
I. Tomkos et al. (Eds.): BROADNETS 2010, LNICST 66, pp. 14–27, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Analysis of Block-Aware Peer Adaptations
in Substream-Based P2P

Chamil Kulatunga*, Dmitri Botvich,
Sasitharan Balasubramaniam, and William Donnelly

Telecommunications Software and Systems Group, Waterford Institute of Technology
Cork Road, Waterford, Ireland

{ckulatunga,dbotvich,sasib,wdonnelly}@tssg.org

Abstract. Peer-to-Peer (P2P) video delivery using substreams supports uplink
heterogeneities of the peers and hence could optimise sharing capabilities with
minimum free-riding peers. Therefore, substream-based applications such as
PPLive and CoolStreaming have been well accepted after successful
deployments in the public Internet. In this approach, a child peer can find a
parent peer for a substream independent of the other parent peers that it receives
the remaining substreams. In general, there can be more than one substream
between a parent and a child. The block-aware adaptation algorithm in
CoolStreaming changes the parent peer for all such substreams when a child
peer experiences poor performance even on one of its substreams from the
parent. However, lagging of one substream in such a scenario is likely while
others are not affected, when the parent receives its substreams through
multiple paths. We propose a fine-grained approach (changing substream by
substream) in peer adaptations to improve overlay network performance. This
approach will in turn, is designed also to minimise the diversity of parents at a
child peer by attempting to join with a well-performing another parent, which is
expected to curtail complexities in a network-assisted P2P framework.

Keywords: Video streaming, substream-based P2P, child-initiated block-aware
peer adaptation.

1 Introduction

In recent years, Peer-to-Peer (P2P) multimedia streaming has gained increased
popularity, due largely to its scalable solution for video streaming to a very large
number of concurrent users. P2P file sharing was technically unbeaten mainly due to
its flexibilities of distributing different amounts of data blocks (chunks) (i.e. due to its
non-realtime application requirements) [1], where a peer can reliably collect the
required set of blocks of a file from any number of peers within a reasonable time
frame, disregarding the order of the blocks. However, this is not the case in P2P
multimedia streaming, where playback delay and its continuity become vital Quality
of Experience (QoE) factors. In the absence of the flexibilities available with file
sharing, using the same approach for streaming video applications will face a number

* Corresponding author.

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 15

of serious challenges [2] [3]. A number of solutions have been developed to counter
these challenges, such as applications like PPLive, CoolStreaming, SopCast,
Babelgum, which are currently been deployed in the public Internet with a marginal
streaming quality (i.e. bandwidth in a range of 300 to 500 kbps and playback delays
of 10s to several minutes).

Many P2P streaming protocols use a hybrid push-pull approach to avoid
instabilities of a tree-based push overlay structure owing to deep trees [4]. Pulling
capability can be implemented replicating the same stream into multiple trees so that a
peer can pull the stream from any tree which will improve its overall performance.
However, this approach leads to unnecessary replication of data in the network and
does not support uplink heterogeneities. A solution to this problem is to sub-divide
the main stream into a set of substreams (known as substreamed P2P). In order to
collect all the substreams (i.e. an essential requirement without SVC or MDC), a peer
is required to join with multiple (but low-bandwidth) trees. This hybrid push-pull
technique has become a victorious approach in deploying P2P video delivery over the
public Internet especially with asymmetrical residential peers like ADSL to improve
sharing capabilities minimising free-riding peers.

A prominent example of substreamed P2P is CoolStreaming. CoolStreaming [6]
peer adaptations (i.e. the process that a peer selects a new parent during the session
when a substream performance is degraded) are triggered by a child, which we
categorise as a child-initiated process. The approach uses two inequalities (i.e. for
testing the performance between the child and the parent and between the parent and
the other partner peers). The only performance metric used by a child during the
selection process is recording and comparing the latest received block at each
substream. Therefore we categorise this also as a block-aware approach. Peer
adaptations in non-substreamed P2P do not need to differentiate performances in
source-to-parent or parent-to-child paths, since the entire session is received along a
single path at a time. The only solution is to change the parent irrespective of the
location of the degraded performance. It also has no flexibility of responding
differently for peer dynamics (i.e. peer-churns) and network dynamics (i.e.
congestion). However, in substreamed P2P, parent changes can be done
independently from one parent to another or from one substream to another (one child
may have multiple parents and one parent may deliver more than one substreams to a
child) and can respond flexibly.

In this paper, we analyse and evaluate CoolStreaming peer adaptation algorithm,
and propose a new algorithm that extends from CoolStreaming to capture the above
mentioned criterions and flexibilities. The original CoolStreaming forces a child to
change all the substreams from a parent even though only one substream is under-
performing. However, in our proposed algorithm, we avoid changing all substreams
where only the under-performing substream is required to find a new parent. We also
propose removing one substream at a time by the child peer (i.e. a fine-grained
conservative approach), if the identified congestion is in the uplink of the parent
(expecting an improvement of congestion due to the granted space like in congestion
control mechanisms).

The proposed solution also aims to minimise the diversity of parents (i.e. the
number of parents that a child is required to acquire all the substreams) at a child peer
without degrading the performance, which is expected to minimise overhead in a

16 C. Kulatunga et al.

network-assisted P2P framework. This is achieved by joining with a well-performing
another parent before seeking a new parent, when a substream needs to find a parent.
We believe that since CoolStreaming will change all substreams when one of the
substream is underperforming, this also could lead to instabilities of the P2P network.

The rest of the paper is organised as follows: Section 2 provides related works.
Section 3 details the child-initiated block-aware peer adaptation algorithm and
discusses the capabilities and complications. The proposed fine-grained algorithm is
presented in Section 4. Section 5 provides the simulation results and Section 6
concludes the paper.

2 Related Works

P2P protocols like NICE [7] and ESM [8] use a tree-based approach for video
streaming, which were first proposed as an alternative to solve infrastructure
requirement of native IP multicast in group communications. This approach was
initially thought to be the most suitable for streaming video when compared with
mesh-based approaches [9], which was successfully used for file deliveries. The tree
based approach supported low latency and low per-block overhead for long-lived
streaming applications. However, many peers in a single tree topology were leaf-
nodes, which did not contribute for data forwarding (only acted as data consumers). A
peer-churn by an upper level node of the tree, in turn simultaneously affected a large
number of nodes (i.e. especially when the tree depth is large) mounting instabilities of
the overlay network. In order to minimise the above mentioned problems, the single
tree-based streaming delivery approach has been extended to support multiple trees.
AnySee [10] supports replication-based multi-tree approach. However, it does not
support uplink heterogeneities. SplitStream [11], ChunckySpread [12] and mTreebone
[13] principally introduced the substreaming approach without putting much attention
on block-based video deliveries and the peer adaptation algorithm.

The substreamed approach has been practically deployed in the Internet by PPLive
[14] and CoolStreaming [6]. It has been followed by recent works of P2P streaming as
a solution to address the network heterogeneities and mutual contributions
successfully [15]. CoolStreaming is the one which has published its peer adaptation
algorithm. Zhenjiang Li et al. [18] has mathematically analysed the substream
scheduling problem using max-flow model. Therefore it is important to further extend
research works on performance optimisation of push-pull based substreaming
algorithms for video delivery in the public Internet and in particular analyse more
practical peer adaptation algorithms in detail.

3 Child-Initiated Block-Aware Peer Adaptations

In substreamed P2P, the source divides the main video stream into equal video blocks
(e.g. with a one second play time) and delivers into N number of substreams. These
blocks are assigned to substreams in revolving fashion. The receivers are required to
collect all the substreams from at most N number of parent peers and reorder them
according to the block number so that it can be played back with minimal disruption.

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 17

In the event that any block misses the playback point, the video is discontinued. A
substream can lag due to a peer-churn or slow data-rate (due to congestion) in the last
hop or above. In such a case the child peer can change the parent peer after exceeding
a threshold specified in number of blocks.

In such a peer driven adaptation algorithm, a peer needs to know the block-maps
(i.e. the list of latest received block number of each substream) of its own (C), its
parent peers (Pi) and other partner peers (Qi) those it can select to join. To maintain
the scalability of the protocol, a peer will only exchange block-maps between a
selected number of partner peers (among them at most N could become parents).
They periodically exchange updated block-maps using a gossip algorithm [6]. There
can also be other peers (besides Pis and Qis) which are members (Mis) of the session
without having any interaction with an identified child peer (peer C in Fig. 1).

Fig. 1. An overlay network with 4 substreams

In Fig. 1, we assume that P1, P2, Q1, Q2 and Q3 are the partners of child peer C and
at present it receives the substreams 0 and 1 from parent P1 and substreams 2 and 3
from parent P2. If the current parent peer is needed to be changed, it will find a better
parent (it will connect to Q1, Q2 or Q3 to receive the substreams, if the received block-
maps of them are better that of P1 or P2).

3.1 CoolStreaming Peer Adaptations

According to the peer adaptation approach used in CoolStreaming, a child peer will
use two inequalities (given in the equations 1 and 2 [6]) to identify a requirement to
change a parent for a substream j (j = 0 .. N-1). Satisfaction of either one of the
inequalities will lead to a change in the parent.

}:|max{| ,, CPjCi THNiBB <≤−

(1)

},:max{ ,, PPjQi THBPartnersQNiB <−∈≤

(2)

XiB , is the latest received block for substream i at node X, where X could be either a

child node C, parents P or partners Q. THC is the threshold of the maximum deviation

18 C. Kulatunga et al.

of latest received blocks allowed between the substream j at the parent and any
substream at child node C. THp is the threshold of the maximum deviation of blocks
allowed between the substream j at the parent and any substream at any partner.

These two tests are carried out periodically for all the parents at a child peer. The
significant factor here is that if any substream (when receiving more than one
substream from a parent) lags, CoolStreaming algorithm changes the parent for all the
substreams originated from the same parent. This process will lead to find a new
parent peer, which also satisfies the inequality (1).

3.2 Analysis of Triggering Events

In order to analyse the algorithm, we consider three distinguished generic substream
lagging situations (Fig. 2), which could trigger a peer adaptation at a child peer. In the
first case (a), both substreams from parent P1 lag behind others. In the second case (b),
only one substream (i.e. substream 1) from parent P1 lags (this is possible when parent
peer P1 receives two substreams from two different routes; 0 through M1 and 1 through
P2 in Fig. 1). In the third case (c), all the substreams are below the playback point.

Substreamed P2P is also a candidate transport mechanism that is compatible with
recently accepted (by the IETF) multi-path TCP (MP-TCP) [5], which paves a path
for resource pooling in the Future Internet. MP-TCP load balances a session in the
transport layer through the available interfaces in a multi-home environment. Since
the content layering is inherited in substreamed P2P, it can effectively be used over
MP-TCP. In such a scenario a parent peer may have performance differences between
substreams even thought they are received from the same upstream peer. Therefore
decedent child peers need to identify this situation in the peer adaptation algorithm,
which leads to case (b).

The factors that may affect the conditions in Fig. 2 may result from peer-churns or
congestion in the core or access networks in the Internet. However, according to
common analysis in P2P overlay networks, congestion is only considered in the
uplink or downlink of a peer. We use the same assumptions in this analysis. We also
assume that a peer-churn of an immediate parent can explicitly be identified by the
child (may be using ping). Therefore peer-churn of such a parent (either P1 or P2 for
child peer C in Fig. 1) has not been considered under the triggering events be
discussed in the following paragraphs.

Each situation for peer adaptation (in Fig. 2) results in several events shown in
Table 1, due to differing peer-churns or congestion in divided end-to-end overlay
path; source-to-parent (multiple hops) and parent-to-child (last hop). In the table, L
represents Low and H represents High in terms of the maximum available block at
each substream. There can’t be H at a child while having L at the parent since child
can only acquire the data available at the parents. Theoretically, it is also not possible
to have a situation where the parent’s condition is H and child having L for one
substream while another substream between the same pair of peers staying at H. We
assume all the substreams between two peers follow the same path (if MP-TCP is
used at a child, it is known to the peer and can remedy this situation) and experience
the same congestion.

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 19

Fig. 2. Parent change triggering situations at a child peer

There can be two events between parent peer P1 and the child peer C under the
situation (a). The reason for case I to happen is when the parent P1 receives delayed
substreams from the source (i.e. due to either a peer-churn or congestion from source
to parent). Solution for I is to change both substreams away from the current parent
peer as quickly possible. The reason for case II could be due to congestion in the
uplink at parent P1. In our proposed solution, we would change one substream at a
time rather than all practised in CoolStreaming. This would, therefore, allow space for
other substreams to grow.

Table 1. Permutations for different triggering situations

20 C. Kulatunga et al.

The occurrence of case III is certainly due to poor performance above the parent P1
since substream 0 does not show any performance degradation. According to Fig. 1,
this can happen due to congestion between peers P1 and P2 or peer Q1 leaving the
overlay network. Therefore, only the lagged substream should be changed
immediately. In CoolStreaming, the child unnecessarily changes the parent for both
substreams due to the lagged substream 1.

The reason for case IV should be congestion in the downlink of child peer C or
simultaneously in uplinks of both parents P1 and P2. We will follow the conservative
approach by removing one substream from each parent. If this does not improve the
performance, then the congestion in child peer’s downlink maybe the factor resulting
in poor performance. Case V arises when all substreams to the parents are delayed, in
which case all substreams should be switched to new parents.

4 Fine-Grained Substream Change

This section describes the steps for the proposed fine-grained approach, which
considers changing substreams more conservatively. Performance of each substream
is tested independent of other substreams, even though they originated from the same
parent.

4.1 Conservative Algorithm

The first step of the algorithm is to identify the most lagged substream (j) for a parent
(l) among Nl number of substreams received from the selected parent (Nl ≤ N). The
algorithm will then test for inequality (3), and determines if the deviation from the
most progressed substream (among all the N number of substreams of the session) has
exceeded the defined threshed (THC).

If this condition is satisfied, then the child identifies the location of the problem (in
source-parent or parent-child paths) using the bit-maps received. The maximum block
of substream j at the child is compared with the maximum block of the substream at
the current parent using inequality (4).

,, CCjPj THBB >−

(3)

}:|max{| ,, PQjPj THPartnersQBB >∈−

(4)

If this condition (4) is satisfied, this means the parent’s quality performance is good
and the congestion is between the parent and the child. This will lead to a change of
one substream, which has the least performance at the parent (if there is more than
one substream from that parent). However, when selecting a new parent, the selection
does not necessarily ensure that it is better parent than the existing one, where the
selection will find a parent which satisfies the inequality (4). The sole objective is to
change the path from the current parent. If the inequality (4) is not satisfied, this
means there is no performance issue along the path from the existing parent to the
child. The selected substream may have already received with a substantial delay at

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 21

the parent. Therefore, it checks the comparative performance of the current parent
with the other partners according to the inequality (5).

In contrast to the previous parent selection, in this case the substream changes the
current parent only if a better partner is found. Otherwise it will continue with the
current parent. Then the test (4) should be applied independently for all the remaining
substreams of the selected parent and change the parent, if required.

Fine-grained Peer Adaptation Algorithm

for l = 0 … number of parents (L)
| find the most lagged substream (j) among Nl ;
| if (MAX | Bi,C – Bj,C | > THC : i = 0 … N-1)
| | if (Bj,P - Bj,C > THC)
| | | function-X ();
| | else
| | | if (MAX |Bj,P - Bj,Q| > THP : Q All Partners)
| | | | function-Y ();
| | | end
| | end
| else
| | if (Bj,C - PLAYPOINT < THV)
| | | if (Bj,P - Bj,C > THC)
| | | | function-X ();
| | | else
| | | | if (MAX |Bj,P - Bj,Q| > THP : Q All Partners)
| | | | | function-Y ();
| | | | end
| | | end
| | end
| end
end
function-X ()
| remove 1 substream having least Bm,P : m = 0 … Nl ;
| if (L > 1)
| | find a parent with most number of substreams;
| | check own substreams do not need a peer adapt;
| else
| | find a parent satisfying inequality (4);
| end
end
function-Y ()
| if (L > 1)
| | find a parent with most number of substreams;
| | check own substreams do not need a peer adapt;
| else
| | change j to a new parent satisfy inequality (5);
| end
| test for other m values of the parent l
End

22 C. Kulatunga et al.

If test (3) is not satisfied, this means there is no much deviation between the best
and the worst substreams. This can happen in two situations: all the substreams are
good or all are bad. If all the substreams are much ahead of the playback point, we
need to avoid any parent change. Therefore tests (4) and (5) will be applied only when
the most lagged substream is less than a threshold (THV) of the playback point.
Otherwise the same procedure is applied similarly for the other parents.

Downlink congestion: If all the substreams lag THV threshold, it could also be due to
downlink congestion at the child. Therefore, the child memorises this peer adaptation.
If the situation is not rectified after a certain number of attempts, the child will extend
the cool-down time (the time duration that a child peer will not test for parent changes
again) of peer adaptation to minimise unnecessary events (alternatively the child
could also use multi-path transport).

If congestion is in the uplink of the parent peer, CoolStreaming child finds a new
parent for all the substreams it receives from that parent. Also if there is more than
one child at this parent, it will end up loosing all the child peers when triggering
events come closely. This could add extra overhead to the parent. Therefore, one
approach to minimise this is to synchronise triggering events under one parent and
ensure they don’t come too close to each other. However, synchronisation of
triggering events may not be required in the fine-grained approach since it uses a
conservative substream changing process.

4.2 Minimising the Diversity of Parents

It has been widely accepted that next generation P2P is an ISP-assisted network
service. IETF is standardising a framework for this purpose called Application Layer
Traffic Optimisations (ALTO) [16]. Here, a content provider needs to register with
the ALTO service (owned by an ISP) to avoid throttling their P2P traffic. Through
negotiations with the ALTO server, a peer can select its parent peers. Hence an ISP
can enforce different policies like restricting traffic to its own network or local
geography.

Although the standardisation through IETF is attractive and further increases the
potential of P2P streaming, current approaches such as that used in CoolStreaming
does not aim to minimise its complexities. For example, substreamed P2P may
introduce an extra load on the ALTO server when requesting new parent peers for
every single substream. Therefore, it could be desirable to minimise the diversity of
parents at a child peer by reusing ALTO provided information. This will improve
self-organising capability in an ALTO domain reducing cross traffic (that will cost
ISPs compared with local traffic) and also overhead at an ALTO server.

The fine-grained approach that we have proposed in this paper will minimise this
effect, where we introduce a seeking process for new parents for a substream among
existing parents. Therefore, when a substream is required to find a new parent, it will
first seek a parent, which already delivers a substream to the child (that substream
should not look to change the parent). If there are more than one qualified parents,
then it will select the one delivering most number of substreams. If no other qualified

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 23

existing parent is found, it will seek a parent from the larger partner list. Algorithm 1
presents the pseudo-code of the fine-grained algorithm including the parent diversity
minimisation process.

5 Performance Evaluations

We have simulated the CoolStreaming peer adaptation algorithm and the proposed
fine-grained extension for two approaches; (A) seeking a new parent from the partner
list, and (B) seeking a parent among the existing parents that the child is receiving
other substreams, using OMNet++ simulator [17]. These algorithms were evaluated
under a generic traffic model and a network topology. The time scale of a long-lived
session has been contracted proportionately only to evaluate the peer adaptation
process.

We used UDP implementation of OMNet++ in the transport layer for simplicity
and implemented a basic congestion control algorithm over it. We did not explicitly
implement a tracker service and the content server itself acted as the tracker for the
peers. UDP was used for signalling messages too.

In all experiments, we used a traffic stream of 400kbps, which is appropriate for
the public Internet, and it was divided into 4 substreams. The chunk size used for the
substreams was 50 Kbytes, which is equivalent to a play time of 1s. The number of
partners (those a peer was communicating) was limited to 5. Peer adaptation
thresholds were chosen as; THC = 20, THP = 16 and THV = 0 in blocks. The cool-
down time was 30s.

The uplink bandwidth at the server was 4 Mbps and at a peer it was randomly and
uniformly distributed from 100 kbps to 1300 kbps in 100 kbps steps. This created a
400 kbps of average overlay uplink capacity on a participating peer (which has been
changed in the second set of experiments). Traffic was not limited at any other
location in the overlay network than the uplinks. Background traffic was changed at
uplinks randomly in 20s intervals uniformly distributed between 0 to 600 kbps, and
again in 100 kbps steps.

Peers joined randomly to a simple network topology (star). In order to simulate a
heterogeneous substreaming scenario at a child peer, one third of the peers joined (i.e.
at the start of their session) only with one parent for all the substreams. Then the
subsequent one third of peers joined with totally different parents for each substream.
The remaining peers joined with two parents with two substreams from each.

We measured QoE at a peer in terms of block continuity index (i.e. the number of
blocks received at the playback point over total number of blocks it should receive). If
one block misses the playback pointer, it backed-off 12 blocks rather continuing with
the following block. This accounted a play-out event, which may have risen due to a
peer-churn. We also monitored the diversity of parents at a child peer.

24 C. Kulatunga et al.

(a) Continuity Index

(b) Diversity of Parents

Fig. 3. Performance with different number of peers

We conducted all the experiments for a duration of 1000s. Half of all the peers
continuously connected to the overlay network for the entire duration. Remaining half
created peer-churns by leaving the overlay for a duration between 0 and 20s at a
randomly selected time. We have monitored the performance matrices at a child peer in
10s intervals and the average values of all the peers are shown in the following graphs.

We have first simulated algorithms with different number of peers to investigate
the consistency of the performance improvement of the new algorithm. According to
Fig. 3 (a), a significant improvement of the continuity index can be seen with both
proposed evolutionary approaches against the CoolStreaming peer adaptation
algorithm (90% confidence intervals are shown in the graph). Fig. 3 (b) shows that the
diversity of parents is lesser in the evolutionary algorithm (A) with a number of nodes

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 25

less than 100. However, the diversity increases as the number of nodes increases. This
is not a contradictory observation since we have not focused reducing the diversity of
parents in algorithm (A). But the fine-grained algorithm (B) has notably reduced the
diversity of parents.

We have then simulated three algorithms under different overlay network
capacities to investigate the performance in over-provisioned and under-provisioned
situations. The average network capacity of all the uplinks was selected as a
proportion to the full stream bandwidth requirement (i.e. in Fig. 4, x-axis 2.00
indicates that the average uplink capacity is 800 kbps, which represents an over-
provisioned network). The number of peers in these experiments was 100. According
to Fig. 4 (a), there is a consistent improvement of the continuity index using the two
evolutionary algorithms. The diversity of parents has also not been affected much in
evolutionary algorithm (A) but drastically reduced in the evolutionary algorithm (B)
as shown in Fig. 4 (b).

(a) Continuity Index

(b) Diversity of Parents

Fig. 4. Performance with different overlay network capacities

26 C. Kulatunga et al.

Fig. 5 shows the behaviour (from the start to the end of a session) of the continuity
index at 20 randomly selected peers. According to the snapshot graphs and our
observations, the continuity index approaches towards 1.0 and becomes steady during
the entire session under the evolutionary approaches.

Fig. 5. Change of Continuity Index (at 20 selected peers)

6 Conclusions

P2P networking paradigm has been recognised by the IETF to outline as a non-
aggressive and ISP-friendly network service in the Internet. Then P2P streaming will
be used to solve future Internet bandwidth demands by federating core network
resource requirements. Substreamed P2P is an important concept to support
heterogeneous uplink bandwidths of residential peers and hence to improve co-
operative resource sharing at the same time. Therefore, substreamed P2P concept
needs to be developed while attempting to improve user’s QoE. Especially peer
adaptation algorithm has not been analysed to capture different network and peer
dynamics in the end-to-end overlay path.

In this paper we have proposed a fine-grained approach for the child-initiated
block-aware peer adaptation algorithm that extends from the CoolStreaming
application. The proposed approach utilises inter-substream performance parameters
to differentiate source-to-parent and parent-to-child congestion and hence
conservatively respond to changes in substream performance. The proposed solution
also aims to minimise the diversity of parents, which could be problematic with the
new network-assisted P2P standardisation initiative proposed by the IETF. Simulation
results have been evaluated to compare the proposed solution with CoolStreaming,
and the results have shown considerable improvement in QoE. We also claim that the
new approach has minimised the diversity of parents.

 Analysis of Block-Aware Peer Adaptations in Substream-Based P2P 27

Acknowledgments. This work has received support from the Higher Education
Authority (HEA) in Ireland under the PRTLI Cycle 4 programme, in the project
FutureComm: Management of Future Communications Networks and Services, as
well as Science Foundation Ireland under Grant Number 09/SIRG/I1643 (“A
Biologically inspired framework supporting network management for the Future
Internet”).

References

1. Aggarwal, V., Feldmann, A., Scheideler, C.: Can ISPs and P2P users Cooperate for
improved Performance? ACM CCR (July 2007)

2. Liu, J., Rao, S., Li, B., Zhang, H.: Opportunities and Challenges of Peer-to-Peer Internet
Video Broadcast. Proceedings of the IEEE (January 2008)

3. Liu, H., Riley, G.: How Efficient Peer-to-Peer Video Streaming Could Be? In: IEEE
CCNC (January 2009)

4. Hei, X., Liu, Y., Ross, K.W.: IPTV over P2P Streaming Networks: the Mesh-Pull
Approach. IEEE Communications Magazine (February 2008)

5. Ford, A., Raiciu, C., Barre, S., Iyengar, J.: Architectural Guidelines for Multipath TCP
Development. IETF Internet Draft (February 2010)

6. Zhang, X., Liu, J., Li, B., Yum, T.: CoolStreaming/DONet: A Data-driven Overlay
Network for Efficient Live Media Streaming. In: IEEE INFOCOM (March 2005)

7. Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable Application Layer Multicast.
In: ACM SIGCOMM (August 2002)

8. Chu, Y., Rao, S., Seshan, S., Zhang, H.: A Case for End System Multicast. IEEE Journal
on Selected Areas in Communication (October 2002)

9. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, F., Dabek, F.,
Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Protocol for Internet
Applications. IEEE/ACM Transactions on Networking (February 2003)

10. Liao, X., Jin, H., Liu, Y., Ni, L.M., Deng, D.: AnySee: Peer-to-Peer Live Streaming. In:
IEEE INFOCOM (April 2006)

11. Castro, M., Druschel, P., Kermarrec, A., Nandi, A., Rowstron, A., Singh, A.: SplitStream:
High-bandwidth Multicast in Cooperative Environments. In: ACM Symposium on
Operating Systems Principles (October 2003)

12. Venkataraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous Unstructured
Tree-Based Peer-to-Peer Multicast. In: IEEE ICNP (November 2006)

13. Wang, F., Xiong, Y., Liu, J.: mTreebone: A Hybrid Tree/Mesh Overlay for Application-
Layer Live Video Multicast. In: IEEE ICDCS (June 2007)

14. Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A Measurement Study of a Large-Scale
P2P IPTV System. IEEE Transactions on Multimedia (December 2007)

15. Liu, Z., Shen, Y., Ross, K.W., Panwar, S.S., Wang, Y.: Substream Trading: Towards an
open P2P live Streaming System. In: IEEE ICNP (October 2008)

16. Xie, H., Yang, R., Krishnamurthy, A., Liu, Y., Silberschatz, A.: P4P: Provider Portal for
Applications. In: ACM CCR (October 2008)

17. OMNet++ Simulator, http://www.omnetpp.org
18. Li, Z., Tsang, D.H.K., Lee, W.C.: Understanding Sub-stream Scheduling in P2P Hybrid

Live Streaming Systems. In: IEEE INFOCOM (March 2010)

	Analysis of Block-Aware Peer Adaptations in Substream-Based P2P
	Introduction
	Related Works
	Child-Initiated Block-Aware Peer Adaptations
	CoolStreaming Peer Adaptations
	Analysis of Triggering Events

	Fine-Grained Substream Change
	Conservative Algorithm
	Minimising the Diversity of Parents

	Performance Evaluations
	Conclusions
	References

