162 M.H. Cruz Torres, R. Haesevoets, and T. Holvoet

available. Our work fits into the Common Middleware Services layer, since our mid-
dleware provides a higher-level domain-independent component that allows application
developers to concentrate on programming application logic, rather than focusing on
low level hurdles specific to the coordination protocol in use.

The work [5] adds quality-of-service guarantees to middleware which works upon
the elastic resources from cloud computing. It shows a technique to guarantee a spec-
ified quality-of-service even on a changing cloud environment. In our evaluation we
linearly increased the available cloud resources used by our middleware, in order to
guarantee that all messages were properly delivered. Our middleware could integrate
the results from [5] and become apt to work on more dynamic environments with sud-
den changes in usage.

There are several works exploiting middleware as a way mitigate different challenges
associated with the application development for mobile devices [4], [13], [16], to cite
a few.

The work [13] provides a number of abstractions to deal with mobile applications.
The main goal of that work is to encapsulate the protocol behavior on well defined
abstractions and to facilitate group formation of entities whom want to collaborate on
a certain protocol. Our work does not deal with group formation, since we assume that
service requests are sent to any device subscribed to the content of the service request.
Our work focuses on facilitating the allocation of tasks between a number of mobile
devices.

The development of mobile applications that leverage the cloud infrastructure is
explored in [4]. [4] proposes a middleware capable of relocating specific parts of a
application to be executed on the cloud, based on the quality criteria defined by the
application developers. Our work also leverages from cloud computing, but we do not
focus on optimizing the application execution. We focus on allowing the creation of col-
laborative applications on the mobile devices, leveraging the cloud as an infrastructure
to interconnect the mobile devices.

7 Conclusion

In this paper, we presented CooS, a middleware that enables the creation of collabo-
rative applications on mobile devices. CooS targets applications in which mobile de-
vices have to collaborate to allocate tasks (e.g., picking-up passengers) to distributed
physical resources (e.g., taxis). CooS addresses several key challenges for developing
mobile collaborative applications. These challenges include dynamically determining
collaboration partners, achieving scalable collaboration, and managing the interactions
between collaboration partners.

We presented a middleware architecture for CooS that encapsulates coordination
mechanism as a reusable middleware service for applications. This encapsulation pro-
vides a clear separation of concerns, freeing application developers from handling coor-
dination-specific complexities. The evaluation of CooS showed the technical feasibility
and scalability of the presented middleware architecture. As future work, we plan to
perform an empirical study, with real software developers, to assess how CooS impacts
the development of mobile collaborative applications.



CooS: Coordination Support for Mobile Collaborative Application 163

Acknowledgments. This research is partially funded by the Interuniversity Attraction
Poles Programme Belgian State, Belgian Science Policy, and by the Research Fund KU
Leuven.

References

1. Bazzan, A.: A distributed approach for coordination of traffic signal agents. Autonomous
Agents and Multi-Agent Systems 10(1), 131–164 (2005)

2. Eugster, P.T., Garbinato, B., Holzer, A.: Location-based publish/subscribe. In: Proceedings of
the Fourth IEEE International Symposium on Network Computing and Applications, NCA
2005, pp. 279–282. IEEE Computer Society, Washington, DC (2005)

3. Fette, I., Melnikov, A.: The WebSocket Protocol. RFC 6455 (Proposed Standard) (December
2011), http://www.ietf.org/rfc/rfc6455.txt

4. Giurgiu, I., Riva, O., Juric, D., Krivulev, I., Alonso, G.: Calling the cloud: Enabling mobile
phones as interfaces to cloud applications. In: Bacon, J.M., Cooper, B.F. (eds.) Middleware
2009. LNCS, vol. 5896, pp. 83–102. Springer, Heidelberg (2009)

5. Hoffert, J., Schmidt, D.C., Gokhale, A.: Adapting distributed real-time and embedded pub-
/sub middleware for cloud computing environments. In: Gupta, I., Mascolo, C. (eds.) Mid-
dleware 2010. LNCS, vol. 6452, pp. 21–41. Springer, Heidelberg (2010)

6. Koźlak, J., Créput, J.C., Hilaire, V., Koukam, A.: Multi-agent approach to dynamic pick-up
and delivery problem with uncertain knowledge about future transport demands. Fundam.
Inf. 71(1), 27–36 (2006)

7. Kutanoglu, E., Wu, S.: On combinatorial auction and lagrangean relaxation for distributed
resource scheduling. IIE Transactions 31(9), 813–826 (1999)

8. Luqman, F., Griss, M.: Overseer: a mobile context-aware collaboration and task management
system for disaster response. In: Eighth International Conference on Creating, Connecting
and Collaborating through Computing, UC San Diego, La Jolla CA, United States (2010)
(2010)

9. Papadopouli, M., Schulzrinne, H.: Connection sharing in an ad hoc wireless network among
collaborating hosts. In: Proc. International Workshop on Network and Operating System
Support for Digital Audio and Video (NOSSDAV), pp. 169–185 (1999)

10. Parragh, S.N., Doerner, K.F., Hartl, R.F.: Variable neighborhood search for the dial-a-ride
problem. Computers & Operations Research 37(6), 1129–1138 (2010)

11. Rocha, R., Cunha, A., Varandas, J., Dias, J.: Towards a new mobility concept for cities:
architecture and programming of semi-autonomous electric vehicles. Industrial Robot: An
International Journal 34(2), 142–149 (2007)

12. Sadeh, N., Hildum, D., Kjenstad, D., Tseng, A.: Mascot: an agent-based architecture for dy-
namic supply chain creation and coordination in the internet economy. Production Planning
& Control 12(3), 212–223 (2001)

13. Schelfthout, K., Weyns, D., Holvoet, T.: Middleware for protocol-based coordination in mo-
bile applications. IEEE Distributed Systems Online 7(8), 1–18 (2006)

14. Schmidt, D.C.: Middleware for real-timeand embedded systems. Communications of the
ACM (2002)

15. Specification, F.: http://www.fipa.org/specs/fipa00029.SC00029H.html
(2003)

16. Ueyama, J., Pinto, V.P.V., Madeira, E.R.M., Grace, P., Jonhson, T.M.M., Camargo, R.Y.:
Exploiting a generic approach for constructing mobile device applications. In: COMSWARE
2009, pp. 12:1–12:12. ACM, New York (2009)

17. Weiser, M.: Some computer science issues in ubiquitous computing. Communications of the
ACM 36(7), 75–84 (1993)

http://www.ietf.org/rfc/rfc6455.txt
http://www.fipa.org/specs/fipa00029.SC00029H.html

	CooS: Coordination Support for Mobile Collaborative Applications
	1 Introduction
	2 Problem Statement
	2.1 Key Challenges
	2.2 Requirements for the CooS Middleware

	3 Design of the CooS Middleware
	4 CooS Architecture
	4.1 CooS Middleware Component
	4.2 CooS Client Component
	4.3 Illustration of the CooS Middleware Architecture
	4.4 Implementation

	5 Evaluation
	5.1 Case Study: Using Smartphones for Coordinating Taxis in Brussels
	5.2 Evaluation System Model

	6 Related Work
	7 Conclusion
	References




