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Abstract. This paper describes middleware-level support for agent mobility,  
targeted at hierarchically structured wireless sensor and actuator network appli-
cations. Agent mobility enables a dynamic deployment and adaptation of the  
application on top of the wireless network at runtime, while allowing the mid-
dleware to optimize the placement of agents, e.g., to reduce wireless network 
traffic, transparently to the application programmer. The paper presents the de-
sign of the mechanisms and protocols employed to instantiate agents on nodes 
and to move agents between nodes. It also gives an evaluation of a middleware 
prototype running on Imote2 nodes that communicate over ZigBee. The results 
show that our implementation is reasonably efficient and fast enough to support 
the envisioned functionality on top of a commodity multi-hop wireless technolo-
gy. Our work is to a large extent platform-neutral, thus it can inform the design 
of other systems that adopt a hierarchical structuring of mobile components.  

Keywords: wireless sensor networks, middleware, mobile agents, embedded 
systems, performance evaluation, Imote2, ZigBee. 

1 Introduction 

In the POBICOS project [11] we have produced a platform aimed to simplify the devel-
opment and deployment of monitoring and control applications for the home and office 
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environment, which exploit regular objects with embedded sensing, actuating and wire-
less communication capabilities. Objects do not have any application-specific code  
pre-installed and are agnostic about the applications that might run on them. Each appli-
cation is injected into the network (referred to as object community) using a special 
device (the application pill), which stores the code of the application and serves as its 
controller [6]. To start the application, the user simply pushes a button on the pill, letting 
the middleware deploy and execute the application on the object community.  

POBICOS applications are programmed as a set of cooperating components, called 
agents. Agents are mobile in the sense that they can be instantiated on remote objects 
and can be migrated between objects, at runtime. Agent mobility is central to achiev-
ing non-trivial functionality. Firstly, it enables a flexible deployment of the applica-
tion code in the object community, by placing individual agents directly on the  
objects that provide the required (computing, sensing, actuating) resources. Secondly, 
it allows the programmer to dynamically control the type of agents that execute in the 
object community, depending on the application’s internal state. This in turn can re-
duce the amount of code that needs to be kept in the main memory of embedded 
nodes at any point in time, especially in the presence of several concurrently running 
applications. Thirdly, the middleware can migrate agents between objects in order to 
perform certain optimizations, e.g., to reduce the traffic over the wireless network. 
Unlike in many other embedded agent systems, agent mobility is transparent for the 
programmer who does not have to discover (suitable) objects or to deal with the 
placement of agents on objects in an explicit fashion. 

This paper describes the protocols and mechanisms that were developed to support 
agent creation and agent migration in POBICOS. It also provides an experimental 
evaluation based on a prototype implementation of the middleware on Imote2 nodes 
that communicate over ZigBee. The results provide valuable insight into the overhead 
and performance of the agent mobility operations on top of a popular multi-hop wire-
less technology, showing that they are reasonably efficient and fast enough to support 
the envisioned functionality. Notably, this work is to a large extent orthogonal to the 
POBICOS platform: as explained in the next section, the basic underlying assumption 
is that agents are arranged as a tree according to their parent-child relationship. Hence 
the presented middleware support and performance trends can inform the design of 
other systems which adopt a hierarchical structuring of mobile components.   

The rest of the paper is structured as follows. Sec. 2 provides an overview of the 
application model. Sec. 3 describes the implementation of the agent mobility proto-
cols and mechanisms in our middleware. Sec. 4 analyzes their performance, while 
Sec. 5 puts the costs and benefits of agent mobility in context of an indicative applica-
tion scenario. Sec. 6 discusses related work. Finally, Sec. 7 concludes the paper. 

2 Application Model 

The POBICOS application model evolved from that of the ROVERS system [3]. An 
application is designed as a collection of cooperating agents, with each agent being 
dedicated to a specific, perhaps very simple, task. In the spirit of hierarchical control 



32 N. Tziritas et al. 

systems [9], agents are organized in a tree. Leaf agents interact with the physical  
environment by acquiring information or effecting change through the sensors and 
actuators embedded into the objects of the community. The rest of the agents in the 
application tree implement higher-level aggregation, processing and control tasks, 
using only general-purpose computing resources (CPU and memory). Agents com-
municate via message passing. Being consistent with the hierarchical approach, an 
agent can exchange messages only with its parent and children. 

Fig. 1a shows the structure of a simple application that turns off lights when there 
is no user activity (of course, applications can be more complex). The root agent (R) 
employs a user presence inference agent (I), which relies on multiple user activity 
agents (A) to detect user activity (and to infer inactivity). The root also employs mul-
tiple light agents (L) to switch off lights when the user presence inference agent (I) 
reports user absence, and a notification agent (N) to inform the user about this action.  
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Fig. 1. (a) Tree structure of a simple light control application; (b) A concrete deployment of the 
light control application on top of an indicative object community 

The agent tree is formed, at runtime, in a top-down fashion. The root is automati-
cally created by the middleware on the application pill when the application is started.  
All other agents are created under the control of the application according to the de-
sired tree structure. The placement of agents in the community is performed by the 
middleware, with no direct involvement of the programmer, based on the objects that 
are available. In the deployment shown in Fig. 1b, user activity agents are created on 
the motion detector, refrigerator and water tap, because these objects can serve as user 
activity sensors. Light agents are created on all light sources, while the user notifica-
tion agent is created on the radio, which can issue messages to the user. The middle-
ware can move non-leaf agents between objects in a transparent way. For instance, the 
user presence inference agent could be migrated from the application pill on the  
motion detector, to communicate locally with the respective user activity agent. Mi-
gration is supported only for non-leaf agents because they are object- and location-
neutral by design; leaf agents remain on the nodes where they are created.   

It is worth noting that parts of the agent tree can be instantiated and destroyed 
spontaneously, long after the application has been deployed. As an example, the light 
control application could create light agents only when the decision is taken to turn 
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the lights off, and then remove them once they perform their task (as opposed to 
creating them “statically” at startup). Of course, it is up to the programmer to decide if 
such dynamic changes in the application tree are meaningful. 

3 Implementation of Agent Mobility  

The middleware components involved in the implementation of agent mobility are 
shown in Fig. 2. The core functionality is provided by the Agent Manager, which 
invokes the Agent Runtime to check resource availability, as well as to initialize, run, 
suspend and resume agents. Agent binaries are downloaded via the Code Transport, 
employing a stop-and-wait protocol and a cache to avoid fetching the same code re-
peatedly over the network. The Network Abstraction offers a generic datagram inter-
face, used by both the Agent Manager and Code Transport. 
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Fig. 2. Key middleware components and interactions for supporting agent mobility 

Our prototype is developed for TinyOS v2.1 running on Imote2 nodes [8] at 
104MHz. Wireless communication is done via an external ZigBee modem from the 
Z430-RF2480 demo kit of Texas Instruments [14]. The Network Abstraction compo-
nent breaks datagrams into ZigBee packets and implements its own software-based 
acknowledgement and retransmission scheme (relying on ZigBee for packet routing). 
The middleware is portable, assuming support for TinyOS; obviously, the Network 
Abstraction must be adapted to the underlying networking technology. Thanks to a 
system component that provides transparent access to external memories (e.g., Flash), 
the minimal RAM requirements are below 8KB, making it possible to target more 
resource-constrained devices (even though access to certain middleware data struc-
tures would be slower, we believe that the middleware would still work acceptably). 

3.1 Micro-agent Code, Execution and State 

Nodes provide a platform-neutral runtime on top of which agents execute. The VM is 
based on the 8-bit AVR architecture [1]. Agents are written in C and the respective 
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binaries are generated via the standard AVR-GCC tool-chain. The binaries are then 
processed using a special tool to bind into the POBICOS-specific primitives and re-
duce their size [12]. 

Agent execution is purely event-driven (agents do not have threads of their own). 
The Runtime puts events issued to agents in a FIFO queue, and executes the respec-
tive handlers in a non-preemptive fashion. Agents are migrated only between handler 
executions, when the stack is empty and the VM CPU is not being used, which greatly 
simplifies the respective suspend-resume process. Also, agents do not use dynamic 
memory, so the runtime state that needs to be transferred over the network when a 
migration takes place is just the agent’s static data. 

The Agent Manager maintains additional data for each local agent, namely entries 
for its children and any pending creation requests. In case of a migration, this infor-
mation must also be sent to the destination along with the agent’s state. 

3.2 Creation of Leaf and Non-leaf Agents 

Agent creation requests issued by the application are processed in an asynchronous 
fashion. The process for creating a leaf agent is as follows (see Fig. 3a). 

To find nodes that can serve as hosts, a probe is broadcast (1) carrying information 
about the agent’s type and resource requirements. When a probe arrives to a node, a 
resource check is performed to see whether it is able host such an agent (2). A reply is 
generated (3) only if this check succeeds. Replies are collected (4) and sorted based 
on how well nodes match the agent’s requirements (the details of this matching are 
beyond the scope of this paper). Candidates are then approached one at a time. 

A node is asked to create an agent by sending it a creation request (5). On receipt 
of such a request, to avoid races, the node repeats the same checks as for a probe (6). 
Then, it downloads the agent code from the application pill (7), creates a new instance 
(8), recording the sender of the request as the agent’s parent, and sends back a reply 
with the agent’s identifier (9). If the reply is positive, a new child entry is added to the 
parent (10). Else, if the reply is negative or no reply arrives within a timeout period, 
the next candidate is considered.  

The creation of non-leaf agents works in a similar way. However, host discovery is 
performed only if the local host cannot host the agent, and candidates are contacted in 
the arrival order of their replies. The rationale is that since non-leaf agents are object-
neutral it is reasonable to place them, at least initially, close to their parent.  

3.3 Migration of Non-leaf Agents 

The algorithm for deciding about the migration of a non-leaf agent in order to reduce 
the wireless traffic is described in [15]. The idea is to locally record the agent’s mes-
saging activity with its parent and children, and to move the agent towards the center 
of gravity, i.e., over the link that accounts for more than half of the total load. We 
have implemented the k-hop variant of the algorithm, which assumes knowledge 
about the routing structure within a k-hop radius and can pick migration destinations 
in this range. In ZigBee tree networks, where node addresses reflect the routing topol-
ogy [10], this information can be gained without any extra communication.   
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                              (a)                                                                             (b) 

Fig. 3. Simplified (a) agent creation and (b) agent migration message sequence diagrams 

Once a migration decision is taken, the process is as follows (see Fig. 3b). First, the 
destination node is asked to download the code (1-3). The code is fetched from the 
node that initiates the migration (which, obviously, has the binary). Then, the hosts of 
the agent’s parent and children are notified (4) to buffer messages addressed to it, but 
also to prohibit concurrent migrations (parents have precedence over their children). 
When all acknowledgements arrive (5), the agent is suspended (6) and a migration 
request with the agent’s state information is sent to the destination (7). The destina-
tion creates a new instance, initializing it with the received state (8), and sends a con-
firmation to the agent’s old host (9), which removes the obsolete instance (10). It then 
informs the agent’s parent and children (11) to update the agent’s contact address and 
resume message transmission towards it. Finally, when the parent confirms the ad-
dress change (12), the agent is resumed on the new host (13). 

Note that the agent binary is “pre-fetched”, before contacting the agent’s parent 
and children or suspending the agent. Consequently, the latency of code transfer does 
not affect the execution of the application. As it will be shown in the next section, this 
greatly reduces the period during which the application may become unresponsive 
due to agent migrations performed by the middleware in the background. 

4 Performance Measurements 

This section presents measurements on the performance of agent creation and  
migration. The cost of the respective protocols is reported as the number of bytes 
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exchanged through the Network Abstraction component of the middleware, as well as 
through the (lower-level) ZigBee modem interface; the difference is mainly due to 
datagram fragmentation. Unless stated otherwise, the network topology is a 4-node 
chain, with the ZigBee coordinator at the one end acting as the source and other nodes 
as the destinations of the mobility operations (we report results for up to 3 hops be-
cause the network was very unreliable for longer routing paths). 

4.1 Agent Creation Overhead 

In a first set of experiments, we measure the overhead for creating a leaf agent that 
requires a special resource, e.g., a user activity sensor. The results for non-leaf agents 
are similar. The local creation delay for such an agent is 1ms. 

Table 1. Cost of agent creation protocol, at the network abstraction layer and ZigBee 

agent size 
[B] 

code transport cost [B] signaling cost [B] total protocol cost [B] 
Net Abstr. ZigBee Net Abstr. ZigBee Net Abstr. ZigBee 

300 352 484 71 107 423 591 
600 684 912 71 107 755 1019 
900 1032 1392 71 107 1033 1499 
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Fig. 4. Agent creation delay as a function of hop distance for different agent sizes 

Table 1 analyzes the protocol cost for different agent sizes. The signaling overhead 
is constant and relatively low, corresponding to one host probe and one agent creation 
request-reply interaction. Clearly, the dominating component is the code transfer cost, 
which grows as expected to the agent size. The relative protocol overhead drops as 
code size increases, but the conversion of datagrams to ZigBee packets costs 35-40%. 

Fig. 4 plots the creation time as a function of the hop distance between the source 
and the destination. The delay rises to the agent size, yet with an economy of scale: 
creating a 600B agent requires 80% of the time needed to create two 300B agents, and  
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a 900B agent is created in 75% of the time it takes to create three 300B agents. If the 
agent binary is already cached at the destination, only the signaling cost is incurred, as 
per Table 1. Hence the respective delay, shown in Fig. 4, is much smaller vs. when 
code needs to be transferred over the network, yielding an average speedup of 3.7x, 
5.8x and 8.4x for a 300B, 600B and 900B agent.  

In all cases, the routing overhead is non-negligible. Nevertheless, creating an agent 
on a remote node directly (as in our middleware) seems a better choice than letting an 
agent clone itself  in a hop-by-hop fashion (as done in other systems). Based on our 
results, direct creation over 2 and 3 hops is roughly 1.4x and 1.6x faster vs. cloning 
the agent along these paths. 

4.2 Agent Migration Overhead 

In a second set of experiments, we measure the migration overhead for a non-leaf 
agent that is co-located with its parent and has one child on a remote node to which it 
migrates directly. The runtime state is set to 256B. The delay for performing a corres-
ponding agent suspend-create-init-resume cycle locally is about 2ms.  

Table 2. Cost of agent migration protocol, at the network abstraction layer and ZigBee 

agent size 
+ state [B] 

code transport cost [B] signaling cost [B] total protocol cost [B] 
Net Abstr. ZigBee Net Abstr. ZigBee Net Abstr. ZigBee 

300+256 352 484 387 543 739 1027 
600+256 684 912 387 543 1071 1455 
900+256 1032 1392 387 543 1419 1935 
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Fig. 5. Agent migration delay as a function of hop distance for different agent sizes 

The breakdown of the protocol cost is listed in Table 2. The numbers reported for 
the code transfer are naturally the same as for agent creation. The signaling cost is 
much higher though, because it includes the synchronization with the agent’s parent 
and child, as well as the transfer of the agent’s state. As a result, the code transfer 
overhead is less dominant compared to agent creation. 
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Fig. 5 plots the agent migration time as a function of the hop distance. The trends 
are similar to the ones observed for agent creation with the respective delays being 
longer due to the higher signaling overhead. Again, the delay rises with code size, but 
at a greater economy of scale compared to agent creation, due to the expensive signal-
ing. Namely, the migration of a 600B and 900B agent takes 65% and 57% of the time 
required to perform two and three migrations of a 300B agent, respectively. For the 
same reason, the speedup achieved by caching vs. when code transfer occurs is less 
impressive: 1.7x, 2.2x and 2.9x for a 300B, 600B and 900B agent.   

Notably, a direct migration over 2 hops is roughly 1.4x faster vs. two 1-hop migra-
tions, and a direct migration over 3 hops is 1.7x faster than three 1-hop migrations; or 
1.5x and 1.8x faster, respectively, when the binary is cached at the destination. This 
speaks in favor of performing a single long-distance migration vs. several 1-hop ones, 
as supported by our implementation (the range is set at compile time). 

The synchronization with the agent’s children also affects the migration delay. To 
get a feeling of this overhead, we measured the time required to migrate a 600B agent 
with 256B runtime state while varying the number of its children. In this case, a 5-
node star topology is used, with the center node hosting the agent and all children 
being hosted on different nodes. The recorded delay is 843ms, 874ms, 945ms and 
974ms for 1, 2, 3 and 4 children, rising due to the extra signaling required for each 
additional child. The slight non-linearity from 2 to 3 children is due to the increase in 
the child information that needs to be transferred along with the agent’s runtime state, 
which happens to exceed the datagram payload limit, requiring an additional data-
gram to be sent over the network.  

4.3 Summary 

Our results show that agent creation is fast enough to support not only the gradual 
formation of the agent tree when the application is deployed but also a quick adapta-
tion of the tree structure at runtime. Furthermore, since creation is practically instan-
taneous when the binary is cached at the destination, the repeated instantiation (and 
removal) of agents is a perfectly affordable option for the programmer.  

Agent migration is reasonably quick too. Most importantly, since the agent remains 
fully operational while its code is being fetched by the destination node, the applica-
tion is blocked only during the signaling and state transfer phase. The latter requires 
well under 1 second in our experiments (see the values reported for caching), which is 
quite acceptable given that the home automation applications we wish to support us-
ing our middleware have rather soft real-time requirements.  

Finally, the 1-hop throughput achieved by the agent mobility operations (calculated 
as the number of bytes exchanged through the network abstraction layer in order to 
perform agent creation/migration divided by the time required to complete this opera-
tion), is 12-14Kbps. This is close to the 15Kbps throughput of the Network Abstrac-
tion component for reliable datagrams. 
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5 Application Scenario 

In this section we put the benefit and cost of agent mobility in the context of a con-
crete application scenario. The application structure and logic is kept simple in order 
to easily follow its operation (the network setup was constrained by the number of 
nodes at our disposal, as well as the difficulties we encountered in setting up a work-
ing network with more than 3 hops). Still, we believe that the results are indicative of 
the potential gains for more complex applications and larger scale settings. 

5.1 Application, Network Topology and Test Scenario 

The test application is a subset of the light control application discussed in Sec. 2, 
namely the part used to infer user absence based on the user activity sensors found in 
a home. Fig. 6a shows the corresponding tree structure.  
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Fig. 6. Experiment setup: (a) application tree; (b) nodes, routing topology, and agent placement 
at different phases of the test scenario. 

When a sensing agent does not detect activity, it sends to the inference agent a 1-
byte report every 5 seconds. As long as user activity is being detected, the reporting 
frequency rises to 1 report per 2 seconds. Based on the reports received, the inference 
agent sends a 1-byte status report to the root every 10 seconds. The size of the root, 
inference, and user activity sensing agent is 50B, 240B and 24B, respectively.  

Fig. 6b shows the network used to deploy and run the application. Unlike n1, n4 and 
n5, nodes n2, n3 and n6 represent objects which can act as user activity sensors, and 
therefore can host a user activity sensing agent. The application is launched from n5 
where the root remains fixed. The inference agent can be placed on any node.  

The test scenario is as follows: 

0. The application is deployed in the network of Fig. 6b without n3 (added later). 
The root and the inference agent are created on n5, while user activity sensing 
agents are created on n2 and n6.  

1. Since the message traffic with its children is greater than the message traffic 
with its parent, the inference agent is migrated on n4. 
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2. The agent on n2 detects user activity and starts reporting at a higher frequency. 
This increase in message traffic drives the middleware to move the inference 
agent on n2.  

3. User activity stops, and the sensing agent on n2 reverts to the normal reporting 
frequency. Consequently, the inference agent is migrated back on n4.  

4. Node n3 (which can act as a user activity sensor) is added to the network, leading 
to the creation of a sensing agent on it. Due to the reporting activity of its new 
child, the traffic for the inference agent via node n1 becomes greater than the 
traffic with n5 and n6, so the inference agent is migrated on n1.  

5. Finally, n3 is removed, the respective user activity sensing agent disappears, and 
the inference agent is moved back on n4. 

The dashed lines in Fig. 6b denote the migrations that lead to the different placements 
of the inference agent for each stage. 

5.2 Results 

Table 3 lists the protocol cost for each migration of the inference agent, as well as the 
reduction achieved in the wireless network traffic by the resulting placement (after the 
migration) vs. the old placement (before the migration). These numbers are reported 
for the ZigBee modem interface, adjusted to take into account the routing cost for 
each packet as per the topology in Fig. 6b (ZigBee performs routing transparently). 
The amortization time for each migration, i.e., the time that must elapse in order for 
the traffic reduction achieved by the new placement to outweigh the cost of the migra-
tion that lead to this placement, is also given in Table 3.   

Table 3. Cost of migration, wireless traffic reduction achieved by the resulting placement, and 
the time (of stable operation) required to amortize each migration of the inference agent. 

scenario 
stages 

migration of 
inference 

agent 

migration 
cost [B] 

traffic 
reduction 
[B/min] 

relative 
traffic  

reduction  

amortization 
time [min] 

1 n5 → n4 873 559 30% 1.5 
2 n4 → n2 1495 522 22% 2.7 
3 n2 → n4 769 486 27% 1.6 
4 n4 → n1 1007 174 8% 5.8 
5 n1 → n4 511 270 17% 1.9 

 
It can be seen that the migration of the inference agent leads to considerable sav-

ings in network traffic, also at a cost that can be recovered in a rather short amount of 
time. More specifically, the first, the third and the last migration can be amortized in 
less than 2 minutes, while the second and the fourth migration requires slightly less 
than 3 and 6 minutes, respectively. Note that when the inference agent returns to a 
node where it was previously hosted (third and fifth migration), caching reduces the 
migration cost to 50%, shortening the respective amortization times. 
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In terms of responsiveness (not shown in Table 3), the delay for creating a user ac-
tivity agent is about 200ms on average (e.g., the application is deployed in less than 
half a second). Since user activity agents are created just once on the respective 
nodes, caching does not apply to this scenario. The average migration delay for the 
inference agent is 620ms vs. 390ms when the code is cached at the destination. In any 
case, migration delays are far too insignificant to affect the amortization times or the 
functionality of the application.  

Of course, a migration may turn out to be non-beneficial if the agent tree or the 
communication pattern between agents changes very fast. In our implementation we use 
two criteria for identifying and suppressing migrations that are unlikely to be beneficial. 
Namely, a migration is not performed unless (i) it reduces the amount of network traffic 
above a threshold and (ii) it can be amortized within a certain amount of time, assuming 
stable operation. These checks can be done based on information that is locally availa-
ble. The gains in network traffic that will be achieved after a migration takes place are 
computed based on the agent’s message traffic (the same information is used by the 
algorithm to decide for a migration), while the migration cost can be estimated using an 
analytical formula. Both checks are disabled in the experiment. Depending on the thre-
sholds, they would simply lead to fewer migrations.    

6 Related Work 

Code mobility is supported in many platforms targeted at wireless sensor networks. In 
the following, we briefly discuss work that is most closely related to ours and give an 
indicative performance comparison.  

Agilla [4] follows a mobile agent approach like POBICOS. However, the applica-
tion code is written in low-level VM instructions, and the programmer must provide 
the agent’s host discovery and migration logic. Agilla agents communicate indirectly 
by adding, reading and removing tuples on nodes. Smart Messages [5] (SMs) are 
mobile code units written in Java, executed using an adapted version of Sun’s Java 
KVM. SMs resemble Agilla agents in that they communicate via the local tag spaces 
of nodes, and carry their own host discovery and migration code. Also, in both Agilla 
and SMs, to create an agent/SM instance on a remote node, it must be created locally 
and then be cloned to the desired destination, typically, in a hop-by-hop fashion. Sen-
sorWare [2] allows TCL-based scripts to be injected in a network. Like in Agilla and 
SMs, the programmer is responsible for providing the logic for cloning/migrating a 
script, but scripts communicate via message passing. The addressing scheme of Sen-
sorWare is very flexible, allowing for attribute-based descriptions combined with the 
invocation of (default or custom) routing protocols. 

MagnetOS [7] statically partitions Java applications, and then places them on dif-
ferent nodes at runtime. Communication transparency is achieved via RPCs. Unless 
the programmer specifies a placement, the MagnetOS runtime is free to move compo-
nents between nodes to reduce the network traffic. In DFuse [13], applications are 
built using so-called fusion points or channels, structured in a hierarchy. Each fusion 
point takes input from one or more producers and generates output towards one or 
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more consumers. The initial placement of fusion points, computed off-line, is eva-
luated at regular intervals to minimize communication and energy consumption, relo-
cating fusion points accordingly. 

Agilla is very lightweight, running on MICA2 nodes. All other systems are proto-
typed on PDA devices, while the reported experiments in MagnetOS were done using 
laptops. POBICOS seems to be in the middle ground. In fact, given its modest RAM 
needs and the fact that it is based on TinyOS, the POBICOS middleware could be 
ported on more constrained platforms than the Imote2. The POBICOS VM can also 
be implemented efficiently on AVR-compatible microcontrollers, which are a popular 
choice for low-end devices.  

The differences in the programming abstractions, platform CPUs (Atmel 8-bit mi-
crocontroller in Agilla, XScale or StrongARM in other systems, except MagnetOS) 
but most notably the wireless technologies used (WLAN in all systems but Agilla, 
ZigBee in POBICOS), make a direct performance comparison hard and possibly un-
fair. Still, to give an idea of where our prototype stands, we pick a few cases where a 
comparison does not seem entirely out of order. In terms of local operations, creating 
a POBICOS agent takes about 1ms vs. 2ms for spawning a SensorWare script, or 
2.6ms for the creation of a Smart Message using a single 1KB Java class. The sus-
pend-create-init-resume cycle for a POBICOS agent with 256B of state takes 2ms, 
which is the time needed for serializing and de-serializing a Smart Message with a 
53B stack frame and 2KB of state. In terms of remote 1-hop operations that do not 
involve (significant) code transfer, the creation of a cached POBICOS agent requires 
95ms vs. 200ms for weakly cloning a null Agilla agent, 35ms for creating an empty 
DFuse channel (over WLAN) and 10ms for spawning a 60B script in SensorWare 
(over WLAN). The migration of a cached POBICOS agent with 256B of state that is 
co-located with its parent and has one child on a remote node requires 410ms vs. 
225ms for a null Agilla agent (in which case no communication endpoints need to be 
redirected), 200ms for the relocation of an empty DFuse channel with one producer 
and consumer (over WLAN) and 12ms for the migration of a cached Smart Message 
with 200B bytes of state (no redirection of communication endpoints, over WLAN). 

Overall, given the non-triviality of the underlying protocols and the moderate 
throughput of our communication subsystem (e.g., compared to WLAN), the perfor-
mance of our agent mobility operations is quite satisfactory.  

7 Conclusion 

We have described the implementation of agent mobility in hierarchically structured 
applications, and have presented a performance evaluation of our middleware proto-
type on Imote2 nodes that communicate over ZigBee. The results show that agent 
creation is fast enough to deploy and adapt the application tree structure at runtime. 
Furthermore, agent migration can reduce the wireless network traffic significantly, 
even for relatively short periods of heavy inter-agent communication. While a faster 
communication subsystem would reduce agent mobility delays, the current  
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performance is already sufficient for a wide range of monitoring and control applica-
tions in the home domain.   

As future work we plan to implement our own routing on top the native Imote2 ra-
dio to experiment with various cross-layer optimizations. We also wish to investigate 
techniques that will allow the middleware to take smarter agent placement and migra-
tion decisions. 
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