
OFIAS: A Platform for Exploring

In-Network Processing

Ping Du1, Maoke Chen1, and Akihiro Nakao1,2

1 National Institute of Information and Communications Technology (NICT), Japan
2 The University of Tokyo, Japan

Abstract. In-network processing (INP) is being used to cope with the
large volume of data streams that need to be analyzed in real-time of
data transmission rather than being stored and computed by powerful
servers. In this paper, we combine the programmable switch OpenFlow
with network virtualization and design the INP platform OFIAS, i.e.,
OpenFlow In A Slice. With the flexibility of OpenFlow and the scalable
multiplexing of virtualization, OFIAS can smoothly support multi-party
INP with well isolation and attractive performance in comparison to
other approaches.

Keywords: Network virtualization, In-network processing, OpenFlow.

1 Introduction

In-network processing (INP), which is able to extract the knowledge and infor-
mation from the huge volumes of continuous data streams arriving in real-time,
has attracting wide interests in both academia [1,2] and industry [3,4]. It can be
used not only in scientific processing with huge volume of distributed data, like
those from collection of radio telescopes, but also in enterprise, who have data
streams generated from manufacturing environment sensors, fabrication units
and other real-time management components. In comparison to the traditional
“store-and-compute” model, INP can detect critical conditions and respond oc-
casional events in proactive fashion.

In an INP system, data stream is processed at the data processing modules
scattered in the network. The topology and processing sequence of the INP
modules are determined according to the current data processing objectives.
Deploying a successful INP facility faces a set of challenges.

– Flexibility: INP requires flexible controls over routing at waypoints in the
path of data transmission, depending on the required sequence of process-
ing. Main-stream networking equipments, such as Ethernet bridges and IP
routers, are not programmable to users who need to select and order process-
ing modules scattered in the network, on their own demand and sometimes
dynamically.

– Low-cost: INP is proposed as a substitute of the powerful computing server.
It is supposed that each module only does quite simple and light computa-
tion, in order that a module can be deployed in low-cost equipments, like

T. Korakis et al. (Eds.): TridentCom 2011, LNICST 90, pp. 142–151, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

In-Network Processing with OFIAS 143

commodity PC servers. For example, some modules do arithmetic operators
while some others do FFT (Fast Fourier Transform). Repeating the same
module with too many copies is also a waste and therefore modules should
be well multiplexed. Even within one processing task, the same module is
possibly used several times.

– Scalability: Low-cost requirement brings a challenge on the scalability: for
a certain task, its processing path may contain a large number of modules,
and there might be a large number of tasks who are utilizing these mod-
ules simultaneously. Therefore, the platform need to have a (or set of) well-
designed controller, efficiently configuring networking facilities to support
the demands.

– Performance: Data processing modules should be powerful enough so that
the data streams could be processed and forwarded without buffering delay
in the pipeline.

– Isolation: Data processing modules are multiplexed among different tasks,
and therefore it is necessary to avoid mutual interference among the tasks.
Each task needs to have an independent path of processing, without inter-
ference to other tasks.

In this paper, we propose an INP platform architecture named OFIAS – Open-
Flow in A Slice. OpenFlow [5] is a programmable Ethernet switch, which is
designed to overcome the ossification [6] of today’s Internet. With OpenFlow,
one can deploy a pipeline of data processing modules, and enable or disable any
modules to/from the pipeline seamlessly on demand. However, OpenFlow itself
doesn’t support scalable multiplexing and therefore we integrate it into the fa-
cility of slice – a slice is defined as an overlay (virtual) network among a group of
virtual machines. The combination of the OpenFlow and virtualization enables
multiple INP systems over a shared commodity infrastructure, which is expected
to meet the above requirements from both the aspects.

In order to achieve the combination, we design a programmable environment
shielding users from common complex operations that are required for deploying
their INP systems. In an INP system, instead of the OpenFlow switch hard-
ware, OpenFlow software module is applied with the OS kernel, enabling an
OpenFlow-functioning virtual machine – vOFS. The processing modules reside
on different physical machines and we connect them with virtual links, defined
by the transferring rule installed in those vOFS, for each slice. A virtual link
can span multiple hops through underlying physical network even with an on-
demand bandwidth reservation.

Our major contribution of this paper is the design of OFIAS, a platform for
exploiting INP systems. We integrate the existing network virtualization, GRE
tunneling, on-demand bandwidth reservation and OpenFlow technique into an
OFIAS platform over CoreLab [7,8], a well-deployed virtualization infrastructure.

The rest of the paper is organized as follows. We introduce the design and
implementation of OFIAS in Section 3 and Section 4, respectively. Section 5
demonstrates an example of INP with OFIAS. In Section 6, we evaluate the
performance of OFIAS. Finally, Section 7 concludes our work.

144 P. Du, M. Chen, and A. Nakao

2 Relate Works

Network Virtualization. Network virtualization works such as VIOLIN [9],
VINI [10] and Trellis [11] are based on container-based virtualization that doesn’t
provide the forwarding isolation in kernel. Forwarding packets in user space is
significantly slower than forwarding packets in the kernel. They don’t meet the
performance requirement for deploying an INP platform.

OpenFlow. OpenFlow [5] networks are proposed to enable the deployment
of new protocols and services. With production OpenFlow switches, a network
operator can partition traffic into production and research flows so that ex-
periments can be deployed in a production network. Although a production
OpenFlow network makes efforts towards the step of INP (OpenPipes [12]), it
still has some limitations. First, a production OpenFlow network has a fixed
topology. A user cannot dynamically change her topology so that the user can
only define the chain of data processing modules. Second, the production Open-
Flow switches are still not commodity products and they are not affordable by
common researchers.

Stream Computing. Existing stream computing systems IBM InfoSphere
Stream [3,4] and Aurora [1,2] provide an execution platform and services for
user-developed applications to handle potentially massive volumes of continuous
data streams. They lack of scalability since they are built on a specific platform
(e.g., expensive server cluster) so that the data processing modules cannot be
distributed into the Internet.

3 INP with OFIAS

OFIAS is built on a network virtualization infrastructure. In an OFIAS plat-
form, substrate providers offer network physical resources and partition them
into isolated slices with some virtualization technologies. To achieve on-demand
resource allocation, there should be a centralized management (Similar to PLC
of PlanetLab [13]) to collect the computing and network resources from all the
substrate networks. When the centralized management receives the requirement
from a user, it will authenticate the requirement and assign network resources to
the user. The user can deploy her INP system with her arbitrary virtual network
topology and protocols.

An example usage of INP with OFIAS is shown in Fig. 1, where in each slice,
the data processing modules and virtual OpenFlow Switches (vOFS) are chained
to a topology with virtual links. The controller configures the vOFS to control
the processing and transmission of data streams dynamically.

3.1 Switch

INP switches are the axes of an INP system. An INP system should have its own
forwarding and routing. Except for control messages, all data forwarding should

In-Network Processing with OFIAS 145

Company

Government
Massive data from
traffic monitors

Market data.

Weather

…

Individual

Slice I

Slice 2

Slice 3

switch

module

controller

Fig. 1. Example usage of INP with OFIAS

be bounded inside a slice. Since forwarding packets in user space introduces high
overhead, each vOFS should be able to define its own flow-table in kernel space. A
vOFS’s flow-table must be independent of other’s running on the same physical
node. OpenFlow supports packet forwarding based on the header fields from
Layer-2 to Layer-4. The virtual network could be no longer necessarily based on
IPv4. Non-IP data streams could be transmitted over an OFIAS network.

3.2 Processing Module

Each INP data module is a virtual machine. It receives data streams from its
input port and sends the results out to the output port after computation. The
specifications such as functionality, computation capacity, and the connected
switch should be registered to the controller. The data processing module, con-
troller and vOFS could share the same substrate node.

3.3 Controller

Controller is the core component of the INP module. As described above, the
controller collects the information from the vOFS, processing modules as well
as the network resources. Based on the collection and the user’s objective, the
controller makes the decisions on how to design the virtual topology, forwarding
rules to chain the selected the vOFS and processing modules to the target INP
system.

3.4 Virtual Link

OFIAS must offer the flexibility of customizing the virtual topology. There are
two main challenges: (i) A virtual link should not only provide the connectivity
between two virtual data interfaces, but also be configurable for the link prop-
erties such as bandwidth. The performance of any virtual link should ideally be
isolated from other virtual links joint at the same physical links. (ii) To support
flexible topology, a virtual link should be able to be created/withdrawn/modified
between any two virtual data interfaces on demand.

146 P. Du, M. Chen, and A. Nakao

4 An OFIAS Prototype on CoreLab

In this section, we describe our prototype implementation of OFIAS on CoreLab,
which is shown in Fig. 2. We use Open vSwitch (OVS) [14] as a network switch
for the virtualization layer to connect the various vOFS, controller and data
process modules.

eth0

Controller
eth0 eth1 eth2

vOFS

Open vSwitch

eth0

NOX

gtap1 gtap2

eth0 eth1 eth2

Module

Open vSwitch

eth0

NOX

gtap1 gtap2

eth1 eth0 eth2

vOFS

gtap1 gtap2

user

kernel

user

kernel

virtual link

physical link

Sliver Sliver Sliver Sliver

CoreLab node 1 CoreLab node 2

Fig. 2. Prototyping design of OFIAS platform on CoreLab, where each CoreLab node
could support multiple physical interfaces, though not shown in this figure

4.1 Virtual Open Switch (vOFS)

All vOFS are implemented as virtual machines with software OpenFlow kernel
modules built in. To enable customized kernel in vOFS, we adopt KVM as the
virtualization technology. For each vOFS, the virtual interface eth0 is reserved as
the control interface [8]. It allows the user to access it through outside so that it
should be attached to at least one global IP address. In Trellis, the guest slivers
are assigned with private addresses and multiplexed to the host’s IP address
by applying network address translation (NAT). Since the NAT approach has
well-known drawbacks in performance scalability, OFIAS shares the global IP
address among the guests and the host through port-space isolation [8].

As shown in Fig. 2, all vOFS and host are bridged to a datapath (a kind
of bridge) of OVS. Besides OVS, we also deploy a NOX [15], which is an open-
source OpenFlow controller on each CoreLab node. The flow entries are installed
from NOX to OVS. Since the virtual interface eth0 of each vOFS is written in
software, all vOFS can be configured with the same IP and MAC addresses as
the host so that any Ethernet frames from outside can be received by a vOFS or
host without address translation. For the ARP packets, since all interfaces eth0
share the same IP and MAC addresses with the host, when a host receive an
ARP packet, it will food to all vOFS. To isolate the packets of different vOFS,
each eth0 is assigned with a range of port numbers. The port range of each vOFS
can be got from the database of PLC [16] node. As a result, the corresponding
flow entries (forwarding rules) are installed after a vOFS is launched. Each eth0
can only listen on the ports that assigned to it.

When a host has multiple physical interfaces, we create the same number
of OVS datapaths. Each datapath is bridged to a physical interface. A vOFS
boots with multiple virtual control interfaces bridged to different datapaths. As
a result, each vOFS can share one or multiple global IP addresses with host.

In-Network Processing with OFIAS 147

4.2 Controller

The OFIAS network may have a flexible topology, the connection between the
OpenFlow controller and the vOFS should be independent of topology and the
signaling channel is configured as out-of-band control. In our design, the con-
troller connects a remote vOFS through a secure signaling channel attached to
the control interface eth0.

OpenFlow provides a set of APIs to enable an OpenFlow controller to con-
trol the flow of packets through OpenFlow protocol. Through the signaling chan-
nel, the vOFS sends packets to the controller and receives the command from
the controller. The controller collects the observation of the OFIAS network and
makes the control decision through installing flow entries to the forwarding table
of vOFS. A flow entry is defined in the form<header, actions>.When an incoming
packet matches a flow entry, the vOFS applies the corresponding actions. Other-
wise, the packet is sent to the controller through the signaling channel by default.

4.3 Virtual Link

Virtual links are implemented with GRE [17] tunneling technologies because
it has smaller encapsulation overhead than the UDP tunneling mechanism in
VINI. The up-to-date Ethernet-over-GRE tunneling mechanism could give a
virtual interface the appearance of a direct Layer-2 link, which could be bridged
to physical interfaces or other virtual Ethernet interfaces directly. However, the
existing Ethernet-over-GRE tunnel interface lacks of flexibility. The local and
remote of the tunnel interface must be specified on creation. After been created,
the tunnel interface’s remote could not be changed so that the virtual links
cannot be modified.

To enable flexible virtual link, we implement a new Ethernet-over-GRE tunnel
interface, called half-open GRE-Taps (gtap for short in the Fig. 2), which only
specifies the local and ikey on creation. If we want to connect two gtaps, we only
need to fill the value of local and ikey of peer’s gtap as the value of the remote and
okey of the local gtap. A flexible virtual link can be realized through dynamically
changing the fields of the gtap.

The tunnel interface connects the host’s physical interface through the OVS’s
datapath. Since the Ethernet frames from the virtual data interface are encap-
sulated in GRE packets at the tunnel interface, each OFIAS network can use
overlapped IP address space or even non-IP protocol.

When a host has multiple physical interfaces, a tunnel interface can bridged
to different physical interfaces through different OVS datapaths. As a result, a
virtual link can specify its underlying links across different ISPs.

The most previous researches are focused on the isolation between the com-
putation resources, few has addressed the isolation between network resources.
Dynamic Circuit Network (DCN) [18] can provide dedicated bandwidth for the
demanding applications. With DCN supported switches, each virtual link could
be attached an optical path with bandwidth on demand.

148 P. Du, M. Chen, and A. Nakao

5 Demonstration of INP with OFIAS

The potential applications of INP could be complex such as network service
composition, transportation (medical) monitoring and any other services. In this
demonstration, we will use an arithmetic operation network as an example sce-
nario as shown in Fig. 3, where the input is a random sequence of integers. Each
data processing module is an arithmetic operator that calculates the received
the data and sends out the results.

eth1 eth1 eth2
eth3

eth1

eth1 eth2
eth3

eth1

eth1

MODULE_1 MODULE_2

SND RCVvOFS vOFS

eth0
NOX

eth1 eth2
eth3

eth1
MODULE_3

vOFS

Packet Processing Modules

Virtual link

Signaling Channel
eth0eth0 eth0

Fig. 3. Demonstration of INP with OFIAS, where a slice consists of 9 slivers

We develop a demonstration operation via a GUI controller which is imple-
mented via GUESS [19]. The GUI controller hosts on a laptop and displays the
demonstration topology of the switches, processing modules, the controller, the
sender and the receiver. Each component runs a daemon at the background to re-
ceive the command from the GUI controller. The GUI controller takes the user re-
quirements and policies and displays the arithmetic operation results. The record
of the demonstration could be found at [20]. The GUI controller’s functionalities
include: (i) insert/remove any module, (ii) enable/disable any calculator module,
and (iii) change the virtual topology as well as calculator sequence.

6 Performance Evaluation

In this section, we evaluate our prototype of OFIAS on CoreLab. Our evaluation
focuses on two parts: (1) how the virtual link of OFIAS performs; and (2) how the
vOFS of OFIAS performs comparing to previous approaches VINI and Trellis.
Here, we use user-space Click as a reference to the performance of VINI and
Trellis that forward packets in user space. The evaluation about scalability of
CoreLab could be referred to [7]. Figure 4 shows the experimental environment,
which is configured with three CoreLab nodes.

Each node is with a 2.67GHz Intel CPU and 4GB memory. Node 1 and Node
2 are with two physical interfaces, while Node 3 is with one physical interface.
They connect with each other over 1Gbps Ethernet link according to the topology
shown in Fig. 4. The host OS is Fedora 8 with kernel 2.6.31. EachVM is with 512M
memory and its virtual interface driver is para-virtualized driver virtio [21].

In-Network Processing with OFIAS 149

Node 2

Slice

CoreLab

Node 1 Node 3

vOFS 1

vOFS 2

vOFS 3

Fig. 4. Experimental environment for evaluating OFIAS

First, we check the performance of virtual link comparing to other possible
communication channels. Figure 5 shows the average TCP throughput and stan-
dard deviation measure by Linux tool iperf. In this figure, the TCP throughput
of vanilla is measured between the physical nodes 1 and 2 directly. Others are
measured between the vOFS 1 and 2. The first result is that OVS can work much
better than NAT (as a reference to Trellis) as a virtualization layer switching
technology. The second result is that although applying full virtualization tech-
nology KVM may sacrifice the performance to some extent, the TCP throughput
between two guest machines can achieve about 750 Mbps (“OFIAS control chan-
nel”), which is only 20% less than that of Vanilla. It is expected the developing
back-end driver vhost [22] for virtio can reduce the overhead of KVM further.
The virtual link (“OFIAS data channel”) can achieve about 600 Mbps aver-
age throughput, which indicates that the GRE tunneling introduces about 15%
additional overhead.

Vanilla NAT OFIAS
 (control)

 OFIAS
 (data)

0

200

400

600

800

1000

TC
P

Th
ro

ug
hp

ut
 (M

bi
ts

/s
ec

)

Fig. 5. OFIAS (control and data) channels versus other possible communication
channels

Second, we evaluate the forwarding technologies in a slice. In the following ex-
periments, the packets are sent between the vOFS 1 and the vOFS 3, forwarded at
the vOFS 2 over the built virtual links. The virtual link between the vOFS 1 and
the vOFS 2 is over the underlying link Node 1–Node 2. The virtual link between

150 P. Du, M. Chen, and A. Nakao

OFIAS Click
0

100

200

300

400

500

TC
P

th
ro

ug
hp

ut
 (M

bi
ts

/s
)

(a) Packet forwarding capability

OFIAS Click
0

1

2

3

4

5

RT
T

de
la

y
(m

s)

(b) Packet forwarding delay

Fig. 6. Packet forwarding of OFIAS versus Click

the vOFS 2 and the vOFS 3 is over the underlying link Node 2–Switch–Node 3.
These two virtual links are physically disjoint and isolated from each other.

Figure 6(a) measures packet forwarding capability through the average TCP
throughput and its standard deviation. OFIAS can achieve a TCP through-
put around 430Mbps, which is much more than that of the user-space Click
(230Mbps). As a comparison, we also list the experimental results of VINI.
VINI can achieve a TCP throughput of 195Mbps on DETER and a through-
put of 86.2Mbps on PlanetLab under the same topology. Both of them are even
smaller than our experimental result with user-space Click. We think the reason
is that the virtual links in VINI are created by UDP tunneling mechanism, which
is heavier than GRE tunneling mechanism.

Figure 6(b) measures the packet forwarding delay through packet round trip
time using the Linux ping tool. Each test run sends 10000 ICMP ping packets.
The results show Click introduces more forwarding delay and jitter than OFIAS
due to the overhead of packet forwarding in user-space.

In summary, the flexible virtual link and in-kernel forwarding mechanisms en-
able OFIAS a faster packet forwarding rate than existing network virtualization
architectures such as VINI. Moreover, a programmable OFIAS network can run
a much wider range of services and protocols than VINI and current Internet
infrastructure.

7 Conclusion and Future Work

In this paper, we describe the design of OpenFlow In A Slice (OFIAS), which ap-
plies network virtualization to extend OpenFlow and enable multiple in-network
processing (INP) overlay networks running on the same physical infrastructure.
We have implemented OFIAS in CoreLab with KVM-based virtualization en-
vironments with our modified Open vSwitch and GRE tunneling technologies.
Following our demonstration, researchers are expected to develop and test their
INP systems on our scalable OFIAS platform.

In-Network Processing with OFIAS 151

On the other hand, INP still faces a variety of challenges in cost and efficiency.
OFIAS provides not only a facility to practice INP but also a testbed for op-
timize it. The coordination among processing modules, network infrastructure
and controller is of the future work.

References

1. The aurora project, http://www.cs.brown.edu/research/aurora/
2. Arvind, D., Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I.,

Rosenstein, J., Widom, J.: Stream: The stanford stream data manager. IEEE Data
Engineering Bulletin (2003)

3. Ibm infosphere streams, http://www-01.ibm.com/software/data/infosphere/

streams/
4. Gedik, B., Andrade, H., Wu, K.-L., Yu, P.S., Doo, M.: Spade: the system s declar-

ative stream processing engine. In: ACM SIGMOD (2008)
5. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
SIGCOMM Comput. Commun. Rev. 38, 69–74 (2008)

6. Clark, D., Wroclawski, J., Sollins, K., Braden, R.: Tussle in cyberspace: defining
tomorrow’s internet. IEEE/ACM Transactions on Networking 13, 462–475 (2005)

7. Nakao, A., Ozaki, R., Nishida, Y.: Corelab: An emerging network testbed employ-
ing hosted virtual machine monitor. In: ROADS (2008)

8. Du, P., Chen, M., Nakao, A.: Port-Space Isolation for Multiplexing a Single IP Ad-
dress throughOpen vSwitch. In:Magedanz, T., Gavras, A., Thanh, N.H., Chase, J.S.
(eds.) TridentCom 2010. LNICST, vol. 46, pp. 113–122. Springer, Heidelberg (2011)

9. Jiang, X., Xu, D.: Violin: Virtual internetworking on overlay infrastructure. In:
Parallel and Distributed Processing and Applications (2005)

10. Bavier, A., Feamster, N., Huang, M., Peterson, L., Rexford, J.: In vini veritas:
realistic and controlled network experimentation. In: ACM SIGCOMM (2006)

11. Bhatia, S., Motiwala, M., Muhlbauer, W., Mundada, Y., Valancius, V., Bavier, A.,
Feamster, N., Peterson, L., Rexford, J.: Trellis: A platform for building flexible,
fast virtual networks on commodity hardware. In: ACM ROADS (2008)

12. Gibb, G., Underhill, D., Covington, A., Yabe, T., McKeown, N.: Openpipes: Proto-
typing high-speed networking systems. In: ACM SIGCOMM, Demo Session (2009)

13. Planetlab, http://www.planet-lab.org/
14. Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., Shenker, S.: Extending

networking into the virtualization layer. In: ACM HotNets (2009)
15. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., Shenker,

S.: Nox: towards an operating system for networks. SIGCOMM Computer Com-
munication Review 38, 105–110 (2008)

16. The trutees of princeton university. myplc, http://www.planet-lab.org/doc/myplc
17. Farinacci, D., Li, T., Hanks, S., Meyer, D., Traina, P.: Generic Routing Encap-

sulation (GRE), RFC 2784 (Proposed Standard), updated by RFC 2890 (March
2000), http://www.ietf.org/rfc/rfc2784.txt

18. Internet2 dynamic circuit network (2008), http://www.internet2.edu/network/dc/
19. Adar, E.: Guess: A language and interface for graph exploration. In: ACM CHI

(2006)
20. Ofias demostration, http://plc119.nvlab.org/demo/OFIAS.mp4
21. Russell, R.: virtio: towards a de-facto standard for virtual i/o devices. ACM

SIGOPS Operating Systems Review 42, 95–103 (2008)
22. vhost-net: a kernel-level virtio-net server, http://www.linux-kvm.org/page/VhostNet

http://www.cs.brown.edu/research/aurora/
http://www-01.ibm.com/software/data/infosphere/streams/
http://www-01.ibm.com/software/data/infosphere/streams/
http://www.planet-lab.org/
http://www.planet-lab.org/doc/myplc
http://www.ietf.org/rfc/rfc2784.txt
http://www.internet2.edu/network/dc/
http://plc119.nvlab.org/demo/OFIAS.mp4
http://www.linux-kvm.org/page/VhostNet

	OFIAS: A Platform for Exploring In-Network Processing
	Introduction
	Relate Works
	INP with OFIAS
	Switch
	Processing Module
	Controller
	Virtual Link

	An OFIAS Prototype on CoreLab
	Virtual Open Switch (vOFS)
	Controller
	Virtual Link

	Demonstration of INP with OFIAS
	Performance Evaluation
	Conclusion and Future Work
	References

