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Abstract. Most existing recommender systems follow the pull-delivery
approach, where the user must explicitly make request before receiving
some product or service recommendations. However, in application do-
mains where the availability of items changes quickly and often (e.g.,
recommendation of relevant promotions, events, etc.), the pull-delivery
recommendation approach seems not effective in helping users keep track
of their desired and interested items. In this paper, we present our pro-
posed push-delivery mobile recommendation methodology that is capa-
ble of proactively delivering personalized recommendations to mobile
users at appropriate context. The proposed recommendation methodol-
ogy has been implemented in Prom4U - a push mobile recommender
system that helps users timely receive their interested promotions of
commercial products from supermarkets and stores. We present here the
experimental results of a live-user evaluation of Prom4U that show the
appropriateness of the proposed recommendation approach and the ef-
fectiveness of the system Prom4U.

Keywords: mobile recommender system, push delivery, user prefer-
ences elicitation, critique-based recommendation, live-user evaluation.

1 Introduction

Recommender systems (RSs) aims at solving the information overload prob-
lem by providing product and service recommendations personalized to a given
user’s needs and preferences [1], [2]. Most existing RSs follow the pull-delivery
approach, where the user must explicitly make request for some product or ser-
vice recommendations. However, in some application domains (e.g., the problem
of providing interested product promotions to a given user), the availability of
items changes quickly and often. In such application domains, the pull-delivery
approach seems less effective in helping users keep track of their interested items,
i.e., at the time of a user’s request some of his interested items are not available,
but when they are available (often in short durations) the user does not know.
In this paper, we present our proposed mobile push-delivery recommendation
methodology that is capable of proactively (i.e., automatically) providing rele-
vant recommendations to users at right contexts. To provide push-delivery rec-
ommendations to users, the system must decide: what recommendations should be
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pushed to a given user, and when the system should push these recommendations
to the user. To tackle the first problem, our proposed recommendation method-
ology integrates both long-term and session-specific user preferences and exploits
a critique-based conversational approach [3]. The long-term user preferences are
inferred from past recommendation sessions, whereas the session-specific user
preferences are derived from the user’s critiques to the provided recommenda-
tions in the current session. To deal with the second problem, the system models
a push context as a case, and uses the Case-Based Reasoning (CBR) problem-
solving strategy [4], i.e., a machine learning approach, to exploit (i.e., reuse) the
knowledge contained in the past push cases to determine the right push context
for the current case.

Our proposed recommendation methodology has been implemented in Prom/4 U
- a mobile push recommender system that helps users timely receive their inter-
ested product promotions. We conducted an evaluation of the system Prom4U
with real test users. This live-user evaluation aims at testing the appropriateness
of the proposed recommendation approach and the effectiveness of the imple-
mented system. We present in this paper the experimental results of this live-user
evaluation.

The remainder of the paper is organized as follows. In Section 2, we dis-
cuss some related work on recommender systems and push-delivery information
systems. In Section 3, we introduce the formal representations of product promo-
tions, the user profile and the user query. In Section 4, we present our proposed
mobile push-delivery recommendation methodology. In Section 5, we report the
experimental results of the live-user evaluation. Finally, the conclusion and fu-
ture work are given in Section 6.

2 Related Work

Recommender Systems (RSs) are intelligent decision support tools that help
users find and select their desired products and services when there are too
many options to consider or when users lack the domain-specific knowledge to
make selection decisions by themselves. Traditional recommendation approaches
include: collaborative, content-based, and knowledge-based [I], [2]. RSs have
been very effective and popular tools in well-known commercial websites, such
as Amazon.com, Barnes&Noble.com, eBay.com, Yahoo! news, iTunes Genius,
TripAdvisor.com, MyProduct Advisor.com, etc.

A push-delivery information system is a system that automatically delivers
(i.e., pushes) the information to users without their request. The push-delivery
model appears to be effective in application domains where the availability of
items changes often and quickly, because it helps users timely receive their in-
terested information. However, if the system pushes uninterested information to
a user, or even pushes interested information to the user but at inappropriate
contexts, there is a high risk that this push-based delivery will annoy the user
(i.e., considered as a spam). Hence, for push-delivery RSs, to provide personal-
ized recommendations and reduce the spamming issue, the system must push
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only relevant and targeted information to the user at right time. In some previ-
ous approaches, the system just pushes all objects (or items) that locate near
the user’s position, without regarding his preferences [5], [6]. In other previous
approaches, the system, though takes into account the user’s preferences, but
does not estimate right contexts to push, i.e., the system always pushes adver-
tisements to the user when he is close to (or inside) the store [7], [§]. Ciaramella
et al. [9] presented a mobile services RS that uses a rules table to determine a
user’s situation, but the system pushes all services associated with the deter-
mined situation to the user without regarding his preferences. The information
service system presented in [I0] determines the push time based on a decision
table that is the same for all users.

In our proposed approach, the pushed recommendations are personalized for
each user (i.e., suitable for his preferences), and the push context is determined
based on the system’s learning from past push cases. Hence, the system’s push-
context determination is personalized for each user. Moreover, all the push-
delivery information systems mentioned above follow the single-shot strategy,
where the system computes and pushes to the user the information, and the
session ends. In our proposed approach, a push session, after the user accepts
to view the pushed recommendations, evolves in a dialogue where the system’s
recommendations interleave with the user’s critiques to these recommendations
[3]. Such critiques enable the system to better understand the user’s preferences,
and hence to provide more suitable recommendations to the user.

3 Formal Representations

3.1 Promotion Representation

In our recommendation problem, a promotion, represented hierarchically, con-
sists of the three main components: the promotion’s information, the promotion’s
promoted product(s) and the promotion’s gift(s). In this hierarchical represen-
tation, each component is represented by its own sub-components and features.
Because of the limited paper space, we elaborate here only the first and second
levels of the hierarchical representation of a promotion.

X =(PROM INFO,PROM PRODUCTS,GIFTS)
The component PROM IN FO stores the information of the promotion:
PROM INFO = (Prom Types, DURATION, PROVIDER);
where the feature Prom Types represents the types of the promotion, the sub-
components DURATION and PROVIDER represent the promotion’s avail-
able duration and provider, respectively.
The component PROM PRODUCTS represents the set of the promoted

products, where each promoted product is represented by the product identifier,
its category and price.

PROM PRODUCTS = {(Product 1d,Category, Price)}

The component GIFTS represents the set of the gifts of the promotion, where
each gift is represented by the gift identifier and its type.
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GIFTS = {(Gift 1d,Gift Type)}

3.2 User Profile Representation

The user profile stores the user’s long-term preferences that are exploited by
the system to build the initial representation of the user query. The user profile,
hierarchically represented, consists of the three components that represent the
user’s long-term preferences on promotions, promoted products and gifts.

U= (PROM PREF,PRODUCT PREF,GIFT PREF);

where the component PROM PREF stores the user’s long-term preferences
on promotions types and providers; the component PRODUCT PREF stores
his long-term preferences on category and price of promoted products; and the
component GIFT PREF stores his long-term preferences on gift types.

3.3 User Query Representation

The user query (Q) representation encodes the system’s understanding of the
user’s session-specific preferences. In a recommendation session, at every rec-
ommendation cycle the system uses this query @) to compute the promotions
recommendation list for the user. The user query @ consists of the two struc-
tured components: the favorite pattern (FP) and the component and feature
importance weights (W).
Q= (FP,W)

The favorite pattern F'P, hierarchically represented, consists of the three com-
ponents that represent the user’s session-specific preferences on promotions, pro-
moted products and gifts. The structure of F'P is similar to the structure of the
user profile (U) representation, except that F'P includes additionally the sub-
component DURATION (i.e., to represent the user’s session-specific preference
on promotion available duration) and the feature Distance (i.e., to represent the
user’s session-specific preference on distance to promotion provider).

The weights vector W is represented hierarchically corresponding to the rep-
resentation of F'P. For each representation level, the weight of a sub-component
(or a feature) models how much important the sub-component (or the feature)
is for the user with respect to the others.

4 Proposed Recommendation Methodology

In our approach, a recommendation session starts when the system shows a
notification screen (i.e., of new interesting promotions) on the user’s mobile
device, and ends when he quits the session. The overview of the recommendation
process is shown in Figure [Tl

When the session starts, the system builds the initial query representation
(Q°) exploiting the user’s contextual information and long-term preferences
stored in the user profile. In particular, the values of the features of FP? are set
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Fig. 1. The overview of the recommendation process

by the values of the corresponding features in the user profile (U). In addition,
the values of DURATION and Distance are set to unknown to indicate that the
system, at the beginning of the session, does not know about the user’s session-
specific preferences on promotion available period and distance to provider.

The importance weights vector W is initialized by exploiting the history of
user critiques. The intuitive idea is that a feature (or sub-component)’s initial
importance weight is proportional to the frequency of the user critiques expressed
on that feature (or sub-component) [I1]. We note that in our current approach,
at a recommendation cycle the user can make critique to a number of (i.e., more
than one) features of the item; whereas in our previous work [I1] the system
allows the user to make critique to only one feature per cycle.

The system uses this initial query Q° to compute the initial recommendation
list for the user, by ranking the available promotions to their similarity to (£ P,
W9). The ranking is done, using a similarity function computed over the hierar-
chical representation described in Section B so that the more similar to (FP°,
W9) a promotion is the higher it appears in the ranked list. In case of ties, the
promotion provided by the provider closer to the user’s position is ranked higher.
Only k (i.e., a predefined cut-off parameter) best promotions in the ranked list,
i.e., those most similar to (FP°, WY), are included in the recommendation list.

After computing the recommendation list, the system must determine when it
should push this list to the user. In our proposed approach, this push-context de-
termination is done based on the Case-Based Reasoning (CBR) problem-solving
strategy [4]. The CBR is used to exploit (i.e., reuse) the knowledge contained in
the past push cases. In our recommendation methodology, each push case is mod-
eled by two parts: problem description and solution. In particular, the problem
description of a case contains information of: 1) the time-slot of the push, 2) the
list of providers that provide promotions contained in the recommendation list,
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3) the user’s distances to those providers, and 4) the user’s long-term preferences
to those providers. The solution of a case indicates the decision of the user, i.e.,
either the user accepts to receive (i.e., view) the recommendation list or the user
rejects to receive.

To estimate (i.e., predict) an appropriate push context, the system identifies
the set of m past push cases most similar to the current one in that the users
accepted to receive the recommendation list (denoted as CAccePted) and the
set of m past push cases most similar to the current one in that the users
rejected to receive the recommendation list (denoted as CTeected) Then, the
system computes the acceptance degree (i.e., the confidence level to push) and
the rejection degree (i.e., the confidence level to not push) for the current case.

1

acceptance degree(C*) = Z sim(C*, C); (1)
CeCAccepted
1
rejection degree(C*) = Z sim(C*, C); (2)
CECRGjected

where C* is the current case, C' is a past one, and sim(C*,C) is the similarity
between C* and C.

If (acceptance degree(C*) —rejection degree(C*)) > 0 (i.e., 0 is a predefined
push-confidence threshold value), then the system sends a push notification to
the user. Otherwise, the system does not, and the recommendation list is saved
in the pending list for him (i.e., at the next time-slot, the system re-estimates
whether or not to send the push notification to him).

We note that in our proposed approach, at the predicted push time the sys-
tem does not immediately show the recommendation list. Instead, the system
just shows a notification on the screen of the user’s mobile device and lets him
make the final decision (i.e., to accept or reject the push). In this way, we get the
two advantages. First, in case the system’s predicted time is not (really) appro-
priate for the user, showing just a notification screen makes him less annoying
compared to showing immediately the recommendation list. Second, showing the
notification screen allows the system to collect the user’s decision (i.e., to accept
or reject the push) that is recorded as the solution part of the current push case.

Given the push notification sent to the user’s mobile device, he can decide
to accept the push, or postpone it, or reject it (see Figure Pla). If he accepts
the push, then the system stores the current push case in its case base (for the
future uses) and shows the recommendation list to him (see Figure [2b). If he
rejects to receive the push, then the system stores the current push case in its
case base, and the session ends. If he postpones the push, then he specifies a
later appropriate time slot (see Figure 2la). At that indicated (postponed) time
the system re-sends the push notification to him. Until the end of the current
day, if he has not accepted the postponed push, then the system records the
postponed push case as a rejection one in its case base.

When the recommendation list is shown to the user (see Figure 2Ib), he can
select a recommended promotion to see its details (see Figure[2hc). After the user
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Fig. 2. The user interface of the system PromjU

views a promotion’s details, if he accepts the promotion, then this promotion
is added to his Selection List, and he can view another recommended one or
quit the session. If he is somewhat interested in the promotion, but some of its
features do not completely satisfy him, then he critiques the promotion to specify
his preferences on these unsatisfactory features (see Figure [21d). Such critiques
help the system adapt its current understanding of the user’s preferences (i.e.,
encoded in @), and re-compute a new list of recommended promotions shown to
the user, and the system proceeds to the next recommendation cycle.
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We note that this critiquing mechanism is different from that used in our
previous work [3] in two aspects. First, in our previous approach [3], at a recom-
mendation cycle the user can make a critique to only one feature. However, in
our current approach, at a recommendation cycle the user is allowed to make a
critique to a number of features (i.e., multi features are criticized per cycle). This
helps to increase the convenience in critiquing, and to decrease the length (i.e.,
the number of cycles) of the recommendation session. Second, in our previous
approach [3], after the user makes a critique, the user-query representation (Q)
is updated exploiting solely the critique (i.e., not exploiting the values of the
uncriticized features of the criticized item). However, in our current approach,
after the user makes a critique, the user-query representation (@) is updated
exploiting both the critique and the values of the uncriticized features of the
criticized item. Our current approach is motivated by the fact that a user makes
a critique to an item when: 1)he likes that item, but 2)wants to modify some
unsatisfactory features of that item. Hence, in our current approach the system
infers implicitly that the user likes those uncriticized features. Also, the system’s
graphical user interface (GUI) is designed to help the user easily and quickly see
all the features of the promotion before making critique (see Figure Zlc).

When the user quits the session, the system exploits the information of his
expressed critiques and selected promotions in the current session to update
the user profile (U). This user profile update allows the system to refine its
understanding of the user’s long-term preferences, and hence better serve him
in the future.

5 Live-User Evaluation

The proposed recommendation methodology has been implemented in Prom4U
- a mobile RS that aims at automatically (i.e., proactively) providing relevant
promotion recommendations to mobile users at appropriate contexts. In the
current version of Prom/U, the system provides promotions of five categories
(i.e., clothes and shoes, household goods, foods, mobile phones, computers and
accessories), and the promotions are provided by five biggest super markets (i.e.,
promotion providers) in Hanoi, Vietnam.

We conducted a live-user evaluation of Prom/U to evaluate the appropriate-
ness of the proposed recommendation approach and the usability of the system.
This live-user evaluation lasted in more than two months and involved seven
test userfE, i.e., three men and four women, in the ages of from 20 to 30 years
old. All of the test users were interested in receiving suitable product promo-
tions from super markets. In this live-user evaluation, we used the Vietnamese
user-interface version of Prom4 U, since all the test users are Vietnamese and for
some of them their English are not good. (Note that Figure 2lshows the English
user-interface version of Prom4U.)

! In fact, there were twenty two persons registering to join in this evaluation. But
unfortunately, we had to exclude fifteen of them, because their mobile phones do
not support running J2ME application and/or do not have a GPS built-in receiver.
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After the client side of Prom4U (i.e., a J2ME midlet application) was installed
on the mobile phone of a test user, he (or she) was introduced by the use guide
of Prom4U and the test scenario, and then started using the system (in about
two months). The test scenario, which every test user followed, consists of four
main steps.

— Step 1. Given the push notification shown on the mobile phone’s screen,
the test user can either accept, postpone or reject to see the recommended
promotions list (see Figure Pha).

— Step 2. If the user accepts to see the recommended promotions list, it is
shown on his/her mobile phone’s screen. He/she can view the details of any
of the recommended promotions.

— Step 3. After viewing a recommended promotion, the user can either selects
it (i.e., if it satisfies him/her) or make a critique.

— Step 4. If the user likes a recommended promotion, but is not satisfied with
it, then he/she uses the critiquing function to indicate his/her preferences
to the promotion’s unsatisfactory features. After the user makes a critique
(to a number of features), the system exploits the critique to compute a new
recommendation list and shows it to him/her.

The live-user evaluation collected both objective measures and subjective com-
ments. The objective measures include the following metrics.

— Push Acceptance Rate: The number of the sessions in that the test users
accept to see the recommendation list (after the system shows the push
notification).

— Recommendation Success Rate: The number of the sessions in that the test
users select some promotion(s).

— Awverage Recommendation Length: The average number of cycles of a recom-
mendation session.

— Awverage Number of Criticized Features Per Cycle: The average number of
features that are criticized per cycle.

In total, we collected 32 recommendation sessions from the test users’ use of
Prom4U. Regarding the push acceptance rate, among 32 sessions there were
30 ones in that the test users accepted to see the recommendation list after
receiving the notification screen (i.e., the push acceptance rate of 93.75%). This
objective result shows that in many cases the context (i.e., time) when the system
automatically pushes the recommendation list to the user is appropriate (or at
least acceptable) for him/her.

Regarding the recommendation success rate, among 30 sessions (i.e., those in
that the user accepted to see the recommendation list) there were 27 success-
ful recommendation sessions (i.e., 90% of the recommendation sessions in that
the user selected some recommended promotions). This objective result is very
promising, which shows that the system is capable of providing good recommen-
dations for the users.
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The average recommendation length was 1.67, which means that on average
the test users could find their desired promotions within 1-2 recommendation cy-
cles. Recall that in our proposed recommendation approach, at each recommen-
dation cycle the user can make critique to a number of features of the criticized
item. Given the simple and easy user-system interactions (see Figure[2-c,d), this
average recommendation length is really acceptable for mobile users.

The average number of criticized features per cycle was 2.56. This result shows
our proposed approach’s effectiveness of allowing to make critique to more than
one feature per cycle. If the user is limited to make critique to only one feature
per cycle (e.g., as in [3]), then certainly the average recommendation length
would be (much) longer than the reported value of 1.67.

At the end of this live-user evaluation (i.e., after more than two months of
using Prom4U), the subjective comments and suggestions were collected from
each test user, in form of free-text writing, regarding the effectiveness and us-
ability of Prom4U. All the test users found that: 1)the system was effective in
helping them receive their interested promotions, and 2)the system was easy
to use and fast in the system-user interactions. However, by exploiting the test
users’ comments and suggestions, we found some possible improvement aspects
of Prom4U. First, at first some test users did not find how to execute the screen-
embedded commands (e.g., the buttons “Critique” and “Select” in Figure Btc).
(To execute such a screen-embedded command, the user has first to navigate
through several display objects and then to activate that command.) For them,
soft-button or menu commands are more traditional and easier to use. Second,
some test users wanted to see again those promotions that they had previously
criticized (in their current recommendation session). Third, some test users sug-
gested that visualizing the recommended promotions on an electronic map, i.e.,
corresponding with their providers’ locations, facilitates their promotions selec-
tion. In the next improvement version of Prom4U we should take into account
these comments and suggestions.

6 Conclusion and Future Work

Mobile recommender systems aim at providing recommendations to users at
anytime and anywhere, exploiting the popularization of mobile devices and their
unique features like mobility, high targeting and personality. In this paper, we
have presented our proposed methodology for proactively providing personalized
recommendations to mobile users at appropriate contexts. The integration of the
user’s long-term and session-specific preferences enables the system to provide
relevant recommendations, and the appropriate push-context prediction helps
the system deliver these recommendations to him at right time. This mobile
push recommendation methodology has been implemented in a recommender
system called Prom4U that helps users timely receive their interested product
promotions. In this paper, we have also presented the experimental results of
the live-user evaluation of Prom4U, which show that our proposed approach
is a good and promising solution for the mobile push-delivery recommendation
problem.
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For future work, we plan to do some tasks. First, we would like to run an
empirical study to understand if users see all the features of the item before
making a critique. This strongly influences the update method of the user query
representation (Q). Second, we need to exploit all the test users’ comments and
suggestions to improve the usability of Prom4U. Third, we will need to find the
best way to visualize the push notification on the screen of the user’s mobile
device. In the current design of Prom4U, this notification occupies the whole
screen (see Figure [Zla), and it should be reduced much smaller (e.g., like the
way of visualizing an incoming SMS message); so the notification causes less
interruption and becomes more friendly for mobile users.
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