
A Formal Approach to Modelling and Verifying
Resource-Bounded Context-Aware Agents

Abdur Rakib1 and Rokan Uddin Faruqui2

1 School of Computer Science
University of Nottingham, Malaysia Campus
Abdur.Rakib@nottingham.edu.my

2 Department of Computer Science and Engineering
University of Chittagong, Bangladesh

rufaruqui@cu.ac.bd

Abstract. There has been a move of context-aware systems into safety-critical
domains including healthcare, emergency scenarios, and disaster recovery. These
systems are often distributed and deployed on resource-bounded devices. There-
fore, developing formal techniques for modelling and designing context-aware
systems, verifying requirements and ensuring functional correctness are major
challenges. We present a framework for the formal representation and verification
of resource-bounded context-aware systems. We give ontological representation
of contexts, translate ontologies to a set of Horn clause rules, based on these rules
we build multi-agent context-aware systems and encode them into Maude spec-
ification, we then verify interesting properties of such systems using the Maude
LTL model checker.

Keywords: Pervasive computing, Context-awareness, Multi-agent systems, On-
tology, Model checking.

1 Introduction

It is widely acknowledged that computer systems are becoming increasingly nomadic
and pervasive. The vision of this next generation technology intends to provide in-
visible computing environments so that a user can utilize services at any time and
everywhere [1]. In these systems information can be collected by using tiny resource-
bounded devices, such as, e.g., PDAs, smart phones, and wireless sensor nodes. In re-
cent years much research in pervasive computing has been focused on incorporation
of context-awareness features into pervasive applications. There is an extensive body
of work in adapting the Semantic Web technologies to model context-aware systems
(see e.g.,[2,3,4,5]). In the pursuit of making context-aware system much more use-
ful we need to make its various devises communicate with each other and with the
surrounding environment in a cooperative manner. In achieving this goal, agent-based
techniques can be seen as a promising approach for developing context-aware applica-
tions in complex domains. The concept of agents, in the setting of this paper is used
to refer to autonomous reasoning agents, where agents are capable of reasoning about
their behaviour (using a knowledge base and inference rules) and interactions (capa-
ble of communicating with each other). In agent-based techniques agents (devices or

P.C. Vinh et al. (Eds.): ICCASA 2012, LNICST 109, pp. 86–96, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

A Formal Approach to Modelling and Verifying Resource-Bounded 87

environment) are allowed to make intelligent decisions and perform appropriate ac-
tions. E.g., communication between battery-powered sensor nodes consumes most of
the available power. In order to increase the life time of sensor nodes, the amount of
information broadcast to other sensor nodes should be minimised. Each sensor node
(assuming modelled as an agent) should make local decisions in order to determine
what information should be communicated, and to whom. E.g., instead of broadcasting
all the WindSpeed readings, a sensor node may only send the average or the maximum
or minimum of WindSpeed readings taken over a specified amount of time.

The main emphasis of the existing research on context-aware computing including
those presented in [2,3,4,5] is how can ontologies be utilised for context-modelling,
knowledge sharing and reasoning about context for pervasive computing systems. How-
ever, that is not sufficient to make context-aware systems a key feature technology
that has been moving into safety-critical domains including healthcare, emergency sce-
narios, and disaster recovery. Moreover, in real-world context-aware agents are often
resource-bounded. In this trend, to develop smarter and reliable application of context-
aware systems, we need a rigorous study not only on formal representation of such sys-
tems but also their formal specification and verification. In this paper, we consider these
two problems jointly. In addition to the formal representation of context-aware systems,
we consider distributed problem-solving in systems of communicating context-aware
rule-based agents, and ask how much time (measured as the number of rule firings) and
how many message exchanges it takes the system to derive a goal. We use the Maude
LTL model checker [6] to verify interesting properties of such systems.

The remainder of the paper is organized as follows. In section 2, we discuss how con-
texts are represented using OWL 2 RL and SWRL, and ontological context reasoning
to infer higher level contexts. In section 3, we describe our model of communicating
multi-agent context-aware systems. In section 4, we briefly describe specification of the
multi-agent context-aware systems into Maude, and to illustrate the application of the
framework in section 5 we present an example system and experimental results. We
discuss related work in section 6 and conclude in section 7.

2 Ontology-Based Context Representation

In context-aware computing, the definition of context has been at the centre of different
research efforts, however, a universally consented definition of context has been difficult
to realise. We view context is any information that can be used to identify the status of an
entity. An entity can be a person, a place, a physical or a computing object. This context
is relevant to a user and application, and reflects the relationship among themselves [7].

A context can be formally defined as a (subject,predicate,object) triple that states a
fact about the subject where — the subject is an entity in the environment, the object
is a value or another entity, and the predicate is a relationship between the subject and
object. E.g., we can represent a context “a disaster event has site Southern Florida” as
(DisasterEvent,hasSite,SouthernFlorida).

Context modelling is a well studied topic in pervasive computing and it is a process of
identifying “a concrete subset of the context that is realistically attainable from sensors,
applications and users and able to be exploited in the execution of the task. The context

88 A. Rakib and R.U. Faruqui

Fig. 1. A fragment of the disaster management ontology

model that is employed by a given context-aware application is usually explicitly speci-
fied by the application developer, but may evolve over time” [8]. In the literature various
context modelling approaches have been proposed, however, ontology-based approach
has been advocated as being the most promising one [9].

An ontology is a model of a domain that introduces vocabulary relevant to the do-
main and uses this vocabulary to specify the relationships among them [10]. That is, an
ontology can be used to represent knowledge of a domain which gives a clear and co-
herent view of that domain. This facilitates the development of formal context models
to share and reuse knowledge among the computational entities, such as, e.g., software
agents, and provides a foundation for interoperability among the agents in a multi-agent
system. Furthermore, ontology-based context modelling approach allows reasoning to
infer implicit knowledge from ontologies and to generate high-level implicit contexts
from the low-level explicit contexts.

Fig. 2. Individualised HurricaneEvent ontology

The common trend in ontology-based
context modelling is to apply the hierar-
chical approach comprising of upper and
domain ontologies. The upper ontology
defines the high-level concepts that are
common among different context-aware
entities, and the domain ontology is an
extension of upper ontology, defining the
details of general concepts and their prop-
erties for a particular domain. For context
modelling we use OWL 2 RL, a profile
of the new standardization OWL 2, and
based on pD∗ and the description logic
program (DLP) [11]. We choose OWL
2 RL because it is more expressive than the RDFS and it is suitable for the de-
sign and development of rule-based systems. To illustrate our ontology-based mod-
elling approach for context-aware systems, we use a disaster management scenario
adapted from [12]. Here we focus on the emergency response of the situation that

A Formal Approach to Modelling and Verifying Resource-Bounded 89

includes the activities designed to minimize loss of life and property. The upper on-
tology contains the top-level concepts for a context-aware system proposed in [13].
We use Device, Event, Actions, Resource, and Situation as top-level concepts to rep-
resent the context about devices (e.g., wind speed measurement sensor), events (e.g.,
hurricane event), rescue actions (e.g., evacuation), resources (e.g., health care team)
and situation (e.g., physical location). The domain ontology can be an extension of
the upper ontology for several disaster events such as earth quake, flood, tsunami,
fire break, and hurricane. The domain ontology provides context about the event it-
self, its causes, its symptoms (e.g., wind speed, air pressure, storm surge etc.), and
resources (e.g., health care team, fire brigade etc.) available to respond. Fig. 1 de-
picts a fragment of the disaster management ontology. An instance of the domain
ontology can be, e.g., “disaster event” which is depicted in Fig 2. In this figure, we as-
sert some low-level contexts for a disaster event namely, hasSite(DisasterEvent, South-
ernFlorida), hasStormSurge(DisasterEvent,15), hasWindSpeed(DisasterEvent,93), ha-
sAirPressure(DisasterEvent,93), and hasName(DisasterEvent,HurricaneEvent). It also
includes some inferred contexts derived from context-reasoning using the DL reasoner
Pellet. The context reasoner classifies the disaster event as a very strong hurricane by
determining high-level contexts: wind speed level, air pressure level, and storm surge
level. In addition to the Pellet, we use rule-base reasoning which is discussed in the next
section onwards.

Fig. 3. Example SWRL rules

The combination of upper and domain ontologies described above, however only
capture the static behaviour of a context-aware system. The context-aware systems
modelled in our approach define their dynamic behaviour using Semantic Web Rule
Language (SWRL). SWRL allows user to write rules using OWL concepts and its com-
bination with OWL 2 RL provide more expressive language having greater deductive
reasoning capabilities than OWL 2 RL alone. We can express more complex rule-based
concepts using SWRL that cannot be modelled using OWL 2 RL, as shown in Fig. 3.
Thus our approach of ontological representation of context-aware systems gives a clean
ontology design based on the distinction between the static information represented us-
ing OWL 2 RL and the dynamic aspects of the systems go into the SWRL rules. We
build ontologies using Protégé version 4.1 [14].

90 A. Rakib and R.U. Faruqui

3 Multi-agent Context-Aware Systems

Pervasive computing systems which include multiple interacting devices and human
users can often be usefully modelled as multi-agent systems. Non-human agents in
such a system may be running a very simple program, however they are increasingly
designed to exhibit flexible, adaptable and intelligent behaviour. A common methodol-
ogy for implementing the latter type of agents is implementing them as rule-based rea-
soners. We extract Horn clause rules from ontologies to design our rule-based agents.
We developed a translator that takes as input an OWL 2 RL ontology in the OWL/XML
format (output file of Protégé) and translates it to a set of plain text Horn clause rules.
We use the OWL API to parse the ontology and extract the set of axioms and facts.
In [11] a Description Logic Mapping (DLP) mapping is given to translate an OWL 1
ontology to a set of Horn clause rules. We extended the DLP mapping to accommodate
new features of OWL 2 RL. The translation of SWRL rules is straightforward because
they are already in the Horn clause rule format. The translation of OWL 2 RL + SWRL
to Horn clause rules is automatic and is a part of TOVRBA[15].

We adopt the model of multi-agent systems presented in [16]. A multi-agent system
consists of nAg (≥ 1) individual agents A = {1, 2, . . . , nAg}. Each agent i ∈ A has a
program, consisting of Horn clause rules of the form C1∧C2 ∧ . . .∧Cn → C (derived
from OWL 2 RL and SWRL), and a working memory, which contains ground atomic
contexts taken from ABox representing the initial state of the system. In our model,
agents share a common ontology and communication mechanism. To model communi-
cation between agents, we assume that agents have two special communication primi-
tives Ask(i, j, C) and Tell(i, j, C) in their language, where i and j are agents and C is
an atomic context not containing an Ask or a Tell . Ask(i, j, C) means ‘i asks j whether
the context C is the case’ and Tell(i, j, C) means ‘i tells j that context C’ (i �= j). The
positions in which the Ask and Tell primitives may appear in a rule depends on which
agent’s program the rule belongs to. Agent i may have an Ask or a Tell with arguments
(i, j, C) in the consequent of a rule; e.g., C1 ∧C2 ∧ . . . ∧Cn → Ask(i, j, C) whereas
agent j may have an Ask or a Tell with arguments (i, j, C) in the antecedent of the
rule; e.g., Tell(i, j, C) → C is a well-formed rule (we call it trust rule) for agent j that
causes it to believe i when i informs it that context C is the case. No other occurrences
of Ask or Tell are allowed. Note that OWL 2 is limited to unary and binary predicates
and it is function-free. Therefore, in the Protégé editor all the arguments of Ask and
Tell are represented using constant symbols and these annotated symbols are translated
appropriately when designing the target system using the Maude specification.

Firing a communication rule instance with the consequentAsk(i, j, C) adds the con-
text Ask(i, j, C) both to the working memory of i and of j. Intuitively, i has a record
that it asked j whether context C is the case, and j has a record of being asked by i
whether context C is the case. Similarly, if the consequent of a communication rule
instance is of the form Tell(i, j, C), then the corresponding context Tell(i, j, C) is
added to the working memories of both the agents i and j. The agents in the system
execute synchronously. We assume that each agent executes in a separate process and
that agents communicate via message passing. We also assume that there is a bound
on communication for each agent i which limits agent i to at most mi(≥ 0) messages.
Each agent has a communication counter, msgi, which starts at 0 and is not allowed to

A Formal Approach to Modelling and Verifying Resource-Bounded 91

exceed the value mi. We further assume that each agent can communicate with multiple
agents in the system at the same time. At each step in the evolution of the system, each
agent chooses from a set of possible actions: Rule firing a rule, Communication agents
can exchange messages regarding their facts using Ask and Tell , and Idle which leaves
its state unchanged. The actions selected by the agents are then performed in parallel
and the system advances to the next state.

4 Specifying Systems in Maude

We use extended version of the TOVRBA tool [15] to translate OWL/XML rules pro-
duced by Protégé into plain text Horn clause rules of the form: 〈n : C1 ∧ C2 ∧ . . . ∧
Cn → C〉, where n is the user annotated priority of the rule. In this step the sys-
tem designer identifies which agents (s)he needs to design using which rules. The de-
signer also determines the number of agents (s)he needs to model and their possible
interactions. An agent can interact with one or more agents in the system, but not nec-
essarily every agent interacts with every other agent in the system. When the rules
are classified for the agents, the multi-agent system can be implemented in Maude.
The internal configuration of the rules in Maude specification has the following form:
〈n : [t1 : C1] ∧ [t2 : C2] ∧ . . . ∧ [tn : Cn] → [t : C]〉, where the ti’s and t represent
time stamps of contexts automatically inserted by TOVRBA. When a rule instance of the
above rule is fired, the newly generated context C will be added to the working memory
with time stamp t = t′ + 1, i.e., t will be replaced by t′ + 1, where t′ is the current
cycle time of the system. The associated time stamp reflects when a particular context
has been generated. Initially all the working memory contexts have time stamp 0 and
the system moves and generates new contexts at different time points.

A multi-agent rule-based system has three components: the knowledge base (KB)
which contains rules, the working memory (WM) which contains facts, and the infer-
ence engine which reasons over rules when the application is executed. In our frame-
work, the inference engine have some reasoning strategies often used in rule-based
systems [17] including rule ordering, depth, breadth, simplicity, and complexity.

In Maude specification each agent in the system has a local configuration and the
(parallel) composition of all these local configurations make the global configuration
of the multi-agent system. To implement the local configuration of an agent (working
memory, program, agenda, reasoning strategies, message counters, time stamps etc.) we
declared a number of sorts, including Context, Term, WM, TimeC, TimeWM, Rule, and
Agenda, and define their relationships, e.g., TimeC is a subsort of TimeWM, Rule is a
subsort of Agenda and so on. In addition, we use a number of Maude library modules
such as NAT, BOOL, and QID. The local configuration of an agent i is represented as a
tuple [A | RL | TM | M | t | msg | syn], where the variables A and RL are
of sort Agenda, TM is of sort TimeWM, M is of sort WM, and t, msg, syn are of sort Nat.
The variables t, msg, and syn have been used to represent respectively the time step,
message counter, and a flag for synchronisation.

In this paper we don’t discuss complexity issues, however, the translation of the
ontology-driven rules in Maude takes polynomial space. The rules of an agent i are de-
fined using an operator which takes arguments as a set of contexts known as antecedents

92 A. Rakib and R.U. Faruqui

(of sort TimeWM) and a single context known as consequent (of sort TimeC) and it re-
turns an element of sort Rule. Therefore, each rule of an agent i is an element of sort
Rule. These rules are represented using Maude equations, one equation for each rule.
As an example, the rule 〈 1 : C1 → C2〉 can be represented as follows:

ceq ruleIns(A,[t1:C1] TM, M) = <1:[t1:C1]-> [0:C2]> ruleIns(<1:
[t1:C1]-> [0:C2] A, [t1:C1] TM, M) if (not inAgenda(<1:[t1:C1]
->[0:C2]>, A) /\ (not inWM(C2, M)) .

eq ruleIns(A, TM , M) = void-rule [owise] .

The inference engine is implemented using a set of Maude rules: Generate,Choice,
Apply, Idle, and Communication. The Generate rule causes each agent to gener-
ate its conflict set by calling recursively rule equations like defined above. Each equa-
tion may give rise to more than one rule instance depending on the elements in working
memory. To prevent the regeneration of the same rule instance, the conditional equation
checks whether the rule instance and its consequent are already present in the agenda
and working memory. The Choice rule causes each agent to apply its reasoning strat-
egy, theApply rule causes each agent to execute the rule instances selected for execution,
the Idle rule executes only when there are no rule instances to be executed (the appli-
cation of the Idle rule advances the cycle time of the agent i, leaving everything else
unchanged), and communication among agents is achieved using the Communication
rule. When agents communicate with each other, one agent copies the communicated fact
from another agent’s working memory. Copying is only allowed if the fact to be copied
is not already in the working memory of the agent intending to copy.

5 Verifying Time and Communication Costs

This section shows how a context-aware multi-agent system specified in Maude can be
formally verified using the Maude LTL model checker. Model checking in Maude in-
volves a Maude specification of a system (as described in the previous section) together
with a property of interest. A property is a Linear Temporal Logic (LTL) formula inter-
preted as a property of computations of the system (linear sequences of states generated
by application of rewrite rules).

Wind

Speed

Management

Sensor

Air
Pressure

Management

Sensor

Storm
Surge

Management

Sensor

Scene

of

Emergency

Operations

Centre

First

Response

Team

Shelter

Management

Team

Shelter with

Health Services
Management

Team

Evacuation
Management

Team

Emergency

Fire

Brigade

Health
Services

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

Fig. 4. Agents and their possible interactions

We build a multi-agent
rule-based system whose
rules are derived from the
ontology of the disaster
event scenario mentioned
in Section 2. The system
consists of eleven agents,
Fig. 4 depicts disaster man-
agement agents and their
possible interactions. The
sensor agents 1, 2, and 3 are
able to infer high-level con-
texts from sensed low-level
contexts using Horn clause

A Formal Approach to Modelling and Verifying Resource-Bounded 93

rules in their KB. They can classify wind, air, and storm into different levels based on
wind speed, air pressure, and storm surge. E.g., agent 1’s KB contains rules including
the following:
〈1 : hasWindSpeed(DisasterEvent,?windspeed)& greaterThanOrEqual(?windspeed,209)&
lessThanOrEqual(?windspeed,251) →hasWindSpeedLevel(DisasterEvent,WindSpeedLevel4) 〉;
and
〈2 : hasWindSpeedLevel(DisasterEvent,WindSpeedLevel4)→Tell (1,4,hasWindSpeedLevel(Disas-
terEvent,WindSpeedLevel4)) 〉.

The first rule classifies that the disaster event has WindSpedLevel4 if wind speed
is greater than or equal to 209km/h and less than or equal to 251km/h. That is agent
1 may infer high-level context hasWindSpeedLevel(DisasterEvent, WindSpeedLevel4)
from the low-level contexts, e.g., hasWindSpeed(DisasterEvent, 220), greaterThanOrE-
qual(220, 209), and lessThanOrEqual(220, 251). In our model we classify five different
levels of wind speed, air pressure, and storm surge based on NOAA/National Hurricane
Center’s information.1 The second rule is a communication rule of agent 1 through
which it interacts with agent 4 and sends context hasWindSpeedLevel(DisasterEvent,
WindSpeedLevel4) when it believes that current wind speed has WindSpeedLevel4. Sim-
ilar to the above, agent 1 has eight other rules for the other four different wind speed lev-
els. In a similar fashion, agent 2 may infer context hasAirPressureLevel(DisasterEvent,
AirPressureLevel4) if current air pressure is greater than or equal to 91.7kPa and less
than or equal to 94.2kPa, and agent 3 may infer hasStromSurgeLevel(DisasterEvent,
StormSurgeLevel4) if current storm surge is greater than or equal to 13ft and less than
or equal to 18ft, and so on. Once these agents infer high level contexts they can interact
with agent 4 and send those information. Agent 4’s KB contains rules including:
〈1 :Tell (1,4,hasWindSpeedLevel(DisasterEvent,WindSpeedLevel4))→hasWindSpeedLevel(Disas-
terEvent, WindSpeedLevel4)〉;
〈2 :hasWindSpeedLevel(DisasterEvent,WindSpeedLevel4)& hasAirPressureLevel(DisasterEvent,
AirPressureLevel4)& hasStormSurgeLevel(DisasterEvent,StormSurgeLevel4)& hasSite(Disaster
Event,?location)→hasEventSymptom(DisasterEvent, VeryStrongHurricane) 〉; and
〈3 :hasEventSymptom(DisasterEvent,VeryStrongHurricane)& hasSite(DisasterEvent,?location)
→Tell(4,5,hasOccurredAt(VeryStrongHurricane,?location))〉.

The first rule is a trust rule for agent 4 that causes it to believe agent 1 when
agent 1 informs it that context hasWindSpeedLevel(DisasterEvent, WindSpeedLevel4).
Upon receiving context information from three different measurement sensor agents,
using the second rule, agent 2 infers, e.g., the context hasEventSymptom(DisasterEvent,
VeryStrongHurricane). Using the third rule agent 4 interacts with agent 5 and in-
forms that very strong hurricane took place at Southern Florida if it already believes
context hasSite(DisasterEvent, SouthernFlorida) i.e., tells the context hasOccurre-
dAt(VeryStrongHurricane, SouthernFlorida). Due to space limitations, we are unable
to represent example rules of other agents in the system. However, agent 5 then inter-
acts with agent 6 and informs that an action is required against very strong hurricane
that has taken place at Southern Florida. Depending on the hurricane category, agent 6
interacts with various services including agents 7, 8, and 9. Agent 7 then reply back to

1 http://www.nhc.noaa.gov/aboutsshws.php
http://hypertextbook.com/facts/StephanieStern.shtml

http://www.nhc.noaa.gov/aboutsshws.php
http://hypertextbook.com/facts/StephanieStern.shtml

94 A. Rakib and R.U. Faruqui

agent 6 that immediately n number simple shelters and m number shelter with health
services are needed. Agent 6 relays these information to agent 5. Agent 5 then enquires
to agents 10 and 11 whether required number shelters are available, and receives shelter
availability replies. Similarly, depending on the hurricane category agent 8 and agent 9
might take different actions including Land Fire Brigade, Air Tanker, Boat Ambulance
and Air Ambulance Services. In order to model this scenario we have used 122 Horn
clause rules distributed to the agents. E.g., the KB of each of the measurement sensor
agents contains 10 rules, agent 4 is modelled using 25 rules, agent 5 is modelled using
16 rules, and so on. We verified a number of interesting resource-bounded properties of
the system including the following:

G(B4hasSite(DisasterEvent, SouthernFlorida))
∧ B4Tell(1 , 4 , hasWindSpeedLevel(DisasterEvent,WindSpeedLevel4))
∧ B4Tell(2 , 4 , hasAirPressureLevel(DisasterEvent, airPressureLevel4))
∧ B4Tell(3 , 4 , hasStormSurgeLevel(DisasterEvent, stormSurgeLevel4))
→ X n B4Tell(4 , 5 , hasOccurredAt(VeryStrongHurricane, SouthernFlorida)))

the above property specifies that whenever agents 1, 2, and 3 tell agent 4 that the wind
speed, air pressure, and storm surge have reached fourth level at the disaster event site
Southern Florida, within n time steps agent 4 informs agent 5 that very strong hurricane
has occurred at Southern Florida (where Bi for each agent i is a syntactic doxastic
operator used to specify agent i’s ’beliefs’ or the contents of its working memory, and
Xn is the concatenation of n LTL next operators X) and

G(B5Tell(4 , 5 , hasOccurredAt(VeryStrongHurricane, SouthernFlorida))
→ X n B5Ask(5 , 10 , hasAvailableShelter(SouthernFlorida, 10000)) ∧msg5

=m)

which specifies that whenever agent 5 receives information from agent 4 that very strong
hurricane has occurred at Southern Florida, within n time steps agent 5 asks agent 10 if
shelter is available for 10000 homeless people at Southern Florida while exchanging m
messages (msg5

=m states that the value of agent 5’s communication counter is m).
The above properties are verified as true when the value of n is 5 in the first property,

and the values of n and m are 18 and 5 in the second property; and the model checker
uses 1 seconds for each property. However, the properties are verified as false and the
model checker returns counterexamples when we assign a value to n which is less
than 5 in the first property, and values to n and m which are less than 18 and 5 in
the second property. This also demonstrates the correctness of the encoding in that the
model checker does not return true for arbitrary values of n and m.

6 Related Work

We present a brief existing research on context-aware systems concentrating on the
ontology-based approaches which have influenced the work presented in this paper.
In [2], Wang et al. proposed OWL encoded context ontology (CONON) for modelling
and reasoning in pervasive systems. In addition to the ontological reasoning they use a
set of user-defined FOL rules to reason over data, i.e., LP reasoning combined with DL
reasoning in separate tasks. In contrast, OWL 2 RL and SWRL have been used in our
work which give an expressive ontology language to capture the knowledge of com-
plex context-aware systems. In [4], Keßler et al. has shown the usefulness of SWRL

A Formal Approach to Modelling and Verifying Resource-Bounded 95

rules in modelling context-aware scenarios, and how those rules can be used for per-
sonalised mappings between the numeric sensor world and information stored in on-
tologies. The main focus of their work is context-aware instantiation based on SWRL
rules and built-ins. In [5], OWL ontologies are used to model context-aware systems,
the authors exploited classes and properties from ontologies to write rules in Jess to
derive multi-agent rules based system. Thus their modelling part of the system only
reflects the static behaviour. In contrast, our ontology-based modelling captures both
static and dynamic behaviour of the system using OWL 2 RL and SWRL. A prototype
of context management model is presented in [3] that supports collaborative reason-
ing in a multi-domain pervasive context-aware application. The model facilitates the
context reasoning by providing structure for contexts, rules and their semantics. How-
ever, none of the existing approaches discussed above considers formal specification
and verification of context-aware systems.

7 Conclusions and Future Work

In this paper, we proposed a formal approach to modelling and verifying context-
aware systems. We gave ontological representation of contexts and shown how we build
context-aware systems as multi-agent systems, specify them in Maude and ultimately
verify their interesting properties using model checking. Our approach gives a clean on-
tology design based on the distinction between the static information represented using
OWL 2 RL and the dynamic aspects of the systems go into the SWRL rules. In future
work, we would like to present a formal logical model for context-aware systems based
on temporal epistemic description logics. In addition to the time and communication
resources, we will also consider space requirement for reasoning.

References

1. Weiser, M.: The computer for the 21st century. ACM SIGMOBILE Mobile Computing and
Communications Review - Special Issue Dedicated to Mark Weiser 3(3), 3–11 (1999)

2. Wang, X.H., Zhang, D.Q., Gu, T., Pung, H.K.: Ontology based context modeling and reason-
ing using owl. In: PerCom Workshops 2004, pp. 18–22 (2004)

3. Ejigu, D., Scuturici, M., Brunie, L.: An ontology-based approach to context modeling and
reasoning in pervasive computing. In: PerCom Workshops 2007, pp. 14–19 (2007)

4. Keßler, C., Raubal, M., Wosniok, C.: Semantic Rules for Context-Aware Geographical Infor-
mation Retrieval. In: Barnaghi, P., Moessner, K., Presser, M., Meissner, S. (eds.) EuroSSC
2009. LNCS, vol. 5741, pp. 77–92. Springer, Heidelberg (2009)

5. Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L., Colella, R., DiBari, A.: A Frame-
work for Context-Aware Home-Health Monitoring. In: Sandnes, F.E., Zhang, Y., Rong, C.,
Yang, L.T., Ma, J. (eds.) UIC 2008. LNCS, vol. 5061, pp. 119–130. Springer, Heidelberg
(2008)

6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The Maude LTL Model Checker and Its Im-
plementation. In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 230–234.
Springer, Heidelberg (2003)

7. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5(1), 4–7 (2001)
8. Henricksen, K.: A Framework for Context-Aware Pervasive Computing Applications. PhD

thesis, The University of Queensland (2003)

96 A. Rakib and R.U. Faruqui

9. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. International
Journal of Ad Hoc and Ubiquitous Computing 2(4), 263–277 (2007)

10. Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisi-
tion - Special issue: Current issues in knowledge modeling 5(2), 199–220 (1993)

11. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining
logic programs with description logic. In: WWW 2003, pp. 48–57. ACM Press (2003)

12. Rinner, C.: Multi-criteria evaluation in support of emergency response decision-making. In:
Joint CIG/ISPRS Conference on Geomatics for Disaster and Risk Management (2007)

13. Baumgartner, N., Retschitzegger, W.: A survey of upper ontologies for situation awareness.
In: Proceedings of the 4th IASTED International Conference on Knowledge Sharing and
Collaborative Engineering, pp. 1–9 (2006)

14. Protégé: The Protégé ontology editor and knowledge-base framework (Version 4.1) (July
2011), http://protege.stanford.edu/

15. Rakib, A., Faruqui, R.U., MacCaull, W.: Verifying Resource Requirements for Ontology-
Driven Rule-Based Agents. In: Lukasiewicz, T., Sali, A. (eds.) FoIKS 2012. LNCS,
vol. 7153, pp. 312–331. Springer, Heidelberg (2012)

16. Alechina, N., Logan, B., Nga, N.H., Rakib, A.: Verifying Time and Communication Costs
of Rule-Based Reasoners. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS,
vol. 5348, pp. 1–14. Springer, Heidelberg (2009)

17. Culbert, C.: CLIPS reference manual. NASA (2007)

http://protege.stanford.edu/

	A Formal Approach to Modelling and Verifying
Resource-Bounded Context-Aware Agents
	Introduction
	Ontology-Based Context Representation
	Multi-agent Context-Aware Systems
	Specifying Systems in Maude
	Verifying Time and Communication Costs
	Related Work
	Conclusions and Future Work
	References

