
On the Ambiguity and Complexity Measures

of Insertion-Deletion Systems

Kamala Krithivasan1, Lakshmanan Kuppusamy2,
Anand Mahendran2, and Khalid M.2

1 Department of Computer Science and Engineering,
IIT Madras,

Chennai-600 036, India
kamala@iitm.ac.in

2 School of Computing Science and Engineering,
VIT University,

Vellore-632 014, India
{klakshma,manand,mkhalid}@vit.ac.in

Abstract. In DNA processing and RNA editing, gene insertion and
deletion are considered as the basic operations. Based on the above evo-
lutionary transformations, a computing model has been formulated in
formal language theory known as insertion-deletion systems. In this pa-
per we study about ambiguity and complexity measures of these sys-
tems. First, we define the various levels of ambiguity (i = 0, 1, 2, 3, 4, 5)
for insertion-deletion systems. Next, we show that there are inherently
i-ambiguous insertion-deletion languages which are j-unambiguous for
the combinations (i, j) ∈ {(5, 4), (4, 2), (3, 1), (3, 2), (2, 1), (0, 1)}. Fur-
ther, We prove an important result that the ambiguity problem of
insertion-deletion system is undecidable. Finally, we define three new
complexity measures TLength−Con, TLength−Ins, TLength−Del for
insertion-deletion systems and analyze the trade-off between the newly
defined ambiguity levels and complexity measures.

Keywords: DNA processing, insertion-deletion systems, inherently
ambiguous languages, unambiguous grammar, complexity measures.

1 Introduction

In the last few years, Natural Computing which includes biologically inspired
computing is an area which is pursued with interest. It includes DNA comput-
ing, membrane computing and evolutionary computing among other topics. The
developments which have taken place in DNA computing have inspired the def-
inition and study of new theoretical models in formal language theory, sticker
systems, splicing systems, Watson-Crick automata, insertion-deletion systems
[2], [6] are some of the theoretical models inspired by the behaviour of DNA
strands in biology. In [4] insertion operation was only considered and in [14]
insertion-deletion systems were introduced. They have opened a new avenue in
formal language theory as a new model for generating languages. Informally, the

J. Suzuki and T. Nakano (Eds.): BIONETICS 2010, LNICST 87, pp. 425–439, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

426 K. Krithivasan et al.

insertion and deletion operations of an insertion-deletion system is defined as
follows: If a string α is inserted between two parts w1 and w2 of a string w1w2 to
get w1αw2, we call the operation as insertion, whereas if a substring β is deleted
from a string w1βw2 to get w1w2, we call the operation as deletion.

Given an insertion-deletion system, the weight of the system is based on the
maximal length of insertion, maximal length of the context used for insertion,
maximal length of deletion, maximal length of the context used for deletion and
they are (respectively) denoted as (n,m; p, q). The total weight is defined as the
sum of n,m, p, q. There have been many attempts to characterize the recursively
enumerable languages (i.e., computational completeness) using insertion-deletion
systems with less weights. In [13] the universality results were obtained with
weight 5 (of the combinations (1, 2; 1, 1), (2, 1; 2, 0), (1, 2; 2, 0)). In [1] and [6], this
result was improved with weight 4 (of the combinations (1, 1; 1, 1) and (1, 1; 2, 0)
respectively).

Insertion-deletion operations have some relevances to some phenomena in hu-
man genetics. In the following Fig.1. we try to show how the insertion-deletion
systems are applied in the field of genetics. Consider a single strand DNA se-
quence S1 = xuvyz, where x, u, v, y, z are all strings. Add a single stranded
DNA sequence u′w′v′ to the sequence xuvyz, where u′v′ are the Watson-Crick
complements of the strings u, v and w′ is the complement of some string w, see
Fig.1(a). First, annealing will take place such that u′ will stick to u and v′ to v,
thus we obtain the scenario as in Fig.1(b). Then a cut by a restriction enzyme
to the double stranded DNA sequence uv in Fig.1(c) and by adding a primer
z′, we obtain a double stranded sequence as in Fig.1(d). Finally, by melting the
double stranded sequence the two strands will be separated, hence we obtain
two strings. One string will be of the form S2 = xuwvyz (as in Fig.1(e)). The
string S2 implies that the string w is inserted between u and v. Thus, the string
S2 obtained from S1 shows the use of insertion operation in DNA sequences. A
similar annealing can be theoretically performed for deletion operation.

Ambiguity is considered as one of the fundamental problems in formal language
theory. A grammar is said to be ambiguous, if there exists more than one dis-
tinct derivation of the words in the generated language. As we have seen above
that the insertion-deletion system can be applied theoretically in DNA process-
ing, the ambiguity in DNA processing (which uses the insertion-deletion system)
can happen in the following manner. Let W1W2 be a DNA strand and suppose
we want to insert W3W4W5 between W1 and W2 to obtain another DNA strand
W1W3W4W5W2. This can be done first by insertingW3 between W1 and W2, fol-
lowed by inserting W4 between W3 and W2, followed by inserting W5 between
W4 and W2. The other sequence would be first by inserting W5 between W1 and
W2, followed by inserting W4 between W1 and W5, followed by inserting W3 be-
tween W1 and W4. This shows that ambiguity in gene sequences is also possi-
ble (i.e., starting from one sequence we are able to get another sequence in more
than one way such that the intermediate sequences are different). This motivates
us to define formally the ambiguity for insertion-deletion systems. Based on the
components used for insertion-deletion system, different levels of ambiguity are

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 427

 u’ v’
w’

 u’ w’ v’

z’

 (a) x u v y z

 (b) x u v y z

 (c) x u v y z

(d) x u w v y z

 x’ u’ w’ v’ y’ z’

(e) x u w v y z

 u’ w’ v’

Fig. 1. Insertion by annealing

defined. Study of this concept of ambiguity may be useful in considering inheri-
tance properties and phylogenetic trees [17]. More specifically, when these inter-
mediate sequences are represented as phylogenetic trees, we can see that the trees
are different and thus it might help us to identify the inheritance properties.

As insertion-deletion system is a counterpart for contextual grammars defined
by S. Marcus [15] in 1969, here we briefly recall about the work done on ambigu-
ity in contextual grammars. Unlike context-free grammars, defining ambiguity
for contextual grammars is not so obvious since the derivation of contextual
grammars consists of many components such as axioms, contexts and selectors.
In [7], the notion of ambiguity was considered for the first time in this field,
for external contextual grammars. Then, in [10,16], several levels of ambiguity
were defined for internal contextual grammars by considering the components
used in the derivation. There were many open problems formulated in [10,16] on
different aspects of ambiguity and some of them have been solved in [11]. For
more details on contextual grammars, we refer to [8].

As Fig.1. shows the applicability of insertion-deletion systems in gene se-
quences, storing of such sequences would be economical if the corresponding
insertion-deletion system is economical. Such an economical system can be iden-
tified by means of descriptional complexity measures. The basic measures for
insertion systems are defined in [8]: Ax,MAx, TAx, Prod, Symbol. As the
insertion-deletion systems is the slight modification of insertion systems, the

428 K. Krithivasan et al.

measuresAx,MAx, TAx, Prod are even applicable to insertion-deletion systems.
Here economical system means the corresponding system should be minimal with
respect to some measure. Once the ambiguity and complexity measures are de-
fined the trade-off between them can be analyzed by identifying languages whose
corresponding grammars are ambiguous and minimal in measure M , but unam-
biguous and not minimal in measure M .

Since insertion-deletion systems is an intermediate model between contextual
grammars and context sensitive grammars, analyzing the ambiguity and devel-
oping new complexity measures of such systems would be more interesting. In
Section 3, we define the various ambiguity levels (i = 0, 1, 2, 3, 4, 5) for insertion-
deletion systems. Next, we show that there are inherently i-ambiguous insertion-
deletion languages which are j-unambiguous for the combinations (i, j) ∈ {(5, 4),
(4, 2), (3, 1), (3, 2), (2, 1), (0, 1)}. Next, we discuss an example that shows how the
ambiguity level defined for insertion-deletion systems can be interpreted in gene
sequences. Further, we also prove that there is no solution (i.e., no algorithmic
procedure) to decide whether a given arbitrary insertion-deletion system is am-
biguous or not. In other words, the ambiguity problem for an insertion-deletion
system is undecidable. Finally, in Section 4, we introduce three new complexity
measures TLength − Con (total length of contexts used in insertion/deletion
rules), TLength− Ins (total length of the contexts used in insertion rules plus
the length of the strings to be inserted), TLength−Del (total length of the con-
texts used in deletion rules plus the length of the strings to be deleted) and we
analyze the trade-off between the newly defined ambiguity levels and the above
complexity measures of insertion-deletion systems.

2 Preliminaries

We assume that the readers are familiar with the notions of formal language
theory. However, we recall the basic notions which are used in the paper. A
finite non-empty set V is called an alphabet. We denote by V ∗, the free monoid
generated by V , by λ it identity or the empty string, and by V + the set V ∗−{λ}.
The elements of V ∗ are called words or strings. For any word w ∈ V ∗, we denote
the length of w by |w|.

Next, we will look into the basic definitions of insertion-deletion systems.
Given an insertion-deletion (in short ins-del) system γ = (V, T,A,R), where V is
an alphabet, T ⊆ V , A is a finite language over V , R is a finite triples of the form
(u, α/β, v), where (u, v) ∈ V ∗, (α, β) ∈ (V +×{λ})∪ ({λ}×V +). The pair (u, v)
is called as contexts. Insertion rule will be of the form (u, λ/α, v) which means
that α is inserted between u and v. Deletion rule will be of the form (u, β/λ, v),
which means that β is deleted between u and v. In other words, (u, λ/α, v)
corresponds to the rewriting rule uv → uαv, and (u, β/λ, v) corresponds to the
rewriting rule uβv → uv.

Consequently, for x, y ∈ V ∗ we can write x =⇒ y, if y can be obtained from x
by using either an insertion rule or a deletion rule which is given as follows: (the
down arrow ↓ indicates the position where the string is inserted/deleted and the
underlined string indicates the string inserted/deleted)

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 429

1. x = x1u
↓vx2, y = x1uαvx2, for some x1, x2 ∈ V ∗ and (u, λ/α, v) ∈ R.

2. x = x1uβvx2, y = x1u
↓vx2, for some x1, x2 ∈ V ∗ and (u, β/λ, v) ∈ R.

The language generated by γ is defined by

L(γ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}

where =⇒∗ is the reflexive and transitive closure of the relation =⇒.
Next, we will introduce the various descriptional complexity measures of ins-

del systems. Given a ins-del system γ = (V, T,A,R), the basic measures of ins-del
systems are defined as follows:

Ax(γ) = card(A),MAx(γ) = max
w∈A

|w|, TAx(γ) =
∑

w∈A

|w|,

P rod(γ) = card(R),

where Ax denotes the number of axioms, MAx denotes the maximum length of
an axiom, TAx denotes total length of all axioms, Prod denotes the number of
insertion-deletion rules. For M ∈ {Ax,MAx, TAx, Prod} and for a language L,
we define M(L) = min{M(γ) | L = L(γ)}. We call γ as a minimal system for L
with respect to the measure M or we simply say γ is minimal in M for L. For a
measure M and a language L, we define M−1(L) = {γ | L(γ) = L and M(γ) =
M(L)}. Here, M−1(L) denotes the set of all optimal systems for L with respect
to the measure M . Two measures M1,M2 are said to be incompatible if there
exists a language L such that M−1

1 (L) ∩M−1
2 (L) = ∅. Otherwise, M1 and M2

are said to be compatible. For more details on complexity measures, we refer
to [8].

3 Various Ambiguity Levels

In this section, we define various ambiguity levels for ins-del system based on
the components used in the derivation.

Consider the following derivation step in a ins-del system γ, δ : w1 =⇒ w2 =⇒
... =⇒ wm,m ≥ 1, such that w1 ∈ A and the following scenarios can hap-
pen (1) wj = x1,jujvjx2,j and wj+1 = x1,jujαjvjx2,j , when an insertion rule
(uj , λ/αj , vj) is used, where x1,j , uj, vj , x2,j ∈ V ∗. (2) wj = x1,jujβjvjx2,j

and wj+1 = x1,jujvjx2,j , when a deletion rule (uj , βj/λ, vj) is used, where
x1,j , uj , vj , x2,j ∈ V ∗. The sequence which consists of used axiom, strings to
be inserted/deleted is called as Control Sequence which is given as follows:
w1, α1/β1, α2/β2, α3/β3, ..., αm−1/ βm−1. The sequence which consists of used
axiom, the string (αj/βj) to be inserted/deleted and the used contexts (uj, vj)
is called Complete Control Sequence which is given as follows: w1, (u1, α1/β1, v1),
(u2, α2/β2, v2), (u3, α3/β3, v3), ..., (um−1, αm−1/βm−1, vm−1). The position where
insertion (α) /deletion (β) takes place can be given by the description of δ, as
follows: w1, x1,1u1(α1 /β1)v1 x2,1, x1,2u2(α2/β2)v2x2,2, x1,3u3(α3/β3)v3x2,3, ...,
x1,m−1um−1(αm−1/βm−1)vm−1x2,m−1.

430 K. Krithivasan et al.

Definition 1. 1. A ins-del system γ, is said to be 0-ambiguous, if there exist at
least two different axioms, w1, w2 ∈ A, w1 �= w2, such that they both derive
the same word z, i.e., w1 =⇒+ z, w2 =⇒+ z.

2. A ins-del system γ, is said to be 1-ambiguous, if there are two different
unordered control sequences which derives the same word.

3. A ins-del system γ, is said to be 2-ambiguous, if there are two different
unordered complete control sequences which derives the same word.

4. A ins-del system γ, is said to be 3-ambiguous, if there are two different
ordered control sequences which derives the same word.

5. A ins-del system γ, is said to be 4-ambiguous, if there are two different
ordered complete control sequences which derives the same word.

6. A ins-del system γ, is said to be 5-ambiguous, if there are two different
descriptions which derives the same word.

More precisely, an ins-del system γ to be 2 or 4 ambiguous, it should have at
least two distinct contexts and to be 1 or 3 ambiguous it should have at least two
distinct strings used for insertion/deletion. A system which is not i-ambiguous,
for some i = 0, 1, 2, 3, 4, 5, is said to be i-unambiguous. A language L is inher-
ently i-ambiguous if every system γ generating L is i-ambiguous. A language for
which a i-unambiguous system exists is called i-unambiguous. From the above
definitions, it is easy to see that each inherently i-ambiguous language is in-
herently j-ambiguous for (i, j) ∈ {(1, 2), (1, 3), (2, 4), (3, 4), (4, 5)}. However, the
converse is not true. Therefore, whenever we show that a language is inherently
j-ambiguous, we want to make sure that the result is not followed by the fact
that the language is inherently i-ambiguous for the above i and j. In fact, in the
following theorems, we do the same.

3.1 Inherently Ambiguous Ins-del Languages

In this section, we show that there exist inherently i-ambiguous ins-del languages
for i = 0, 2, 3, 4, 5.

Theorem 1. There are inherently 5-ambiguous ins-del languages which are 4-
unambiguous.

Proof. Consider the language L1 = {anbbam | n,m ≥ 1}. The language L1 can
be generated by the following ins-del system γ1.

γ1 = ({a, b}, {a, b}, {abba}, {(a, λ/a, λ)}).
As, the system γ1 uses only string a for both insertion/deletion and only one
context (a, λ) obviously, the system γ1 is 4-unambiguous. Hence, the language
L1 is 4-unambiguous.

To prove the language L1 is inherently 5-ambiguous, consider an arbitrary
system γ′

1 which generates L1. The axiom in the system γ′
1 should be of the form

arbbas, r, s ≥ 1. The contexts used in insertion/deletion rule could be in one of
the forms (ar1 , b), (ar1 , bb), (ar1 , ar2), (ar1 , λ), (λ, ar2), (b, ar2), (bb, ar2), r1, r2 ≥
1. The string which will be inserted/deleted should be of the form ap, p ≥ 1. To

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 431

prove the system γ′
1 is ambiguous, consider a word akbbal ∈ L1. From this word,

the word ak
′
bbal

′
(for large values of k′ and l′) can be obtained by two different

descriptions which differs by the position where the string a is inserted/deleted.
First by getting ak

′
from ak and then al

′
from al or the other way round. Hence,

the system γ′
1 is ambiguous. Any ins-del system generating this language will

have this property and hence it is ambiguous. Therefore, the language L1 is
inherently 5-ambiguous. �

Theorem 2. There are inherently 4-ambiguous ins-del languages, which are 2-
unambiguous.

Proof. Consider the language L2 = {anbncmdm | n,m ≥ 1}. The language L2

can be generated by the following ins-del system γ2.

γ2 = ({a, b, c, d}, {a, b, c, d}, {abcd}, {(a, λ/ab, b), (c, λ/cd, d)}).
From the system γ2 it is easy to see that both the contexts (a, b) and (c, d) are
required to the generate the language. In order to generate equal number of a’s
and b’s in the language L2 the system has to use the context (a, b). Similarly, to
generate equal number of c’s and d’s in the language L2 the system has to use
the context (c, d). Since no other alternate contexts are available in the system
γ2 to generate equal number of a’s and b’s and equal number of c’s and d’s the
system γ2 is 2-unambiguous. Therefore, the language L2 is 2-unambiguous.

To prove the language L2 is inherently 4-ambiguous, consider an arbitrary
system γ′

2 which generates L2. The system γ′
2 should have the axiom of the form

aibicjdj , i, j ≥ 1. In order to generate the strings of the form anbncd, n ≥ 1, the
system should have the context of the form (ar1 , br2), r1, r2 ≥ 1 and the string to
be inserted/deleted should be of the form at1bt1 , t1 ≥ 1. Similarly, to generate
the strings of the form abcmdm,m ≥ 1, the system should have the context of
the form (cs1 , ds2), s1, s2 ≥ 1 and the string to be inserted/deleted should be
of the form cu1du1 , u1 ≥ 1. To prove the system γ′

2 is ambiguous, consider a
word ar1br1cs1ds1 , r1, s1 ≥ 1 ∈ L2. From this word, the word apbpcqdq can be
obtained by two different ordered complete control sequences. In one sequence
the required number of a’s and b’s can be inserted/deleted by using the context
of the form (ar1 , br2), followed by the insertion/deletion of c’s and d’s by using
the context of the form (cs1 , ds2). In another sequence, first the required number
of c’s and d’s can be inserted/deleted by using the context of the form (cs1 , ds2),
followed by the insertion/deletion of a’s and b’s by using the context of the form
(ar1 , br2). Hence the system γ′

2 is ambiguous. Any ins-del system generating this
language can have at least two different complete control sequences. Therefore,
the language L2 is inherently 4-ambiguous. �

Theorem 3. There are inherently 3-ambiguous ins-del languages which are 1
and 2 unambiguous.

Proof. Consider a language L3 = {canbmd | n,m ≥ 1}. The language L3 can be
generated by the following ins-del system γ3.

γ3 = ({a, b, c, d}, {a, b, c, d}, {cabd}, {(a, λ/a, λ), (b, λ/b, λ)}).

432 K. Krithivasan et al.

From the system γ3, it is easy to see that both the contexts and strings are
required to generate the language. In order to generate the language L3, the
context (a, λ) and the string a has to be used n − 1 times and similarly the
context (b, λ) and the string b has to be used m− 1 times. Therefore, the system
γ3 is 1 and 2-unambiguous. Hence, the language L3 is 1 and 2-unambiguous.

To prove the language L3 is inherently 3-ambiguous, consider an arbitrary
system γ′

3 which generates L3. The system γ′
3 should have an axiom of the

form caibjd, i, j ≥ 1. In order to generate L3, insertion rules should be of
the form, (ci, λ/aj , λ), (ai, λ/aj , λ), (ai, λ/aj , ak), (ci, λ/aj , ak), (λ, λ/aj , ak),
(ai, λ/aj, bk), (bi, λ/bj, bk), (bi, λ/bj , λ), (λ, λ/bj , bk), (ai, λ/bj, bk), (λ, λ/bj , dk),
(bi, λ/bj , dk), where i, j, k ≥ 1. Similarly, the system should have deletion rules
of the form, (ci, aj/λ, λ), (ai, aj/λ, λ), (ai, aj/λ, ak), (ci, aj/λ, ak), (λ, aj/λ, ak),
(ai, aj/λ, bk), (bi, bj/λ, bk), (bi, bj/λ, λ), (λ, bj/λ, bk), (ai, bj/λ, bk), (λ, bj/λ, dk),
(bi, bj/λ, dk), where i, j, k ≥ 1. The string used for the insertion/deletion should
be of the form ai, i ≥ 1, bj, j ≥ 1. From this, we can derive two different or-
dered control sequences which derives the same word. Consider an arbitrary
word caibjd ∈ L3. From this word, the word catbsd can be derived in two differ-
ent ordered control sequences. In one sequence, the required number of a’s can
be inserted/deleted, followed by the insertion/deletion of required number of b’s.
In another sequence, first the required number of b’s can be inserted/deleted,
followed by the insertion/deletion of required number of a’s. Therefore, the sys-
tem γ′

3 is ambiguous. Any ins-del system generating L3 will have this property.
Hence, the language L3 is inherently 3-ambiguous. �

Theorem 4. There are inherently 2-ambiguous ins-del languages which are 1-
unambiguous.

Proof. Consider the language L4 = {ban | n ≥ 0}∪{anc | n ≥ 0}∪{banc | n ≥ 0}.
The language L4 can be generated by the following ins-del system γ4.

γ4 = ({a, b, c}, {a, b, c}, {b, c, bc}, {(b, λ/a, λ), (λ, λ/a, c)}).

As, the system γ4 is having only one string which is used for insertion, the system
γ4 is 1-unambiguous. Therefore, the language L4 is 1-unambiguous.

To prove the language L4 is inherently 2-ambiguous, consider an arbitrary
system γ′

4 which generates L4. The system γ′
4 must have three axioms of the

form bai, ajc, bakc, i, j, k ≥ 0. If the system γ′
4 is having less than three axioms,

it will generate strings not in the language. In order to generate the first part of
the language the systemmust have an insertion rule of the form (b, λ/ai, λ), i ≥ 1.
Similarly, the deletion rule must be of the form (b, ai/λ, λ), i ≥ 1. To generate the
second part of the language the system must have an insertion rule of the form
(λ, λ/aj , c), j ≥ 1. Similarly, the deletion rule must be of the form (λ, aj/λ, c), j ≥
1. The string to be inserted/deleted should be of the form ap, p ≥ 1. To prove the
system γ′

4 is ambiguous, consider a word balc ∈ L4, where l = k+ ij. This word
can be derived from the axiom bakc by two different unordered complete control
sequences. In one sequence the context (b, λ) can be used j times and in another
sequence the context (λ, c) can be used i times. Thus obtaining two different

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 433

unordered complete control sequences. Hence, the system γ′
4 is 2-ambiguous. Any

ins-del system generating the language L4 will have this property. Therefore, the
language L4 is inherently 2-ambiguous. �

Theorem 5. There are inherently 0-ambiguous ins-del languages without con-
text, which are 1-unambiguous with finite context.

Proof. Consider the language L5 = {a, b}+. The language L5 can be generated
by the following ins-del system γ5.

γ5 = ({a, b}, {a, b}, {a, b}, {(a, λ/a, λ), (a, λ/b, λ), (b, λ/b, λ), (b, λ/a, λ)}).
Since, the string a or b is inserted only to the right of the axiom by using the
contexts (a, λ) or (b, λ), any word in the language can be generated in a unique
manner. Hence, the system γ5 is 1-unambiguous. Therefore, the language L5

is 1-unambiguous. Moreover, any word in L5 can be generated from only one
axiom, therefore γ5 is 0-unambiguous.

To prove the language L5 is inherently 0-ambiguous if no contexts is used,
consider an arbitrary system γ′

5 which generates L5. The system must have two
axioms of the form ar1 , r1 ≥ 1 and br2 , r2 ≥ 1. The string to be inserted/deleted
should be of the form ap1 and bp2 , p1, p2 ≥ 1. To prove γ′

5 is ambiguous, consider
a word biajbk ∈ L5 for large values of i, j, k. This word can be derived from two
axioms ar1 and br2 as follows:

ar1 =⇒∗
ins biar1 =⇒∗

del b
iaj =⇒∗

ins biajbs1 =⇒∗
del b

iajbk

br2 =⇒∗
ins b

r2aj =⇒∗
del b

r2ajbs2 =⇒∗
ins b

r2ajbk =⇒∗
del b

iajbk

Since the system is without contexts, insertion/deletion can happen at any place.
Any system without contexts which generates the language L5 will have this
property and hence it is ambiguous. Therefore, the language L5 is inherently
0-ambiguous if no contexts is considered. �

3.2 Ambiguity Issues in Gene Sequences

In this subsection, we show an example for how the level 5-ambiguity discussed
for ins-del systems can be interpreted in gene sequences. Consider an orthodox
string available in gene sequences. A string w over a complementary alpha-
bet Σ is called orthodox iff it is (i) the empty string ε, or (ii) the result of
inserting two adjacent complementary element bb̄, for some b ∈ Σ, anywhere
in an orthodox string [3]. A language is orthodox iff it contains only ortho-
dox strings. The orthodox language Lod can be generated by the ins-del system
γod = ({b, b̄}, {b, b̄}, {λ}, R), where b ∈ {a, t, g, c}, b̄ is complement of b (i.e
ā = t, ḡ = c, t̄ = a, c̄ = g) and R is given as R = [(λ, λ/bb̄, λ)]. Consider the
following string in orthodox language gctagcat. This string can be derived in two
different descriptions by γod The two different descriptions are given as follows:

Description 1 :↓ ta =⇒ gcta↓ =⇒ gctagc↓ =⇒ gctagcat

Description 2 : ta↓ =⇒ ↓tagc =⇒ gctagc↓ =⇒ gctagcat

434 K. Krithivasan et al.

Note that the axiom, order of insertion of strings, order of contexts (here (λ, λ))
all are same in both derivations, but the position of insertion is different in each
derivation. Therefore, the grammar γod is 5-ambiguous. Thus, starting from same
(gene) sequence, we are able to get the same sequence, but the inter-mediate gene
sequences are different. This suggests that there may be more than one way that
a gene sequence can be processed.

3.3 Decidability of Ambiguity for Ins-del Systems

First, we will slightly brief about Post Correspondence Problem(PCP). Let Σ
be an alphabet set containing at least two symbols. An instance of PCP has two
ordered sets of strings x = (x1, ..., xn) and y = (y1, ..., yn) over Σ, we say that
this instance of PCP has a solution if there is a sequence i1, ..., im, m ≥ 1, with
1 ≤ ij ≤ n for each 1 ≤ j ≤ m, such that xi1 ...xim = yi1 ...yim . It has been
proved that the PCP problem is not decidable in the sense that there cannot
exist an algorithm which will take an arbitrary instance of PCP as input and
say whether this instance of PCP has a solution or not.

Decidability is one of the basic questions to be answered in formal language
theory. Emptiness, Finiteness are some of the examples for decidability problems.
For more details on decidability problems, we refer to [9]. Once the ambiguity
is defined for the ins-del system, one question naturally arises on the ambigu-
ity of ins-del systems: Does there exist an algorithm to decide whether a given
arbitrary ins-del system γ is ambiguous or not?. In the next theorem, we prove
that ambiguity problem of ins-del systems is undecidable by using the Post Cor-
respondence Problem (this is called reducing PCP to the ambiguity problem).

Theorem 6. The ambiguity (of any i, i = 0, 1, 2, 3, 4, 5) of ins-del systems is
undecidable.

Proof. Let Σ = {a′, b′}. Consider two arbitrary words (x1, ..., xn) and (y1, ..., yn)
over Σ = {a′, b′}. Construct an ins-del system γ.

γ = ({a, a′, b, b′, c, d, e}, {a, a′, b, b′, c, d, e}, {ccccecd, ccdcccd}, I)

where the insertion rules (I) is given as follows:

I1 = (cc, λ/d, cce)
I2 = (ccccec, λ/xi1a

i1b, d)
I3 = (xik , λ/xik+1

aik+1b, aikb), 1 ≤ ik ≤ n
I4 = (dcc, λ/e, c)
I5 = (ccdccc, λ/yj1a

j1b, d)
I6 = (yjl , λ/yjl+1

ajl+1b, ajlb), 1 ≤ jl ≤ n

Let w1 be the word derived from the axiom ccccecd (The ↓ denotes the po-
sition where the string is inserted in the next derivation step and the number

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 435

at the suffix in each derivation symbol ‘=⇒’ indicates which insertion rule is
applied).

ccccec↓d =⇒I2 ccccecx↓
i1
ai1bd =⇒∗

I3 cc↓ccecxi1 ...xika
ikb...ai1bd

=⇒I1 ccdccecxi1 ...xika
ikb...ai1bd.

Let w2 be the word derived from the axiom ccdcccd.

ccdccc↓d =⇒I5 ccdcccy↓j1a
j1bd =⇒∗

I6 ccdcc↓cyj1 ...yjla
jlb...aj1bd

=⇒I1 ccdccecyj1 ...yjla
jlb...aj1bd.

By comparing w1 and w2, they are both are equal iff k = l and i1 = j1, ..., ik = jk
and xi1 ...xik = yi1 ...yik . So, there exists a Post Correspondence Solution (PCP)
for the instance i1, ..., ik for the strings (x1, ..., xn) and (y1, ..., yn). We can see
that, the system is ambiguous as it derives the same word from two different
axioms.

Conversely, if PCP for (x1, ..., xn) and (y1, ..., yn) has a solution for the in-
stance i1, ..., ik, such that xi1 ...xik = yi1 ...yik , then clearly the system γ is 0-
ambiguous (i.e., from two different axioms, we are able to get two words w1 and
w2, such that w1 = w2.).

Therefore, if the ambiguity problem of ins-del systems is decidable, then PCP
is said to be decidable by the above reduction method which is not the case.
Therefore, 0-ambiguity problem for ins-del system is not decidable. In a similar
fashion, we see that i-ambiguity problem (i = 1, 2, 3, 4, 5) for ins-del system is
undecidable. �

4 New Complexity Measures

In this section, we define some new complexity measures for ins-del systems.
Given a ins-del system γ = (V, T,A,R), the basic complexity measures have been
discussed in the preliminary section. Let the system γ contains the insertion rules
of the form (u1, λ/α1, v1), ..., (um, λ/αm, vm) and similarly the deletion rules of
the form (u1, β1/λ, v1), ..., (um, βm/λ, vm). Based on the above rules, the new
measures are defined as follows:

TLength− Con(γ) =
∑

(u,v)∈R

|uv|,

TLength− Ins(γ) =
∑

(u,α,v)∈R

|uαv|,

TLength−Del(γ) =
∑

(u,β,v)∈R

|uβv|.

The measure TLength− Con specifies the total length of the contexts used in
insertion/deletion rules, TLength− Ins specifies the total length of the contexts

436 K. Krithivasan et al.

used in insertion rules plus the length of the strings (α) to be inserted and
TLength−Del specifies the total length of the contexts used in deletion rules
plus the length of the strings (β) to be deleted.

4.1 Trade-off between Ambiguity and Measures

In this section, we analyze the trade-off between the newly defined ambiguity
levels and various complexity measures. We show that when a minimal measure
M is chosen for a language L, then all the corresponding systems which gener-
ates wwwL are ambiguous. On the other hand, when an unambiguous system
is chosen for L the system is not minimal in M . The corollary is the conse-
quences of the theorem and by the fact that the measures Ax,MAx, TAx are
pairwise compatible [5]. Before, we proceed to the results, let us adapt the no-
tion of ‘pseudo inherently ambiguous’ introduced in [12]. A system γ is said to
be restricted if γ satisfies some conditions imposed on it. Here, we impose the
condition minimal measure (with respect to a measure M) to systems and we
say that γ is restricted with respect to M .

Definition 2. A language L is said to be pseudo inherently ambiguous (when
considered minimal with respect to M) if every restricted system (with respect to
M) generating L is ambiguous.

In the next theorem, we show that if we want to store the language L6 with the
corresponding system which is minimal in terms of Prod, then any such system is
(5-) ambiguous. On the other hand, if we want to store L6 with the corresponding
system which is unambiguous, then any such system is not minimal with respect
to Prod. A similar result in discussed in Theorem 8. Thus, in the following section
we make a trade-off between ambiguity and complexity measures in choosing a
system for a language.

Theorem 7. There are pseudo inherently 5-ambiguous ins-del languages when
Prod is considered minimal, but there are 5-unambiguous systems which are not
minimal in Prod.

Proof. Consider the language L6={d(abb)n | n ≥ 0} ∪ {(abb)nc | n ≥ 0}. The
language L6 can be generated by the following 5-ambiguous ins-del system γ6.

γ6 = ({a, b, c, d}, {a, b, c, d}, {d, dabb, c, abbc}, {(abb, λ/abb, λ)}).
The system γ6 is minimal with respect to Prod. From γ6, it is easy to see
that Prod(L6) = 1. Any system which generates L6 must have at least one
insertion/deletion rule. Hence, the language L6 is minimal in Prod.

Consider any system γ′
6 which generates L6 for which Prod(γ′

6) = 1. Since
different abb is chosen for insertion/deletion in deriving the words d(abb)i and
(abb)jc for large value of i and j, the position where the string abb is in-
serted/deleted differs, but derives the same word. Hence, the system γ′

6 is am-
biguous. Note that the system γ′

6 is 4-unambiguous.

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 437

However, the language L6 is 5-unambiguous as we can give a 5-unambiguous
γ′′
6 = ({a, b, c, d}, {a, b, c, d}, {d, c}, {(d, λ/abb, λ), (λ, λ/abb, c)}) which generates

L6. The first part of the language can be generated by inserting the string abb
to the right of d. Similarly, the second part of the language can be generated by
inserting the string abb to the left of c. As the position of inserting the string
never changes in both parts of the language, the system γ′′

6 is unambiguous. Note
that, the system γ′′

6 is not minimal in Prod, since Prod(γ′′
6) = 2. �

Theorem 8. There are pseudo inherently 4-ambiguous ins-del languages when
Ax is considered minimal, but there are 4-unambiguous systems which are not
minimal in Ax.

Proof. Consider the language L7={b(a)3n | n ≥ 0} ∪ {c(a)3n | n ≥ 0} ∪
{ba3nca3m | n,m ≥ 0} . The language L7 can be generated by the following
4-ambiguous ins-del system γ7.

γ7 = ({a, b, c}, {a, b, c}, {b, c, bc}, {(b, λ/aaa, λ), (c, λ/aaa, λ)}).
The system γ7 is minimal with respect to Ax. From γ7, it is easy to see that
Ax(L7) ≤ 3. Any system which generates L7 must have at least three axioms
corresponding to the three parts of the language. If the system γ7 is having less
than three axioms, it will generate strings not in the language. Hence, Ax(L7) ≥
3, which implies Ax(L7) = 3.

Consider any system γ′
7 which generates L7 for which Ax(γ′

7) = 3. Since the
string ba3i, i ≥ 0 ∈ L7, the system should have insertion/deletion rule of the form
(b, λ/aaa, λ) /(b, aaa/λ, λ). Similarly, since the string ca3j , j ≥ 0 ∈ L7, the sys-
tem should have insertion/deletion rule of the form (c, λ/aaa, λ) /(c, aaa/λ, λ).
Consider a word ba3rca3s, r, s ≥ 0, this word can be derived from the axiom of
the form ba3pca3q, p, q ≥ 0 by two different ordered complete control sequences.
In one sequence the insertion/deletion (b, λ/aaa, λ) /(b, aaa/λ, λ) rules can be
used first, followed by the insertion/deletion rules (c, λ/aaa, λ) /(c, aaa/λ, λ). In
another derivation, the insertion/deletion rules (c, λ/aaa, λ) /(c, aaa/λ, λ) can
be used first, followed by the insertion/deletion rules (b, λ/aaa, λ) /(b, aaa/λ, λ).
Note that since the string aaa to be inserted/deleted is same in both the deriva-
tions, the system is 1 and 3-unambiguous.

However, the language L7 is 4-unambiguous as we can give a 4-unambiguous
γ′′
7 = ({a, b, c}, {a, b, c}, {b, baaa, c, caaa, bc, baaac, bcaaa, baaacaaa}, {(a, λ/aaa,

λ)}) which generates L7. Note that the system γ′′
7 is not minimal in Ax. �

Corollary 1. There are pseudo inherently 4-ambiguous ins-del languages when
Ax, MAx, TAx are minimal, but there are 4-unambiguous systems which are not
minimal with respect Ax, MAx, TAx.

5 Conclusion

Insertion-deletion systems were defined and motivated by the way DNA strands
are inserted and deleted. In this paper, we defined various ambiguity levels

438 K. Krithivasan et al.

(i = 0, 1, 2, 3, 4, 5) for insertion-deletion systems. Next, we showed that there are
inherently i-ambiguous insertion-deletion languages which are j-unambiguous
for the following combinations (i, j) ∈ {(5, 4), (4, 2), (3, 1), (3, 2), (2, 1), (0, 1)}.
We have not proved the result for the pair (1, 0) and is left as open. We have
also shown an example that how the ambiguity levels defined for ins-del systems
can be interpreted in gene sequences. Then, we proved that the ambiguity prob-
lem for insertion-deletion systems is undecidable. Further, we defined three new
complexity measures TLength−Con, TLength− Ins, TLength−Del. We dis-
cussed the trade-off between the newly defined ambiguity levels and complexity
measures in insertion-deletion systems. We aimed to show that there are pseudo
inherently i-ambiguous insertion-deletion languages which are i-unambiguous. A
few more complexity measures like maximal length of an inserted and deleted
strings can be defined and the trade-off between the ambiguity levels and new
complexity measures can be analyzed as a future work.

Acknowledgment. The second author would like to acknowledge the project
SR/S3/EECE/054/2010, Department of Science and Technology, New Delhi,
India. The third author would like to acknowledge the scheme “Mentoring of
Engineering Teachers by INAE Fellows” of Indian National Academy of Engi-
neering, New Delhi, India and his work was partially carried out during the
author’s visit to Indian Institute of Technology Madras, Chennai, India.

References

1. Takaharai., A., Yokomori, T.: On the computational power of insertion-deletion
systems. In: Natural Computing, vol. 2, pp. 321–336. Kluwer Academic Publishers
(2003)

2. Calude, C.S., Paŭn, G.: Computing with cells and atoms. An introduction to Quan-
tum, DNA and Membrane Computing. Taylor and Francis, London (2001)

3. Searls, D.B.: The computational linguistics of biological sequences. In: Hunter,
L.(ed.) Artificial Intelligence and Molecular Biology, pp. 47–120. AAAI Press
(1993)

4. Galiukschov, B.S.: Semicontextual grammars. Mat. Logical. Mat. Ling., Talinin
University, 38–50 (1981) (in Russian)

5. Georgescu, G.: The Syntactic Complexity of Internal Contextual Grammars and
Languages. In: Martin-Vide, C. (ed.) II Intern. Conf. Mathematical Linguistics,
Amsterdam, pp. 17–28 (1997)

6. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing, New Computing
Paradigms. Springer (1998)

7. Păun, G.: Contextual Grammars. The Publ. House of the Romanian Academy of
Sciences, Bucuresti (1982)

8. Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers (1997)
9. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley (2006)
10. Ilie, L.: On Ambiguity in Internal Contextual Languages. In: Martin-Vide, C. (ed.)

II Intern. Conf. Mathematical Linguistics, Tarragona, 1996, pp. 29–45. John Ben-
jamins, Amsterdam (1997)

On the Ambiguity and Complexity Measures of Insertion-Deletion Systems 439

11. Lakshmanan, K.: A note on Ambiguity of Internal Contextual Grammars. Theo-
retical Computer Science, 436–441 (2006)

12. Lakshmanan, K., Anand, M., Krithivasan, K.: On the Trade-off Between Ambiguity
and Measures in Internal Contextual Grammars. In: Cămpeanu, C., Pighizinni, G.,
(eds.) DCFS 2008, Charlottetown, Canada, pp. 216–223 (2008)

13. Kari, L., Păun, G., Thierrin, G., Yu, S.: At the crossroads of DNA computing and
formal languages: Characterizing RE using insertion-deletion systems. In: Proc.
of 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, pp. 318–333
(1997)

14. Kari, L.: On insertion/deletion in formal languages. Ph.D Thesis, University of
Turku (1991)

15. Marcus, S.: Contextual Grammars. Rev. Roum. Pures. Appl. (1969)
16. Martin-Vide, C., Miguel-Verges, J., Păun, G., Salomaa, A.: Attempting to Define

the Ambiguity in Internal Contextual Languages. In: Martin-Vide, C. (ed.) II In-
tern. Conf. Mathematical Linguistics, Tarragona 1996, pp. 59–81. John Benjamins,
Amsterdam (1997)

17. Setubal, Meidanis: Introduction to Computational Molecular Biology. PWS Pub-
lishing Company (1997)

	On the Ambiguity and Complexity Measures of Insertion-Deletion Systems
	Introduction
	Preliminaries
	Various Ambiguity Levels
	Inherently Ambiguous Ins-del Languages
	Ambiguity Issues in Gene Sequences
	Decidability of Ambiguity for Ins-del Systems

	New Complexity Measures
	Trade-off between Ambiguity and Measures

	Conclusion
	References

