
A Fault-Tolerant Multipoint Cycle Routing

Algorithm (MCRA)

David Lastine, Suresh Sankaran, and Arun K. Somani

Department of Electrical and Computer Engineering
Iowa State University, Ames, Iowa 50011
{dlastine,sankaran,arun}@iastate.edu

Abstract. In this paper we propose a new efficient fault tolerant mul-
tipoint routing algorithm for optical networks. The routing for a multi-
point request is accomplished by finding a bidirectional cycle simple or
nonsimple including all nodes that are participating in the multipoint
session. Each link can be used only once. Use of a cycle ensures that a
single link (or node in case of simple cycle) failure does not interrupt the
session except the failed node if it was part of the multipoint session. De-
termining the smallest cycle with a given set of Multi-point (MP) nodes
is a NP-Complete problem. Therefore, we explore heuristic algorithms
to determine an appropriate cycle to route multipoint connections. We
allow non-simple cycles to route requests as they use fewer resources
than simple cycles in some cases. We also provide an ILP formulation
for routing multipoint request and compare its results with the output
of our best heuristic algorithm. On Arpanet for over 80% of the time,
our best heuristic is able to find a cycle that is within 1.2 times that of
the optimal.

Keywords: Cycle routing algorithm, Multipoint Communication, Mul-
ticasting, Fault Tolerant Routing.

1 Multipoint Connection Problem

Multipoint (MP) to Multipoint communication is the transmission of informa-
tion from all source nodes to all destination nodes. The sources and destinations
form a subset of nodes in the network. We shall refer to them as multipoint
(MP) nodes. Currently there exist many applications such as multimedia col-
laborations, video conferencing and shared workspaces which require MP to MP
services. The increasing number of users of these applications necessitates a fiber-
optic based optical network that can satisfy the bandwidth needs per request.
However, failures in fiber-optic lines happen as frequently as every couple of
days. This motivates us to explore fault aware MP routing.

The challenge in providing efficient protection to multipoint to multipoint
communication is to recognize that it provides more opportunities for resource
sharing than distinct entities of multicast communication. The relationship be-
tween multipoint and multicast is analogous to the situation between multicast

I. Tomkos et al. (Eds.): BROADNETS 2010, LNICST 66, pp. 341–360, 2012.
� Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



342 D. Lastine, S. Sankaran, and A.K. Somani

and unicast. Consider implementing a fault tolerant multicast connection as a
set of fault tolerant unicast connections. While this would be feasible, connec-
tions for different destinations would independently reserve capacity on every
link they use, even when a link is common between them. Multicast specific
routing strategies avoid this redundant reservation. All multipoint routing al-
gorithms try to avoid redundancies that would be incurred by repeatedly using
multiple unicast strategies.

1.1 Multicast Protection Scheme

MP to MP connection is a generalization of multicast. It is equivalent of a
multiple multicast request. Significant work has been done for protecting and
restoring multicast connections in light tree, little work has been done on efficient
protection of multipoint request. In [1] multicast tree protection is classified into
the following categories: path-based, segment-based, tree-based, p-cycle based,
and ring-based protection.

Most of the existing approaches route a multicast light tree that is protected
by another tree or a cycle of some type. The idea of using a cycle to both route
and protect a multicast request has received little attention in the literature.
The idea is considered in [2]. The paper considers routing dynamic multicast
connection using a cycle in NSF network. If their algorithm fails to find a cy-
cle, they classify it as a blocked connection. We note that the lowest blocking
probability reported for the network is 0.1, which is rather high.

We in this paper, solve the general problem of MP to MP connection us-
ing a cycle-based approach. Since this problem has received little attention in
literature, for comparison we review the multicast protection schemes below.

A straightforward approach to protect a multicast tree is to compute a link-
disjoint or arc-disjoint backup tree providing 1+1 dedicated protection [3] but
this protection scheme consumes excessive resources. Although it may not be
always possible to find an arc-disjoint backup tree once a primary tree has been
discovered, it may be possible to protect each segment in the primary tree by
finding a segment-disjoint path. Two protection schemes called Optimal Path
Pair-based Shared Disjoint Segment(OPP-SDS-H) and Optimal Path Pair-based
Shared Disjoint Path(OPP-SDP) have been proposed in [4] and the results sug-
gest OPP-SDP outperforming SDS protection scheme. In dynamic multicast ses-
sion, Link Based-Shared protection algorithm (LB-SPDM) is shown to perform
better in terms of blocking probability than OPP-SDP [5]. Since OPP-SDP is
a failure-independent method which looks for only one protection path for each
working path for any link failure on that path, it makes the protection path
unable to share wavelengths with working path unlike in failure dependent LB-
SPDM protection.

The use of p-cycles and multicast trees to provide protection for dynamic mul-
ticast connections is considered in [6] and [7]. Several ways to place p-Cycles
are examined in [8] and their resource usage and computation speed are com-
pared. In [9] the blocking of multicast trees is examined for three different p-cycle



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 343

placement scenarios. They consider placing the p-cycles without knowledge of
the traffic, placing p-cycles dynamically as traffic arrives, and a hybrid scenario.
Researchers in [10] analyzed a p-cycle based light-tree protection (ESHT) for
combined node and link failure recovery. The capacity efficiency of this heuris-
tic is close to OPP algorithm, while the blocking performance is in between
OPP-SDP and OPP-SDS. The advantage of p-cycle based approach is faster
restoration speed because p-cycle are pre-cross-connected.

[1] evaluated the performance of node-and-link protecting p-cycle based ap-
proach, tree-protecting p-cycle based approach and the OPP based approach. It
is found that efficiency-score based heuristic algorithm of node-and-link protect-
ing p-cycle outperforms the other heuristic algorithms. These protection strate-
gies are shown to be efficient when applied for single multicast request but how
to extend them efficiently to multipoint request is unclear.

1.2 Multipoint Protection Scheme

In this paper, we propose to route the multipoint request in a bidirectional cycle
with UPSR like protection. We explore fault tolerant MP routing by establishing
cycles to support MP requests. In order to provide a single link fault tolerance
to a MP connection, there needs to exist a path from each node to all other
nodes participating in the MP communication that does not use that link. A
bidirectional simple or non-simple cycle satisfies this property if no link is reused.
Since we only allow reusage of nodes and not links for a request, a single link
failure does not disconnect the MP connection in a bidirectional cycle. This
is done by having the transmitting node send its’ traffic in both directions as
shown in Figure 1(a) where node s1 is transmitting. The transmitting node is
responsible for ensuring the signal is dropped, once it has completed the loop.
Receiving nodes listen to the incoming signal from both directions. In fault free
operation a receiver will receive the same information twice and can either ignore
the duplicate information or can use it for verification. When a fault occurs, as
shown in Figure 1(b), then all nodes still receive the transmitted information, but
only once. In this case, verification is not possible, but information is available
at the destination.

By this kind of protection scheme, we eliminate the cost of a dedicated dis-
joint backup path and reduce latency since the traffic is transmitted in both
the directions. When we compare with other protection mechanisms like dual
multipoint tree and p-cycle, the multipoint cycle based protection scheme has
the advantages that no loss of traffic occurs and the fault location need not be
identified. This is true irrespective of which node is transmitting. Hence MP to
MP protected connection is established.

1.3 Multipoint Connection Cycle

To route a multipoint connection, the network receives request to create a cy-
cle involving a set of nodes participating in multipoint session. The cycle may



344 D. Lastine, S. Sankaran, and A.K. Somani

Fig. 1. Media Access Control Protocol

contain additional nodes as required due to the network topology, while con-
taining all the nodes that are part of the request. If such a cycle cannot be
established, then the request is rejected and the connection is blocked.

Finding the smallest cycle that includes a specified set of nodes is a hard prob-
lem. We formally define a decision version of the Cycle Based Routing (CBR)
problem as follows.

CBR Problem: Given a graph G(V,E), where V denotes the set of nodes and
E denotes the set of edges in the graph, an integer k, S ⊆ V as a subset of nodes,
is there a simple or non-simple cycle graph P (V (P ), E(P )) ⊆ G, where V (P ) is
the set of nodes in P and E(P ) is the set of edges in P such that S ⊆ V (P ) and
|E(P )| ≤ k?

This problem is hard. Therefore, we develop heuristic algorithm to deter-
mine an appropriate cycle to route a multipoint connection. The evaluation of
our heuristic is performed by routing many randomly generated requests on
randomly generated networks. The number of nodes considered varies between
twenty and sixty five nodes. We assume that networks consisting of more than
sixty five nodes will have their routing performed in a hierarchical fashion. It
is generally accepted that blocking is kept low by using a minimum amount of
networking resources per request. To explore how efficiently our heuristics utilize
resources we analyze different variations of the algorithm and compare the best
performing heuristic them with the optimal results of an ILP.

2 Network Graph Model

The network is modeled using a connected graph G(V,E). V is the set of vertices
representing nodes in the network.E is the set of edges (u, v) ∈ E where u, v ∈ V .
An edge (u, v) represents the physical link that allows communication between
nodes u and v. Links are assumed to have capacity which can take the values of
1 or 0 depending on availability or non-availability.



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 345

3 Multipoint Cycle Routing Algorithm (MCRA)

One application of CBR problem is in multipoint communication. S ⊆ V is a
set of nodes, which participate in a multipoint session. In this paper, we develop
a multipoint cycle routing algorithm (MCRA). For this purpose, we associate
costs with nodes. This cost is modeled as a binary variable. For non-MP nodes
the cost is always one, for MP nodes we have considered two scenarios; in one
scenario the cost is set to one and in the other the cost is set to zero. Since links
are used only once we assume that links have no costs.

Since finding an optimal cycle is hard, we use simple heuristic algorithm to
find a cycle. Our algorithm to find a fault tolerant cycle to route the MP request
consists of multiple phases.

3.1 First Phase Algorithm

In the first phase, we consider all pairs of MP-nodes and compute a shortest
distance path between each MP-node pair in the graph. We examine all these
shortest paths, the one that includes the largest number of MP-nodes is recorded
as the Initial P (T ). If there are more than one, we select the first one discovered.

One way to compute the shortest paths is to create the shortest path tree
for each node si ∈ S. The shortest path tree is created by the function D(si)
(pseudo code for this function is not included as we simply use a variation of
Bellman-Ford where we consider nodes not edges to be weighted). The function
M(sj) retrieves a shortest path from destination sj to source si (pseudo code for
this function is also not provided as it is simply a tree traversal algorithm). Out
of all the shortest paths in |S| trees, the one with many MP-nodes is recorded
as Initial P (T ) as shown in Figure 2 as Initial P (T ).

3.2 Second Phase Algorithm

In the second phase, a new segment passing through a yet to be added MP-node
is inserted in between the two multipoint end nodes of Initial P (T ). It is done by
considering each yet-to-be-covered MP-node and finding the segment to connect
between multipoint end nodes in Initial P (T ). The segment is computed using
the function Find−Segment as described later on. While finding this segment,
by assigning the link capacity to zero we do not use any of the links already
present in Initial P (T ). We choose the best segment, that has many uncovered
MP-nodes, to insert into Initial P (T ). This closes Initial P (T ) to form a cycle.

Figure 2 shows the second phase computation. For each uncovered MP node
si, we calculate a segment sj− > si and si− > sk. All edges except those
on P (T ) are considered available. The set of segments sj − si − sk (shown as
dotted line) is selected for insertion for which sj − si− sk has maximum number
of uncovered MP nodes. Notice that a MP node on P (T ) can also belong to
segment in sj − si − sk but it does not count towards uncovered MP nodes.



346 D. Lastine, S. Sankaran, and A.K. Somani

MCRA algorithm

Input: Graph G, Subset S
Output: P (T ) - Self Protecting Multipoint Communication Cycle
P (T ) = NULL; P = NULL;
//Phase 1 starts
foreach si ∈ S do

D(si); creates shortest path tree rooted at si
foreach sj ∈ S; j > i do

P = M(sj); Finds the path from sj in the tree
if # of MP nodes in P > # of MP nodes in P(T) then

P (T ) = P ;
end

end

end
∀e ∈ P (T ) capacity(e) = unavailable;
//Phase 1 ends - Phase 2 starts
subpath = NULL; Bestpath = NULL;
sj = FirstnodeP (T );
sk = LastnodeP (T );
foreach si ∈ S and si /∈ P (T ) do

subpath = FindSegment(P (T ), G, si, sj , sk);
if # of uncovered MP nodes in subpath > # of MP nodes in Bestpath
then

Bestpath = subpath; pick new segment
end

end
if Bestpath == NULL then

return NULL; request blocked
end
Insert BestpathinP (T ); P(T) becomes a cycle
//Phase 2 ends - Phase 3 starts
subpath = NULL; BestSubpath = NULL;
while S �⊆ P (T ) do

foreach si ∈ S − P (T ) do
subpath = Select− Segment(si, GraphG);
if # of uncovered MP nodes in subpath > # of MP nodes in
BestSubpath then

BestSubpath = subpath; pick new segment
end

end
if BestSubpath == NULL then

return NULL; request blocked
end
Insert BestSubpath into P(T);

end
Return P(T); //Phase 3 ends



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 347

Select-Segment

Input: si ∈ S and si /∈ P (T ), Graph G
Output: BestSubpath
BestSubpath = NULL;
foreach consecutive sj , sk ∈ P (T ), sj , sk ∈ S do

subpath = Find− Segment(P(T), si, sj , sk, Graph G);
if s(subpath) > s(BestSubpath) then

BestSubpath = subpath;
end

end

Find-Segment

Input: P (T ), si, sj , sk, Graph G
Output: Subpath
Subpath = Find− Segment−Helper(P (T ), si, sj , sk, Graph G);
if Subpath = NULL then

Subpath = Find− Segment−Helper(P (T ), si, sk, sj , Graph G);
switches order of nodes

end
return subpath;

Fig. 2. Example of Phase 2

3.3 Third Phase Algorithm

In the third phase, each of the remaining MP-nodes are inserted into the cycle
P (T ). New segments are selected after considering all remaining MP-nodes and
all possible segments (a path between two consecutive MP-nodes sj and sk on
P(T)) such that an uncovered node si ∈ S − V (P (T )) can be included between
nodes sj and sk. A node si is inserted by replacing the path between nodes sj
and sk on P (T ) by a segment that includes si. Each rerouting enables inclusion
of one or more uncovered MP-nodes in P (T ). This is depicted in Figure 3.



348 D. Lastine, S. Sankaran, and A.K. Somani

Find-Segment-Helper

Input: P (T ), si, sj , sk, Graph G
Output: Subpath
Set sk.Cost = |V |;
D(sj , G); Builds a shortest path tree rooted at sj
P1 = M(si); Find shortest path between si and sj
Set sk.Cost = 1;
∀e ∈ P1 capacity(e) = 0;
Set sj .Cost = |V |;
D(sk, G);
P2 = M(si);
Set sj .Cost =1;
∀e ∈ P1 capacity(e) = 1;
if P1 = NULL or P2 = NULL then

return NULL;
end
else

return P1

⋃
P2;

end

Fig. 3. Example of Phase 3

No link that is used in P (T ) is available to compute segment sj − si− sk (shown
as dotted line) except the links on path sj − sk in P (T ).

The candidate segments for a specific uncovered node are found by calling the
function Select − Segment. One uncovered MP-node si and the current P (T )
are input to Select − Segment. The best segment to insert MP-node si and
the location in P (T ) between nodes sj and sk is returned by Select− Segment
function.

Select−Segment Function Select−Segment is responsible for finding the best
new segment that includes si in P (T ). It performs the necessary work to loop



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 349

over all the consecutive MP-nodes pairs on P (T ) starting with one pair of MP-
nodes sj and sk to include node si. It does so by considering every segment of
P (T ), i.e., a path between two consecutive MP-nodes on P (T ), and checks if the
path can be replaced by a new segment containing the node si. Select−Segment
uses a function Find− Segment to find the new segment.

Find − Segment Function Find − Segment is used to find a short, low cost
segment passing through node si between nodes sj and sk. Recall that MP nodes
are assigned cost 0 and other nodes are assigned cost 1. we later experiment with
other cost models too. The arguments for this function are the current P (T ),
Graph G, node si - a MP-node to be included in P (T ), and the two consecutive
MP-nodes sj and sk on P (T ) such that the path between them is to be replaced
to insert node si.

For each si, function Find−Segment is called p times by the function Select−
Segment, where p is the number of MP-nodes currently in P (T ). Then the
segment with the least cost and the most MP-nodes is selected to be inserted
into P (T ). The maximum value of p can be at most |S| − 1. When finding a
segment a currently used link is not allowed to be used again.

3.4 Detailed Example

Figure 4 depicts the three phases of execution of our heuristic algorithm to
find a cycle in Arpanet for a multipoint request of consisting of nodes in set
S = {2, 5, 13, 14, 17, 19}. The top of the figure shows the segment found in
the first phase is and it is {2, 4, 11, 13, 17}. This segment includes three of the
nodes from S.

This example was produced by our implementation. Recall that there may be
more than one shortest path between a pair of nodes in a given graph. Different
numbering of nodes and processing steps could lead to many valid executions
of the Bellman-Ford algorithm. The outcome will be different based on which
shortest path is found by a particular implementation of the Bellman-Ford al-
gorithm. In the example graph there are several shortest paths between nodes 2
and 19. The shortest path algorithm may find the path {2, 1, 3, 7, 10, 19}. This
path has only two nodes from S while the Initial P (T ) selected by our algorithm
has three nodes from S. There exists a shortest path {2, 4, 11, 13, 17, 19} between
nodes 2 and 19. This path has four nodes from S. If this had been the path found
by our implementation then it would have become the Initial P (T ). However,
this did not happen to be the path found by our shortest path algorithm.

The middle of the figure shows the second phase of the execution where a
segment {2,5,6,7,10,19} is added to form a cycle. This segment includes two
previously uncovered MP-nodes of S i.e. 5 and 19.

The bottom of the figure shows the third phase of execution where con-
nection between nodes 17 and 19 has been replaced by the non-simple path
{17, 19, 16, 15, 14, 20, 19}. The segment is non-simple since node 19 is both one



350 D. Lastine, S. Sankaran, and A.K. Somani

Fig. 4. Step 1, 2 and 3 for Cycle Routing Algorithm

of its’ end point and appears in its middle. The segment also happens to include
the link that connected 17 and 19 in the previous step. This happened because
the algorithm found path {19, 16, 15, 14} and then found {17, 19, 20, 14}. Notice
this is not optimal cycle but all nodes have been included. The non-optimality
can be observed by noting there exists paths {17, 20, 14} and {19, 16, 15, 14}
which could have been used to create a simple cycle using one less link. Since all
nodes in S have been included the algorithm terminates.



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 351

3.5 Special Cases

In order to give a clear explanation of the execution of our algorithm, we omitted
details relating to a couple of special cases in algorithm description. Case l: It

Fig. 5. Example of Special Case 1

is possible for all MP nodes to be included in the path found in Phase I. If
this happens then there are no uncovered MP nodes to include when closing the
cycle. In this case we simply find the shortest path between the two end nodes
of Initial P (T ) or report failure if there is no such path.

Figure 5 shows the example of Special Case 1. The MP-nodes in the net-
work are {5, 6, 7}. The Initial P (T ) (solid line) includes all the MP-nodes in its
path {5, 6, 7}. Since all the MP-nodes are covered, our heuristic algorithm finds
the shortest path {5, 2, 1, 3, 7} between end MP-nodes of Initial P (T ) and the
algorithm terminates.

Case 2: Sometimes the selection of the Initial P (T ) creates a situation where
the cycle cannot be closed. Instead of reporting failure in this case we start
inserting uncovered MP nodes. Inserting new nodes may free up critical resources
allowing the formation of a cycle. If we could not close the cycle initially, we check
if the cycle can be closed after each insertion of a new segment.

The example for Case 2 is shown in Figure 6. The Initial P (T ) is the path
{1, 2, 3, 9, 17, 23, 24, 25}. Since the links in Initial P (T ) cannot be reused, this
disconnects the graph preventing the completion of a cycle. When MP node 13
is inserted between MP nodes 2 and 24, the edge between nodes 9 and 17 becomes
available. This reconnects the graph allowing for the cycle to be created.

4 Variations of MCR Heuristics Algorithm

To explore the impact on optimality by various design features of our heuristic
algorithm, we considered four variations of algorithm MCRA. The variations are



352 D. Lastine, S. Sankaran, and A.K. Somani

Fig. 6. Example of Special Case 2

obtained by using different node cost and adjusting when the cycle is likely to be
closed. The cycle closing can be adjusted by skipping Phase 2 and considering
the segments between end nodes of P(T) as part of the segments found between
consecutive multipoint nodes in Phase 3.

We use notation ij to describe the four variations of the heuristic algorithm.
Index i takes binary value of 0 or 1 whereas Index j takes a value of Y or
N . Index i describe the assigned node cost function and Index j describe the
inclusion of Phase 2. The four cases are as follows.

– 0Y - Multipoint nodes have cost 0 and the other nodes have cost 1. Phase 2
is included.

– 0N - Multipoint nodes have cost 0 and the other nodes have cost 1. Phase
2 is skipped.

– 1Y - The cost of both multipoint and non-multipoint nodes are same. Phase
2 is included.

– 1N - The cost of both multipoint and non-multipoint nodes are same. Phase
2 is skipped.

In Section 7, we analyze the performance of these four variations of our heuristic
algorithm in terms of average cycle length and percent blocking in different graph
types.



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 353

5 ILP Formulation to Find Multipoint Cycles

This section describes an ILP that solves the multipoint cycle routing problem.
In most of this paper we have treated the network graph as undirected. In
formulating the ILP it was more convenient to assume directed edges. This does
not give rise to inconsistencies, since a directed cycle can be converted to a
bidirectional cycle by including the edge between nodes in the cycle that go in
the direction opposite to the selected edges.

We solved the multipoint cycle problem using an ILP that minimizes the
number of edges in the cycle. This is accomplished by the objective function
given as in Equation 1. The set of edges found as output should satisfy the
following three constraints: edges traveling in opposite directions cannot be used,
the selected edges form a cycle, and all S nodes are included in the cycle. The
last property is enforced by a flow constraint. The selection problem is related
to the flow constraint by requiring that the flow only uses selected edges. The
constraints for controlling the flow are written in terms of the following variables
and constants, which are indexed over the set of edges e ∈ E in the network as
well as nodes n,m ∈ V in the network.

The constant values used to specify the ILP are as follow.

jn =

⎧
⎨

⎩

|S| − 1 for one arbitrary s0 ∈ S
−1 for sn ∈ S, sn �= s0
0 for vn ∈ V, vn /∈ S

de,n =

{−1 for entering node n from edge e
1 for leaving node n from edge e

xe,n,m =

{
1 if edge e connects nodes n and m ∈ V
0 otherwise

The variables and the values they may take are as follows.

fe =
{
flow on edge e

le =

{
1 if link e is selected
0 otherwise

Objective Function

Minimize

|E|∑

e=1

le (1)

The constraints for the ILP are given below:

We setup a flow problem that can only be satisfied if all S nodes are connected
by selected links.

|E|∑

e=1

de,nfe = jn (2)



354 D. Lastine, S. Sankaran, and A.K. Somani

The selected number of incoming links equals the selected number of out going
links. This forces the selected links to form one or more cycles. Satisfying the
flow problem in 2 forces the selection to be a single cycle.

|E|∑

e=1

de,nle = 0 (3)

Both the edges between a node pair n,m cannot be selected at the same time.

|E|∑

e=1

xe,n,mle ≤ 1 (4)

If the connectivity enforcing flow uses edge e, then le will show that it has been
selected. Since the amount of flow is just a book keeping device for checking
connectivity, le is scaled by the largest possible flow size.

|V |le ≥ fe (5)

We have used this ILP to find the average cycle length for set of random requests
in Arpanet and the comparison with that of best performing heuristic is shown
in later section.

6 Random Graph Generation for Heuristic Evaluation

To evaluate our algorithms, we have generated random graphs with the follow-
ing characteristics. Fault-tolerant connections are not possible in 1-connected
graphs; hence we needed to ensure that the random graphs are at least 2-
connected. We achieve this 2-connectedness by starting with a Hamiltonian cycle
passing through all the nodes. Forcing a graph to have a Hamiltonian cycle is a
stronger condition than necessary to create a 2-connected graph. Since we start
with a Hamiltonian cycle in all the random graphs, a solution always exists to
any multipoint request. This characteristic of random graph helps us evaluat-
ing the performance of our algorithm. This is because a cycle solution always
exists. The blocking cases reported in later section are due to the failure of our
algorithm.

We assumed that the physical distance between nodes affects the probability
of placing a link between them. Nodes are randomly placed inside a 20x20 grid.
On top of this Hamiltonian cycle, we add the rest of the links in the graph
randomly with probability given by Equation 6 following the Waxman model.
In Equation 6, s and d are nodes, D(s, d) is the distance between the nodes
computed by using their coordinates in the grid. α and β are parameters that
can be adjusted.

P (s, d) = βe
−D(s,d)

Lα (6)



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 355

The parameters α and β can be adjusted to control the expected density and
the average link length of a generated graph. Consider a graph of n nodes and
kn edges. We consider a graph as sparse if k is about two, medium density if
k = (2 + log2 n)/2 and dense if k = n log2 n. To achieve a target density the
values of α and β must depend on the selected value of n. We specify six types
of graphs in terms of link density and length, as discussed in Table 1. Values of
α and β used to realize the target link density and lengths for 64 node Type 0
to Type 5 networks are also given in the table.

Table 1. Graph Types With α, β for Sixty Four Node Networks

Type Density Length α β
0 sparce short 0.2 0.2
1 sparce long 0.8 0.05
2 medium short 0.2 0.57
3 medium long 0.8 0.15
4 dense short 0.2 0.8
5 dense long 0.8 0.27

7 Numerical Analysis

In this section, we will analyze the performance of four variations of our heuristic
algorithm in different types random graphs, based on cycle length and percent
blocking as evaluation metrics. We consider one algorithm to be best performing
which has least percent blocking and cycle length close to the best solution found
by all variations of our algorithm.

All four variations are executed on six types of random networks (sample size
of 12 for each type mentioned in Table 1) of size 65 nodes for 10,000 requests
each of which had 10 multipoint nodes. The average length of cycle generated
by these variations for all the networks is shown in Figure 7. The variations
1N and 0N outperform other two heuristic variations in terms of cycle length,
but it can be seen from Figure 8 that the blocking performance is too high in
comparison to other algorithms. High blocking percentage nulls the advantage
of getting smaller cycle length using 1N and 0N algorithms. Since success rate
of the request is an important criteria for any algorithm, the algorithms 0Y or
1Y are preferred as they have lower blocking percentage although the average
cycle length is slightly more than that yielded by 0N and 1N algorithm. We
notice that node cost attribute have minimal impact on the average multipoint
cycle length in all random networks.

The performances of four variations of heuristic algorithm are analyzed for
these six types of networks and also for different network sizes. The average cycle
length generated by all four variations of heuristic in six types of random graphs
increases with the network size. This is because for large networks, multipoint



356 D. Lastine, S. Sankaran, and A.K. Somani

Fig. 7. Average Cycle length for 65 nodes Network

Fig. 8. Blocking Percentage for 64 nodes Network

nodes can be distributed far from each other. Figure 9 depicts that variation 0N
gives the lowest average cycle length for most network sizes in case of sparse link
density (Type 0). For networks with link density medium or higher, variation
0Y gives longer cycle length for most network sizes.

Figure 10 shows the average cycle length of all four variations for Type 5
network. The cycle length proportionate to the network size characteristic of
algorithm persists for all types of random graphs. Since Type 5 networks have
denser link distribution, the maximum cycle length tends to be smaller than that
of Type 0 networks.

Figure 11 shows that in case of sparser (Type 0 and Type 1) and medium link
density (Type 2 and Type 3) networks the variations 0N and 1N have many
blocked requests whereas the blocking percentage of 0Y and 1Y algorithms is
very close to zero. For dense (Type 4 and Type 5) networks, there is no blocking



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 357

Fig. 9. Average Cycle Length for Type 0 Network

Fig. 10. Average Cycle Length for Type 5 Network

for all variations of algorithms. 1Y algorithm always finds a solution for large
65-node networks of all types except for Type 0.

Since the blocking percentage of the algorithms 0N and 1N is very high for
sparser networks (Type 0) and the cycle length found by 1Y algorithm does not
differ much from 0N and 1N algorithms, we will be considering 1Y algorithm
to compare with the optimal results founds by ILP. The reason for selecting 1Y
over 0Y is that we have a done studies of their relative performance for dynamic
traffic and 1Y had lower blocking. Hence 1Y is our recommended heuristic.

7.1 Comparison between Heuristic and ILP

An idea commonly employed by routing algorithms is that a request should
be routed with the minimum amount of resources possible. Integer Linear Pro-
gram (ILP) is used to find optimal routes for some randomly generated requests.



358 D. Lastine, S. Sankaran, and A.K. Somani

Fig. 11. Blocking Percentage for Type 0 Network

Fig. 12. Blocking Percentage for Type 0 Network

We use CPLEX to solve our ILP. A thousand requests are randomly generated
and then routed using ILP. The requests are also routed using our MCRA al-
gorithm. For each of these thousand requests, the ratio is found between the
cycle lengths of heuristic and ILP. All results in this section are for Arpanet (20
Nodes, 31 Links). Arpanet has a Hamiltonian cycle so there exists a solution to
any possible multipoint request.

This experiment is repeated for requests with different number of multipoint
nodes, which are five, seven, nine and eleven. The curves are marked as S5,
S7, S9, and S11 in Figure 13 respectively for 5,7,9,11 MP-node cases. The list
of cycle length ratios of each experiment is sorted and displayed in Figure 13.
The X-axis refers to thousand requests used in the experiment and the Y-axis
refers to their cycle length ratios. When a quarter of the nodes are multipoint



A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA) 359

Fig. 13. Ratio Of Cycle Lengths Y1:ILP

nodes (S = 5), optimal resource usage occurred for more than 50% of the total
requests. When just over half the nodes in the network are multipoint nodes,
optimal resource usage occurred over thirty percent of the time. The figure shows
that heuristic (1Y ) algorithm yielded performance within a factor of 1.2 of the
optimal performance over 80% of the time. Requests, where the MCRA failed
to find a cycle, are obviously not included in the Figure 13.

8 Conclusion

Multipoint communication can be protected in such a way that single link failures
are automatically restored by the communication protocol without the time
consuming process detecting and reacting to the link failure. This is accomplished
by forming a bidirectional cycle inside a mesh network and transmitting both
directions along the cycle. In this paper we developed a multipoint cycle routing
algorithm (MCRA) and provided various heuristic to find a cycle including nodes
wishing to form the multipoint session along with a small number of extra nodes.
The small number of extra nodes is forced by the network topology. Since we are
trying to control the computational complexity of the algorithm, the number of
extra nodes included in the cycle are not minimal. We compared the performance
of our algorithm to the results of an ILP with the same set of random requests
on Arpanet. The algorithm yielded performance within a factor of 1.2 of the
optimal performance over 80% of the time.

Acknowledgements. Research funded in part by NSF project CNS 0626741,
a Department of Education GAANN Fellowship, and the Jerry R. Junkins En-
dowment at Iowa State University. Any opinions, findings, and conclusions or



360 D. Lastine, S. Sankaran, and A.K. Somani

recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation (or another
funding agency). We would like to thank Onur Turkcu for helpful discussion
during the project.

References

1. Zhang, F., Zhong, W.: Performance Evaluation of Optical Multicast Protection
Approaches for Combined Node and Link Failure Recovery. Journal of Lightwave
Technology 27(18), 4017–4025 (2009)

2. Khalil, A., Hadjiantonis, A., Ellinas, G., Ali, M.: Pre-planned multicast protec-
tion approaches in wdm mesh networks. In: 31st European Conference on Optical
Communication, ECOC 2005, 25-29, vol. 1, pp. 25–26 (2005)

3. Ramamurthy, S., Sahasrabuddhe, L., Mukherjee, B.: Survivable WDM mesh net-
works. Journal of Lightwave Technology 21(4), 870 (2003)

4. Singhal, N., Sahasrabuddhe, L., Mukherjee, B.: Provisioning of survivable multicast
sessions against single link failures in optical WDM mesh networks. Journal of
Lightwave Technology 21, 11–21 (2003)

5. YuQing, G., Beijing, C.: Protecting Dynamic Multicast Sessions in Optical WDM
Mesh Networks

6. Wen-De Zhong, F.: Applying p-Cycles in Dynamic Provisioning of Survivable Mul-
ticast Sessions in Optical WDM Networks. In: Conference on Optical Fiber Com-
munication and the National Fiber Optic Engineers Conference, OFC/NFOEC
2007, pp. 1–3 (2007)

7. Feng, T., Lu, R., Zhang, W.: Intelligent p-Cycle Protection for Multicast Sessions
in WDM Networks. In: Proc. ICC, vol. 8, pp. 5165–5169 (2008)

8. Zhang, F., Zhong, W., Jin, Y.: Optimizations of p-Cycle-Based Protection ofOpti-
cal Multicast Sessions. Journal of Lightwave Technology 26(19), 3298–3306 (2008)

9. Zhang, F., Zhong, W.: Performance evaluation of p-cycle based protection methods
for provisioning of dynamic multicast sessions in mesh WDM networks. Photonic
Network Communications 16(2), 127–138 (2008)

10. Wen-De Zhong, F.: p-Cycle based tree protection of optical multicast traffic for
combined link and node failure recovery in WDM mesh networks. IEEE Commu-
nications Letters 13(1), 40–42 (2009)


	A Fault-Tolerant Multipoint Cycle Routing Algorithm (MCRA)
	Multipoint Connection Problem
	Multicast Protection Scheme
	Multipoint Protection Scheme
	Multipoint Connection Cycle

	Network Graph Model
	Multipoint Cycle Routing Algorithm (MCRA)
	First Phase Algorithm
	Second Phase Algorithm
	Third Phase Algorithm
	Detailed Example
	Special Cases

	Variations of MCR Heuristics Algorithm
	 ILP Formulation to Find Multipoint Cycles 
	 Random Graph Generation for Heuristic Evaluation 
	Numerical Analysis 
	Comparison between Heuristic and ILP

	Conclusion
	References




