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Abstract. Peer-to-Peer (P2P) video delivery using substreams supports uplink 
heterogeneities of the peers and hence could optimise sharing capabilities with 
minimum free-riding peers. Therefore, substream-based applications such as 
PPLive and CoolStreaming have been well accepted after successful 
deployments in the public Internet. In this approach, a child peer can find a 
parent peer for a substream independent of the other parent peers that it receives 
the remaining substreams. In general, there can be more than one substream 
between a parent and a child. The block-aware adaptation algorithm in 
CoolStreaming changes the parent peer for all such substreams when a child 
peer experiences poor performance even on one of its substreams from the 
parent.  However, lagging of one substream in such a scenario is likely while 
others are not affected, when the parent receives its substreams through 
multiple paths. We propose a fine-grained approach (changing substream by 
substream) in peer adaptations to improve overlay network performance. This 
approach will in turn, is designed also to minimise the diversity of parents at a 
child peer by attempting to join with a well-performing another parent, which is 
expected to curtail complexities in a network-assisted P2P framework.  

Keywords: Video streaming, substream-based P2P, child-initiated block-aware 
peer adaptation. 

1 Introduction 

In recent years, Peer-to-Peer (P2P) multimedia streaming has gained increased 
popularity, due largely to its scalable solution for video streaming to a very large 
number of concurrent users. P2P file sharing was technically unbeaten mainly due to 
its flexibilities of distributing different amounts of data blocks (chunks) (i.e. due to its 
non-realtime application requirements) [1], where a peer can reliably collect the 
required set of blocks of a file from any number of peers within a reasonable time 
frame, disregarding the order of the blocks. However, this is not the case in P2P 
multimedia streaming, where playback delay and its continuity become vital Quality 
of Experience (QoE) factors. In the absence of the flexibilities available with file 
sharing, using the same approach for streaming video applications will face a number 
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of serious challenges [2] [3]. A number of solutions have been developed to counter 
these challenges, such as applications like PPLive, CoolStreaming, SopCast, 
Babelgum, which are currently been deployed in the public Internet with a marginal 
streaming quality (i.e. bandwidth in a range of 300 to 500 kbps and playback delays 
of 10s to several minutes). 

Many P2P streaming protocols use a hybrid push-pull approach to avoid 
instabilities of a tree-based push overlay structure owing to deep trees [4]. Pulling 
capability can be implemented replicating the same stream into multiple trees so that a 
peer can pull the stream from any tree which will improve its overall performance. 
However, this approach leads to unnecessary replication of data in the network and 
does not support uplink heterogeneities. A solution to this problem is to sub-divide 
the main stream into a set of substreams (known as substreamed P2P). In order to 
collect all the substreams (i.e. an essential requirement without SVC or MDC), a peer 
is required to join with multiple (but low-bandwidth) trees. This hybrid push-pull 
technique has become a victorious approach in deploying P2P video delivery over the 
public Internet especially with asymmetrical residential peers like ADSL to improve 
sharing capabilities minimising free-riding peers.  

A prominent example of substreamed P2P is CoolStreaming. CoolStreaming [6] 
peer adaptations (i.e. the process that a peer selects a new parent during the session 
when a substream performance is degraded) are triggered by a child, which we 
categorise as a child-initiated process. The approach uses two inequalities (i.e. for 
testing the performance between the child and the parent and between the parent and 
the other partner peers). The only performance metric used by a child during the 
selection process is recording and comparing the latest received block at each 
substream. Therefore we categorise this also as a block-aware approach. Peer 
adaptations in non-substreamed P2P do not need to differentiate performances in 
source-to-parent or parent-to-child paths, since the entire session is received along a 
single path at a time. The only solution is to change the parent irrespective of the 
location of the degraded performance. It also has no flexibility of responding 
differently for peer dynamics (i.e. peer-churns) and network dynamics (i.e. 
congestion). However, in substreamed P2P, parent changes can be done 
independently from one parent to another or from one substream to another (one child 
may have multiple parents and one parent may deliver more than one substreams to a 
child) and can respond flexibly. 

In this paper, we analyse and evaluate CoolStreaming peer adaptation algorithm, 
and propose a new algorithm that extends from CoolStreaming to capture the above 
mentioned criterions and flexibilities. The original CoolStreaming forces a child to 
change all the substreams from a parent even though only one substream is under-
performing. However, in our proposed algorithm, we avoid changing all substreams 
where only the under-performing substream is required to find a new parent. We also 
propose removing one substream at a time by the child peer (i.e. a fine-grained 
conservative approach), if the identified congestion is in the uplink of the parent 
(expecting an improvement of congestion due to the granted space like in congestion 
control mechanisms).  

The proposed solution also aims to minimise the diversity of parents (i.e. the 
number of parents that a child is required to acquire all the substreams) at a child peer 
without degrading the performance, which is expected to minimise overhead in a 
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network-assisted P2P framework. This is achieved by joining with a well-performing 
another parent before seeking a new parent, when a substream needs to find a parent. 
We believe that since CoolStreaming will change all substreams when one of the 
substream is underperforming, this also could lead to instabilities of the P2P network.  

The rest of the paper is organised as follows: Section 2 provides related works. 
Section 3 details the child-initiated block-aware peer adaptation algorithm and 
discusses the capabilities and complications. The proposed fine-grained algorithm is 
presented in Section 4. Section 5 provides the simulation results and Section 6 
concludes the paper. 

2 Related Works 

P2P protocols like NICE [7] and ESM [8] use a tree-based approach for video 
streaming, which were first proposed as an alternative to solve infrastructure 
requirement of native IP multicast in group communications. This approach was 
initially thought to be the most suitable for streaming video when compared with 
mesh-based approaches [9], which was successfully used for file deliveries. The tree 
based approach supported low latency and low per-block overhead for long-lived 
streaming applications. However, many peers in a single tree topology were leaf-
nodes, which did not contribute for data forwarding (only acted as data consumers). A 
peer-churn by an upper level node of the tree, in turn simultaneously affected a large 
number of nodes (i.e. especially when the tree depth is large) mounting instabilities of 
the overlay network. In order to minimise the above mentioned problems, the single 
tree-based streaming delivery approach has been extended to support multiple trees. 
AnySee [10] supports replication-based multi-tree approach. However, it does not 
support uplink heterogeneities. SplitStream [11], ChunckySpread [12] and mTreebone 
[13] principally introduced the substreaming approach without putting much attention 
on block-based video deliveries and the peer adaptation algorithm. 

The substreamed approach has been practically deployed in the Internet by PPLive 
[14] and CoolStreaming [6]. It has been followed by recent works of P2P streaming as 
a solution to address the network heterogeneities and mutual contributions 
successfully [15]. CoolStreaming is the one which has published its peer adaptation 
algorithm. Zhenjiang Li et al. [18] has mathematically analysed the substream 
scheduling problem using max-flow model. Therefore it is important to further extend 
research works on performance optimisation of push-pull based substreaming 
algorithms for video delivery in the public Internet and in particular analyse more 
practical peer adaptation algorithms in detail. 

3 Child-Initiated Block-Aware Peer Adaptations 

In substreamed P2P, the source divides the main video stream into equal video blocks 
(e.g. with a one second play time) and delivers into N number of substreams. These 
blocks are assigned to substreams in revolving fashion. The receivers are required to 
collect all the substreams from at most N number of parent peers and reorder them 
according to the block number so that it can be played back with minimal disruption. 
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In the event that any block misses the playback point, the video is discontinued. A 
substream can lag due to a peer-churn or slow data-rate (due to congestion) in the last 
hop or above. In such a case the child peer can change the parent peer after exceeding 
a threshold specified in number of blocks. 

In such a peer driven adaptation algorithm, a peer needs to know the block-maps 
(i.e. the list of latest received block number of each substream) of its own (C), its 
parent peers (Pi) and other partner peers (Qi) those it can select to join. To maintain 
the scalability of the protocol, a peer will only exchange block-maps between a 
selected number of partner peers (among them at most N could become parents). 
They periodically exchange updated block-maps using a gossip algorithm [6]. There 
can also be other peers (besides Pis and Qis) which are members (Mis) of the session 
without having any interaction with an identified child peer (peer C in Fig. 1). 

 

Fig. 1. An overlay network with 4 substreams 

In Fig. 1, we assume that P1, P2, Q1, Q2 and Q3 are the partners of child peer C and 
at present it receives the substreams 0 and 1 from parent P1 and substreams 2 and 3 
from parent P2. If the current parent peer is needed to be changed, it will find a better 
parent (it will connect to Q1, Q2 or Q3 to receive the substreams, if the received block-
maps of them are better that of P1 or P2). 

3.1 CoolStreaming Peer Adaptations  

According to the peer adaptation approach used in CoolStreaming, a child peer will 
use two inequalities (given in the equations 1 and 2 [6]) to identify a requirement to 
change a parent for a substream j (j = 0 .. N-1). Satisfaction of either one of the 
inequalities will lead to a change in the parent. 

}:|max{| ,, CPjCi THNiBB <≤−
                                    

(1)
 

},:max{ ,, PPjQi THBPartnersQNiB <−∈≤
                    

(2) 

XiB , is the latest received block for substream i at node X, where X could be either a 

child node C, parents P or partners Q. THC is the threshold of the maximum deviation 
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of latest received blocks allowed between the substream j at the parent and any 
substream at child node C. THp is the threshold of the maximum deviation of blocks 
allowed between the substream j at the parent and any substream at any partner. 

These two tests are carried out periodically for all the parents at a child peer. The 
significant factor here is that if any substream (when receiving more than one 
substream from a parent) lags, CoolStreaming algorithm changes the parent for all the 
substreams originated from the same parent. This process will lead to find a new 
parent peer, which also satisfies the inequality (1). 

3.2 Analysis of Triggering Events  

In order to analyse the algorithm, we consider three distinguished generic substream 
lagging situations (Fig. 2), which could trigger a peer adaptation at a child peer. In the 
first case (a), both substreams from parent P1 lag behind others.   In the second case (b), 
only one substream (i.e. substream 1) from parent P1 lags (this is possible when parent 
peer P1 receives two substreams from two different routes; 0 through M1 and 1 through 
P2 in Fig. 1). In the third case (c), all the substreams are below the playback point. 

Substreamed P2P is also a candidate transport mechanism that is compatible with 
recently accepted (by the IETF) multi-path TCP (MP-TCP) [5], which paves a path 
for resource pooling in the Future Internet. MP-TCP load balances a session in the 
transport layer through the available interfaces in a multi-home environment. Since 
the content layering is inherited in substreamed P2P, it can effectively be used over 
MP-TCP. In such a scenario a parent peer may have performance differences between 
substreams even thought they are received from the same upstream peer. Therefore 
decedent child peers need to identify this situation in the peer adaptation algorithm, 
which leads to case (b). 

The factors that may affect the conditions in Fig. 2 may result from peer-churns or 
congestion in the core or access networks in the Internet. However, according to 
common analysis in P2P overlay networks, congestion is only considered in the 
uplink or downlink of a peer. We use the same assumptions in this analysis. We also 
assume that a peer-churn of an immediate parent can explicitly be identified by the 
child (may be using ping). Therefore peer-churn of such a parent (either P1 or P2 for 
child peer C in Fig. 1) has not been considered under the triggering events be 
discussed in the following paragraphs. 

Each situation for peer adaptation (in Fig. 2) results in several events shown in 
Table 1, due to differing peer-churns or congestion in divided end-to-end overlay 
path; source-to-parent (multiple hops) and parent-to-child (last hop). In the table, L 
represents Low and H represents High in terms of the maximum available block at 
each substream. There can’t be H at a child while having L at the parent since child 
can only acquire the data available at the parents. Theoretically, it is also not possible 
to have a situation where the parent’s condition is H and child having L for one 
substream while another substream between the same pair of peers staying at H. We 
assume all the substreams between two peers follow the same path (if MP-TCP is 
used at a child, it is known to the peer and can remedy this situation) and experience 
the same congestion.  
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Fig. 2. Parent change triggering situations at a child peer 

There can be two events between parent peer P1 and the child peer C under the 
situation (a). The reason for case I to happen is when the parent P1 receives delayed 
substreams from the source (i.e. due to either a peer-churn or congestion from source 
to parent). Solution for I is to change both substreams away from the current parent 
peer as quickly possible. The reason for case II could be due to congestion in the 
uplink at parent P1. In our proposed solution, we would change one substream at a 
time rather than all practised in CoolStreaming. This would, therefore, allow space for 
other substreams to grow. 

Table 1. Permutations for different triggering situations 
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The occurrence of case III is certainly due to poor performance above the parent P1 
since substream 0 does not show any performance degradation. According to Fig. 1, 
this can happen due to congestion between peers P1 and P2 or peer Q1 leaving the 
overlay network. Therefore, only the lagged substream should be changed 
immediately. In CoolStreaming, the child unnecessarily changes the parent for both 
substreams due to the lagged substream 1. 

The reason for case IV should be congestion in the downlink of child peer C or 
simultaneously in uplinks of both parents P1 and P2. We will follow the conservative 
approach by removing one substream from each parent. If this does not improve the 
performance, then the congestion in child peer’s downlink maybe the factor resulting 
in poor performance. Case V arises when all substreams to the parents are delayed, in 
which case all substreams should be switched to new parents.   

4 Fine-Grained Substream Change 

This section describes the steps for the proposed fine-grained approach, which 
considers changing substreams more conservatively. Performance of each substream 
is tested independent of other substreams, even though they originated from the same 
parent. 

4.1 Conservative Algorithm  

The first step of the algorithm is to identify the most lagged substream (j) for a parent 
(l) among Nl number of substreams received from the selected parent (Nl ≤ N). The 
algorithm will then test for inequality (3), and determines if the deviation from the 
most progressed substream (among all the N number of substreams of the session) has 
exceeded the defined threshed (THC). 

If this condition is satisfied, then the child identifies the location of the problem (in 
source-parent or parent-child paths) using the bit-maps received. The maximum block 
of substream j at the child is compared with the maximum block of the substream at 
the current parent using inequality (4). 

,, CCjPj THBB >−
                                          

(3) 

}:|max{| ,, PQjPj THPartnersQBB >∈−
                

(4) 

If this condition (4) is satisfied, this means the parent’s quality performance is good 
and the congestion is between the parent and the child. This will lead to a change of 
one substream, which has the least performance at the parent (if there is more than 
one substream from that parent). However, when selecting a new parent, the selection 
does not necessarily ensure that it is better parent than the existing one, where the 
selection will find a parent which satisfies the inequality (4). The sole objective is to 
change the path from the current parent. If the inequality (4) is not satisfied, this 
means there is no performance issue along the path from the existing parent to the 
child. The selected substream may have already received with a substantial delay at 
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the parent. Therefore, it checks the comparative performance of the current parent 
with the other partners according to the inequality (5). 

In contrast to the previous parent selection, in this case the substream changes the 
current parent only if a better partner is found. Otherwise it will continue with the 
current parent. Then the test (4) should be applied independently for all the remaining 
substreams of the selected parent and change the parent, if required. 

Fine-grained Peer Adaptation Algorithm  
 
for l = 0 … number of parents (L) 
|  find the most lagged substream (j) among Nl ; 
|  if ( MAX | Bi,C – Bj,C | > THC : i = 0 … N-1)  
|  |  if ( Bj,P - Bj,C > THC )  
|  |  |  function-X ( ); 
|  |  else  
|  |  |  if (MAX |Bj,P - Bj,Q| > THP : Q All Partners) 
|  |  |  |  function-Y ( ); 
|  |  |  end  
|  |  end 
|  else 
|  |  if ( Bj,C - PLAYPOINT < THV ) 
|  |  |  if ( Bj,P - Bj,C > THC ) 
|  |  |  |  function-X ( ); 
|  |  |  else 
|  |  |  |  if (MAX |Bj,P - Bj,Q| > THP : Q All Partners) 
|  |  |  |  |  function-Y ( ); 
|  |  |  |  end 
|  |  |  end 
|  |  end 
|  end 
end  
function-X ( ) 
|  remove 1 substream having least Bm,P : m = 0 … Nl ; 
|  if (L > 1) 
|  |  find a parent with most number of substreams; 
|  |  check own substreams do not need a peer adapt; 
|  else  
|  |  find a parent satisfying inequality (4); 
|  end 
end 
function-Y  ( ) 
|  if (L > 1) 
|  |  find a parent with most number of substreams; 
|  |  check own substreams do not need a peer adapt; 
|  else  
|  |  change j to a new parent satisfy inequality (5); 
|  end 
|  test for other m values of the parent l 
End 
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If test (3) is not satisfied, this means there is no much deviation between the best 
and the worst substreams. This can happen in two situations: all the substreams are 
good or all are bad. If all the substreams are much ahead of the playback point, we 
need to avoid any parent change. Therefore tests (4) and (5) will be applied only when 
the most lagged substream is less than a threshold (THV) of the playback point. 
Otherwise the same procedure is applied similarly for the other parents.  

Downlink congestion: If all the substreams lag THV threshold, it could also be due to 
downlink congestion at the child. Therefore, the child memorises this peer adaptation. 
If the situation is not rectified after a certain number of attempts, the child will extend 
the cool-down time (the time duration that a child peer will not test for parent changes 
again) of peer adaptation to minimise unnecessary events (alternatively the child 
could also use multi-path transport). 

If congestion is in the uplink of the parent peer, CoolStreaming child finds a new 
parent for all the substreams it receives from that parent. Also if there is more than 
one child at this parent, it will end up loosing all the child peers when triggering 
events come closely. This could add extra overhead to the parent. Therefore, one 
approach to minimise this is to synchronise triggering events under one parent and 
ensure they don’t come too close to each other. However, synchronisation of 
triggering events may not be required in the fine-grained approach since it uses a 
conservative substream changing process. 

4.2 Minimising the Diversity of Parents  

It has been widely accepted that next generation P2P is an ISP-assisted network 
service. IETF is standardising a framework for this purpose called Application Layer 
Traffic Optimisations (ALTO) [16]. Here, a content provider needs to register with 
the ALTO service (owned by an ISP) to avoid throttling their P2P traffic. Through 
negotiations with the ALTO server, a peer can select its parent peers. Hence an ISP 
can enforce different policies like restricting traffic to its own network or local 
geography.  

Although the standardisation through IETF is attractive and further increases the 
potential of P2P streaming, current approaches such as that used in CoolStreaming 
does not aim to minimise its complexities. For example, substreamed P2P may 
introduce an extra load on the ALTO server when requesting new parent peers for 
every single substream. Therefore, it could be desirable to minimise the diversity of 
parents at a child peer by reusing ALTO provided information. This will improve 
self-organising capability in an ALTO domain reducing cross traffic (that will cost 
ISPs compared with local traffic) and also overhead at an ALTO server.  

The fine-grained approach that we have proposed in this paper will minimise this 
effect, where we introduce a seeking process for new parents for a substream among 
existing parents. Therefore, when a substream is required to find a new parent, it will 
first seek a parent, which already delivers a substream to the child (that substream 
should not look to change the parent). If there are more than one qualified parents, 
then it will select the one delivering most number of substreams. If no other qualified 
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existing parent is found, it will seek a parent from the larger partner list. Algorithm 1 
presents the pseudo-code of the fine-grained algorithm including the parent diversity 
minimisation process. 

5 Performance Evaluations 

We have simulated the CoolStreaming peer adaptation algorithm and the proposed 
fine-grained extension for two approaches; (A) seeking a new parent from the partner 
list, and (B) seeking a parent among the existing parents that the child is receiving 
other substreams, using OMNet++ simulator [17]. These algorithms were evaluated 
under a generic traffic model and a network topology. The time scale of a long-lived 
session has been contracted proportionately only to evaluate the peer adaptation 
process. 

We used UDP implementation of OMNet++ in the transport layer for simplicity 
and implemented a basic congestion control algorithm over it. We did not explicitly 
implement a tracker service and the content server itself acted as the tracker for the 
peers. UDP was used for signalling messages too. 

In all experiments, we used a traffic stream of 400kbps, which is appropriate for 
the public Internet, and it was divided into 4 substreams. The chunk size used for the 
substreams was 50 Kbytes, which is equivalent to a play time of 1s. The number of 
partners (those a peer was communicating) was limited to 5. Peer adaptation 
thresholds were chosen as; THC = 20, THP = 16 and THV = 0 in blocks. The cool-
down time was 30s. 

The uplink bandwidth at the server was 4 Mbps and at a peer it was randomly and 
uniformly distributed from 100 kbps to 1300 kbps in 100 kbps steps. This created a 
400 kbps of average overlay uplink capacity on a participating peer (which has been 
changed in the second set of experiments). Traffic was not limited at any other 
location in the overlay network than the uplinks. Background traffic was changed at 
uplinks randomly in 20s intervals uniformly distributed between 0 to 600 kbps, and 
again in 100 kbps steps. 

Peers joined randomly to a simple network topology (star). In order to simulate a 
heterogeneous substreaming scenario at a child peer, one third of the peers joined (i.e. 
at the start of their session) only with one parent for all the substreams. Then the 
subsequent one third of peers joined with totally different parents for each substream. 
The remaining peers joined with two parents with two substreams from each. 

We measured QoE at a peer in terms of block continuity index (i.e. the number of 
blocks received at the playback point over total number of blocks it should receive). If 
one block misses the playback pointer, it backed-off 12 blocks rather continuing with 
the following block. This accounted a play-out event, which may have risen due to a 
peer-churn. We also monitored the diversity of parents at a child peer. 
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(a) Continuity Index 

 

(b) Diversity of Parents 

Fig. 3. Performance with different number of peers 

We conducted all the experiments for a duration of 1000s. Half of all the peers 
continuously connected to the overlay network for the entire duration. Remaining half 
created peer-churns by leaving the overlay for a duration between 0 and 20s at a 
randomly selected time. We have monitored the performance matrices at a child peer in 
10s intervals and the average values of all the peers are shown in the following graphs. 

We have first simulated algorithms with different number of peers to investigate 
the consistency of the performance improvement of the new algorithm. According to 
Fig. 3 (a), a significant improvement of the continuity index can be seen with both 
proposed evolutionary approaches against the CoolStreaming peer adaptation 
algorithm (90% confidence intervals are shown in the graph). Fig. 3 (b) shows that the 
diversity of parents is lesser in the evolutionary algorithm (A) with a number of nodes 
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less than 100. However, the diversity increases as the number of nodes increases. This 
is not a contradictory observation since we have not focused reducing the diversity of 
parents in algorithm (A). But the fine-grained algorithm (B) has notably reduced the 
diversity of parents. 

We have then simulated three algorithms under different overlay network 
capacities to investigate the performance in over-provisioned and under-provisioned 
situations. The average network capacity of all the uplinks was selected as a 
proportion to the full stream bandwidth requirement (i.e. in Fig. 4, x-axis 2.00 
indicates that the average uplink capacity is 800 kbps, which represents an over-
provisioned network). The number of peers in these experiments was 100. According 
to Fig. 4 (a), there is a consistent improvement of the continuity index using the two 
evolutionary algorithms. The diversity of parents has also not been affected much in 
evolutionary algorithm (A) but drastically reduced in the evolutionary algorithm (B) 
as shown in Fig. 4 (b). 

 
(a) Continuity Index 

 
(b) Diversity of Parents 

Fig. 4. Performance with different overlay network capacities  
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Fig. 5 shows the behaviour (from the start to the end of a session) of the continuity 
index at 20 randomly selected peers. According to the snapshot graphs and our 
observations, the continuity index approaches towards 1.0 and becomes steady during 
the entire session under the evolutionary approaches. 

 

Fig. 5. Change of Continuity Index (at 20 selected peers) 

6 Conclusions 

P2P networking paradigm has been recognised by the IETF to outline as a non-
aggressive and ISP-friendly network service in the Internet. Then P2P streaming will 
be used to solve future Internet bandwidth demands by federating core network 
resource requirements. Substreamed P2P is an important concept to support 
heterogeneous uplink bandwidths of residential peers and hence to improve co-
operative resource sharing at the same time. Therefore, substreamed P2P concept 
needs to be developed while attempting to improve user’s QoE. Especially peer 
adaptation algorithm has not been analysed to capture different network and peer 
dynamics in the end-to-end overlay path. 

In this paper we have proposed a fine-grained approach for the child-initiated 
block-aware peer adaptation algorithm that extends from the CoolStreaming 
application. The proposed approach utilises inter-substream performance parameters 
to differentiate source-to-parent and parent-to-child congestion and hence 
conservatively respond to changes in substream performance. The proposed solution 
also aims to minimise the diversity of parents, which could be problematic with the 
new network-assisted P2P standardisation initiative proposed by the IETF. Simulation 
results have been evaluated to compare the proposed solution with CoolStreaming, 
and the results have shown considerable improvement in QoE. We also claim that the 
new approach has minimised the diversity of parents. 
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