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Abstract. The dynamic establishment of shared information (e.g. secret
key) between two entities is particularly important in networks with no
pre-determined structure such as wireless sensor networks (and in general
wireless mobile ad-hoc networks). In such networks, nodes establish and
terminate communication sessions dynamically with other nodes which
may have never been encountered before, in order to somehow exchange
information which will enable them to subsequently communicate in a
secure manner. In this paper we give and theoretically analyze a se-
ries of protocols that enables two entities that have never encountered
each other before to establish a shared piece of information for use as
a key in setting up a secure communication session with the aid of a
shared key encryption algorithm. These protocols do not require previ-
ous pre-distribution of candidate keys or some other piece of information
of specialized form except a small seed value, from which the two entities
can produce arbitrarily long strings with many similarities.
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1 Introduction

Wireless Sensor Networks (WSNs) have some constraints, with regard to bat-
tery life, processing, memory and commnication ([1]) capacity, and as such are
deemed unsuitable for public crypto-based systems. Thus, symmetric key cryp-
tosystems are more appropriate for these types of networks, but lead to problems
with key distribution. These problems are mitigated with key pre-distribution
schemes, in which candidate keys are distributed to members of the network be-
fore the start communication. Many innovative and intuitive key pre-distribution
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schemes for WSNs have been proposed for solving the problem of key distribu-
tion in sensor networks. On the two ends of the spectrum are key pre-distribution
schemes that use a single master key as the encryption key distributed amongst
all the nodes, and all pairwise keys, where a unique key exists for every pair of
sensors. The former provides the most efficient usage of memory and scales well,
but an attack on one node compromises the whole network, whereas the latter
provides excellent resilience but does not scale well. In addition, schemes exist
which are in essence probabilistic, relying on the fact that any two neighbouring
nodes have some probability p of successfully completing key establishment.

Some such schemes (presented in [2–8]) pre-suppose that the sensor nodes
have been loaded with some pre-existing information (i.e. the key, or sets of
keys) prior to network deployment, except for Liu and Cheng ([9]). They propose
a self-configured scheme whereby no prior knowledge is loaded onto the sensor
nodes, but shared keys are computed amongst the neighbours.

In this paper, we propose a key agreement scheme whereby network nodes are
not pre-loaded with candidate keys, but generate pairs of symmetric keys from
two, initially, random bits strings. The initial research conducted ([10]) proposed
a protocol that involved the examination of random positions of subsets of size
k, and the elimination of a random position if the two bit strings were found to
disagree on more than half the examined positions. In that paper, however, the
nodes cannot secretly compute the number of differing positions, a problem that
is resolved in the present paper using secret circuit computations. In addition,
the present protocols do not eliminate differing bits but flips them, depending
on the number of bit difference in the examined subset of k bits. This leads to a
different stochastic process that called for a different theoretical analysis.

2 The Bit-Similarity Problem

Two entities, say 0 and 1, initially possess an N -bit string, X0
N and X1

N re-
spectively. The entities’ goal is to cooperatively transform their strings so as
to increase the percentage of positions at which their strings contain the same
bits, which we denote by X(i), with i being the time step of the protocol they
execute. Then X(0) is the initial percentage of the positions at which the two
strings are the same. Below we provide a randomized protocol in which the two
entities examine randomly chosen subsets of their strings in order to see whether
they differ in at least half of the places. If they do, one of the entities (in turn)
randomly flips a subset of these positions. This process continues up to a certain,
predetermined number of steps. The intuition behind this protocol is that when
two random substrings of two strings differ in at least half of their positions,
then flipping some bits at random in one of the substrings is more likely to in-
crease the percentage of similarities between the strings than to decrease it. In
the description of the protocol Xc

N [S] denotes a substring of string Xc
N defined

by the position set S. Protocol for user Uc, c = 0, 1 Protocol parameters known
to both communicating parties: (i) k, l, the subset sizes, (ii) T , the number of
protocol execution steps, (iii) the index (bit position) set N , (iv) The circuit
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C with which the two entities jointly compute whether there are at least �k/2�
similarities between randomly chosen subsets of their strings.

i← 1 /* The step counter. */
while i ≤ T /* T is a predetermined time step limit.*/
begin /* while */
S←JOINT RAND(k, {1, . . . , N})/* Shared random set of k positions. See text. */

same pos ← C(Xc
N [S], X

(c+1 mod 2)
N [S]) /* A secret computation of number of

positions with same contents). */
if (same pos ≥ � k

2
� and odd(i+ c)) then /* Users 0 and 1 alternate. */

begin
SF ← RAND(l, S) /* Random set of l positions from within S

to be flipped by the user whose turn it is to flip. */
flip the bits of Xc

N [SF ]
end

SYNCHRONIZE /* Users 0 and 1 wait to reach this point simultaneously */
i← i+ 1

end/* while */

3 Secret Two-Party Function Computation

During the execution of the protocol, it is necessary for the two communicating
parties to see whether they agree on at least half of the positions they have
chosen to compare (line 13-14 of the protocol). Thus, the two parties need to
perform a computation: compute the number of positions on which the corre-
sponding bits in the two chosen subsets of k bits are the same. This is an instance
of an important, general problem in cryptography: Secure Computation. More
formally, let A and B be two parties with inputs of nA and nB bits respectively.
The objective is to jointly compute a function f : {0, 1}nA × {0, 1}nB → {0, 1}
on their inputs. The issue, here, is that A and B cannot, simply, exchange their
inputs and compute the function since they will learn each other’s inputs, some-
thing that is not desirable in a secure computation setting. More importantly,
even it A and B are willing to share their inputs, they would not allow an eaves-
dropper to acquire these inputs too. This leads to the problem of secure function
computation. In our context, we consider the following two Boolean functions:

fr : {0, 1}k × {0, 1}k → {0, 1} with wA, wB ∈ {0, 1}k

and 0 ≤ r ≤ k : f(wA, wB) =

{
1 if X(wA, wB) ≥ r;
0 otherwise.

We are interested in r = �k
2�.

fX : {0, 1}k × {0, 1}k → {0, 1}�log2(k)� with wA, wB ∈ {0, 1}k :
fX(wA, wB) = x, with x = X(wA, wB) written in binary.
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The function fX is, strictly, an ordered tuple (f0
X , f1

X , . . . , f
�log2(k)�−1
X ) of

�log2(k)� 1-bit Boolean functions, where the function f i
X computes the ith most

significant bit of x = X(wA, wB) (with i = 0 we take the most significant bit
and with i = �log2(k)� − 1 we take the least significant bit). Using techniques
from oblivious function computation (see [11] for a survey on these techniques),
we can prove that the computation of fr and fX can be done with randomized
protocols using O(|Cfr |) and O(|CfX |) communication steps respectively, with
Cfr and CfX being the Boolean circuits that are employed for the computation
of f and fX respectively. Since both fr and fX are easily seen to be polynomial
time computable Boolean functions, we can construct for their computations
circuits of size polynomial in their input sizes, i.e. circuits Cfr and CfX such
that |Cfr | = O(kc1) and |CfX | = O(kc2), with constants c1, c2 ≥ 0. Since k is
considered a fixed constant, we conclude that we can compute fk and fX in a
constant number of rounds. The number of random bits needed by each step of
the randomized protocol is in both cases O(k) and, thus, constant. To sum up,
the functions fr and fX can, both, be evaluated on two k-bit inputs wA, wB held
by two parties A,B using a constant number of rounds and a constant number
of uniformly random bits. In what follows, we will assume that the communicat-
ing parties use the function f� k

2 �. With regard to the required randomness, we

assume that each of the two parties has a true randomness source, i.e. a source
of uniformly random bits. Such a randomness source can be easily built into
modern devices. This randomness source is necessary in order to implement the
randomized oblivious computation protocols for the computation of the function
f� k

2 �. In addition, it will be used in order to produce the randomly chosen posi-

tions, are required by Step 6 of the protocol. Since each position can range from
1 up to N (the string size), to form a position index we need to draw �log2(N)�
random bits. Alternatively, if we allow the two parties to share a small (in rela-
tion to N) seed, they can produce the random positions in synchronization and,
thus, avoid sending them over the communication channel.

4 Theoretical Analysis of the Protocol

In order to track the density of positions where two strings agree, we will make
use of Wormald’s theorem (see [12]) to model the probabilistic evolution of the
protocol described in Section 2 using a deterministic function which stays prov-
ably close to the real evolution of the algorithm. The theorem in [12] essentially
states is that if we are confronted with a number of (possibly) interrelated ran-
dom variables (associated with some random process) such that they satisfy a
Lipschitz condition and their expected fluctuation at each time step is known,
then the value of these variables can be approximated using the solution of a
system of differential equations. Furthermore, the system of differential equa-
tions results directly from the expressions for the expected fluctuation of the
random variables describing the random process. We will first prove a general
lemma that gives the probability of increasing the similarity between two strings
through flipping, at random, the contents of a certain number of positions.
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Lemma 1. Let w1, w2 be two strings of 0s and 1s of length k. Let also j, 0 ≤
j ≤ k, be the number of places in which the two strings differ. Then if l positions
of one string are randomly flipped, the probability that s of them are differing

positions is the following: Pk,j,l,s =
(js)(

k−j
l−s)

(kl)
.

Proof. In the above equation the denominator is the number of all subsets of
positions of cardinality l of the k string positions while the numerator is equal
to the number of partitions of the l chosen positions such that s of them fall
into the j differing positions and the remaining l − s fall into the remaining
k− j non-differing positions of the two strings. Thus their ratio gives the desired
probability. �
The following lemma, which is easy to prove based on general properties of the
binomial coefficients, provides a closed form expression for a sum that will appear
later in some probability computations.

Lemma 2. The following identity holds:
∑l

s=0(2s− l)
(js)(

k−j
l−s)

(kl)
=

(
2j
k − 1

)
l.

We will now derive the deterministic differential equation that governs the evo-
lution of the random variable X(i) manipulated by the protocol in Section 2
using Wormald’s theorem.

Theorem 1. The differential equation that results from the application of
Wormald’s theorem on the quantity X(i) (places of agreement at protocol step
i) as it evolves in the agreement protocol is the following:

E[X(i+ 1)−X(i)] =
∑k

j=� k
2 �

∑l
s=0[(s− (l − s))Pk,j,l,s]Pn,n−X(i),k,j .

Proof. We will determine the possible values of the difference X(i + 1)−X(i)
along with the probability of occurrence for each of them. The protocol described
in Section 2 flips l positions within the k examined positions, whenever these k
positions contain j ≥ �k

2 � differing positions in the two strings. From the flipped
l positions, is s of them (0 ≤ s ≤ l) are disagreement positions, then the two
strings will have gained s agreement positions, losing l − s. The net total is
s− (l− s). The probability that this total occurs, for a specific value of s and a
specific value of j is equal to Pk,j,l,sPn,n−X(i),k,j . Summing up over all possible
values of s, j we obtain ( in Theorem 1). �
Corollary 1. The following holds:

E[X(i+ 1)−X(i)] =
∑k

j=� k
2 � l

(
2j
k − 1

) (n−X(i)
j )(X(i)

k−j)
(nk)

.

Proof. The above Equation follows from Theorem 1 using the Equation of
Lemma 1 with k = n, l = k, s = j, n− j = X(i), in conjunction with Lemma 2.

Corollary 2. Using Wormald’s Theorem (in [12]), the evolution of the random
variable X(i) whose mean fluctuation is given in Corollary 1 can be approximated
by the following differential equation:
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dx(t)
dt =

∑k
j=� k

2 � l
(
2j
k − 1

) (
k
j

)
[1− x(t)]jx(t)k−j .

Proof. By applying the approximation
(
N
k

)
= Nk

k!

(
1 +O

(
1
N

))
of the binomial

coefficients which is valid for k = O(1) on the three binomials which appear
on the the right-hand side of Equation in Corollary 1, we obtain the following:
(n−X(i)

j )(X(i)
k−j)

(nk)
� (

k
j

) (
1− X(i)

n

)j (
X(i)
n

)k−j

. Using Wormald’s theorem, we make

the correspondence x(t) = X(i)
n and dx(t)

dt = E[X(i+1)−X(i)], which results in
the required differential equation of Corollary 2. �

5 Efficiency of the Protocol

From Corollary 2 we see that the percentage of similar positions, represented
by the function x(t), is a monotone increasing function since its first derivative
is always positive. In what follows, we will estimate how fast this percentage
increases depending on its initial value x(0) as well as the parameters l and k.

Lemma 3. The solution x(t) to the differential equation given in Corollary 2 is
monotone increasing.

Proof. From the differential equation, we see that the first derivative of the
function x(t), which is equal to the right-hand side of the differential equation,
is strictly positive, since 0 < x(t) < 1. Thus, the function x(t) is monotone
increasing. �

Lemma 4. Let x(t1) be the value of the function x(t) at time instance t1 and
x(t2) be the value at time instance t2, t1 < t2. Let, also, c(t1) be the ab-
solute value of the point at which the tangent line to the point (t1, x(t1)) of
x(t1) cuts the t-axis and c(t2) the corresponding value for t2. Let, also, p(x) =∑k

j=� k
2 � l

(
2j
k − 1

) (
k
j

)
(1− x)jxk−j . Then,p(x(t1)) =

x(t1)
c(t1)+t1

, p(x(t2)) =
x(t2)

c(t2)+t2
.

Proof. Let ε1 and ε2 be the two tangent lines to the function x(t) at the points
(t1, x(t1)) and (t2, x(t2)) respectively, as shown in Figure 1. Due to the mono-
tonicity of x(t), the points at which the two lines intersect with the t-axis are
negative. Let c(t1) and c(t2) be the absolute values of these two points for lines
ε1 and ε2 respectively. Then from the two right angle triangles that are formed

we have tan(φ1) = x(t1)
c(t1)+t1

and tan(φ2) = x(t2)
c(t2)+t2

. From the definition of the

derivative, tan(φ1) = dx(t)
dt |t1 and tan(φ2) = dx(t)

dt |t2 . From the Equations of

Corollary 2 and Lemma 4, we have dx(t)
dt = p(x(t)) and, thus, the statement of

the lemma follows. �

Theorem 2. Let t′ be the time instance at which x(t′) = hx(0), with 1 ≤ h ≤
1

x(0) . Then, t2 ≤ x(0)
p(hx(0)) · (h− 1).

Proof. We set t1 = 0, t2 = t′ and x(t′) = hx(0) in Lemma 4 and we obtain, the

following: p(x(0)) = x(0)
c(0) , p(hx(0)) = hx(0)

c(t′)+t′ . From these equations we obtain
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Fig. 1. The two tangent lines for the proof of the Theorem

the following: p(x(0))
p(hx(0)) = c(t′)+t′

hc(0) . Solving for t′ we obtain the following: t′ =
hp(x(0))c(0)
p(hx(0)) −c(t′).Since p(x(0)) is the inclination of the tangent line to x(t) at the

point (0, x(0)), it holds that p(x(0)) = x(0)
c(0) . Thus, t

′ becomes hx(0)
p(hx(0))−c(t′).Since

x(t) is monotone increasing, the point at which the tangent to this function cuts
the x(t)-axis at any point is greater than or equal to x(0) (see Figure 1). Let
xc be this point. Then p(x(t′)) = xc

c(t′) or, since x(t′) = hx(0), p(hx(0)) = xc

c(t′) .

Since xc ≥ x(0), c(t′) ≥ x(0)
p(hx(0)) . Thus, we obtain t′ ≤ hx(0)

p(hx(0)) − x(0)
p(hx(0)) =

x(0)
p(hx(0)) · (h− 1) which is the required. �

Lemma 5. The following lower bounds hold for the polynomial in the first Equa-
tion of Lemma 4: If x < 1/2 then p(x) ≥ l[xk + 1 − 2x]. If x ≥ 1/2 then
p(x) ≥ l

k (1− x)k
(

k
� k

2 �
)�k

2�.
Proof. In the first Equation of Lemma 4, allowing the sum index to cover all the
range from 1 to k reduces the value of the sum since it adds negative terms. Thus
p(x) ≥ l

∑k
j=1

(
2j
k − 1

) (
k
j

)
(1−x)jxk−j . Since the sum evaluates to l[xk+1−2x]

the first statement of the lemma follows. If, on the other hand, x ≥ 1/2, then
lower bound given for the first statement of the lemma is not good since it may
even become negative. In this case we observe that the term (1 − x)jxk−j is
minimized for j = k. Setting j = k in the first Equation of Lemma 4, we obtain
the second statement of the lemma. �

Corollary 3. The following bounds hold for the time instance t′: (i)If hx(0) <
1/2 then t′ ≤ x(0)(h−1)

l[hx(0))k+1−2hx(0)]
.(ii)If hx(0) ≥ 1/2 then t′ ≤ kx(0)(h−1)

l[1−hx(0)]k( k

� k
2
�)� k

2 �
.

From the first inequality of Corollary 3 we see that the percentage of similarities
grows fast, if we start from x(0) aiming at hx(0), with h ≥ 1 and hx(0) < 1/2 is
only a very coarse upper bound). If the target is, however, at hx(0) with x ≥ 1/2
the upper bound is not good as the denominator tends to 0 fast. However, since
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this denominator is simply the first derivative of x(t) at hx(0), this derivative
fast tends to 0 if hx(0) ≥ 1/2 and, thus, the tangent at this point tends to
become parallel to the t-axis. Thus, we have again fast convergence.

6 Conclusions

In this paper we described a series of protocols that can be used in order to
increase the percentage of similarities between two strings held by two commu-
nicating parties without revealing their values. The propose protocols are, in
fact, general and may be used in any situation involving either wireless or con-
ventional networks in which there is no trusted third party or key management
authority among the network nodes.
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