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Abstract. Cloud computing is a computing paradigm in which differ-
ent computing resources, including infrastructure, hardware platforms,
and software applications, are made accessible to remote users as ser-
vices. Successful provision of infrastructure-as-a-service (IaaS) and, con-
sequently, widespread adoption of cloud computing necessitates accurate
performance evaluation that allows service providers to dimension their
resources in order to fulfil the service level agreements with their cus-
tomers. In this paper, we describe an analytical model for performance
evaluation of cloud server farms, and demonstrate the manner in which
important performance indicators such as request waiting time and server
utilization may be assessed with sufficient accuracy.

Keywords: cloud computing, performance analysis, M/G/m queuing
system, response time.

1 Introduction

Significant innovations in virtualization and distributed computing, as well as
improved access to high-speed Internet, have accelerated interest in cloud com-
puting [15]. Cloud computing is a general term for system architectures that
involves delivering hosted services over the Internet. These services are broadly
divided into three categories: Infrastructure-as-a-Service (IaaS), which includes
equipment such as hardware, storage, servers, and networking components are
made accessible over the Internet); Platform-as-a-Service (PaaS), which includes
computing platforms—hardware with operating systems, virtualized servers, and
the like; and Software-as-a-Service (SaaS), which includes sofware applications
and other hosted services [11]. A cloud service differs from traditional hosting in
three principal aspects. First, it is provided on demand, typically by the minute
or the hour; second, it is elastic since the user can have as much or as little of a
service as they want at any given time; and third, the service is fully managed by
the provider – user needs little more than computer and Internet access. Cloud
customers pay only for the services they use by means of a customized service
level agreement (SLA), which is a contract negotiated and agreed between a cus-
tomer and a service provider: the service provider is required to execute service
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requests from a customer within negotiated quality of service(QoS) requirements
for a given price.

Due to dynamic nature of cloud environments, diversity of user’s requests and
time dependency of load, providing expected quality of service while avoiding
over-provisioning is not a simple task [17]. To ensure that the QoS perceived by
end clients is acceptable, the providers must exploit techniques and mechanisms
that guarantee a minimum level of QoS. Although QoS has multiple aspects such
as response time, throughput, availability, reliability, and security, the primary
aspect of QoS considered in this work is related to response time [16].

Cloud computing has been the focus of much research in both academia and
industry, however, implementation-related issues have received much more at-
tention than performance-related ones; in this paper we describe an analytical
model for evaluating the performance of cloud server farms and verify its accu-
racy with numerical calculations and simulations. we assume that any request
goes through a facility node and then leaves the center. A facility node may
contain different computing resources such as web servers, database servers, and
others, as shown in Fig. 1. We consider the time a request spends in one of those
facility node as the response time; response time does not follow any specific
distribution. Our model is flexible in terms of cloud center size and service time
of customer requests; We model the cloud environment as an M/G/m queu-
ing system which indicates that inter-arrival time of requests is exponentially
distributed, the service time is generally distributed and the number of facility
nodes is m. Also, due to the the nature of cloud environment (i.e., it is a service
provider with potentially many customers), we pose no restrictions on the num-
ber of facility nodes. These two characteristics, general service time and large
number of nodes, have not been adequately addressed in previous research.
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Load Balancing Server

client
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Fig. 1. Cloud clients and service provider
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The remainder of the paper is organized as follows: Section 2 gives a brief
overview of related work on cloud performance evaluation and on performance
characterization ofM/G/m queueing systems. We introduce our analytical model
in Section 3, and present performance results obtained with it in Section 4, us-
ing discrete event simulation to validate them. Discussion of our approach and
outlook to future research activities complete the paper.

2 Related Work

As mentioned above, most of the research related to cloud computing has dealt
with implementation issues, while performance-related issues have received much
less attention. For example, [20] studied the response time in terms of various
metrics, such as the overhead of acquiring and realizing the virtual computing
resources, and other virtualization and network communication overhead. To
address these issues, they have designed and implemented C-Meter, a portable,
extensible, and easy-to-use framework for generating and submitting test work-
loads to computing clouds.

In [18], the cloud center was modeled as anM/M/m/N queuing system, which
was been used to compute the distribution of response time. Inter-arrival and
service times were both assumed to be exponentially distributed, and the system
had a finite buffer of size N . The response time was broken down into waiting,
service, and execution periods, assuming that all three periods are independent
which is unrealistic, based on their own argument.

In [17], the authors consider a cloud center which is modelled as the classic
open network; they obtained the distribution of response time based on assump-
tion that inter-arrival time and service time are both exponential. Using the
distribution of response time, they found the relationship among the maximal
number of tasks, the minimal service resources and the highest level of services.

Theoretical analyses have mostly relied on extensive research in performance
evaluation of M/G/m queuing systems, as outlined in [2,5,7,8,9,19]. As solutions
for mean response time and queue length in M/G/m systems can’t be obtained
in closed form, suitable approximations were sought. However, most of these
provide reasonably accurate estimates of mean service time only when number
of servers is comparatively small, (say, less than twenty or so), but fail for large
number of servers [1,3,13,14]. Approximation errors are particularly pronounced
when the offered load ρ is small, and/or when both the number of servers m
and the coefficient of variation of the arrival process for service requests, CV,
are large. As a result, these results are not directly applicable to performance
analysis of cloud computing server farms where the number of servers is huge
and service request arrival distribution is not generally known.

3 The Analytical Model

We model a cloud server farm as a M/G/m queuing system which indicates
that the inter-arrival time of requests is exponentially distributed, the service
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times of customers’ requests are independent and identically distributed random
variables with a general distribution whose service rate is μ; both μ and CV ,
the coefficient of variation defined as standard deviation divided by the mean,
are finite.

A M/G/m queuing system may be considered as a Markov process which
can be analysed by applying the embedded Markov chain technique. Embedded
Markov Chain techique requires selection of Markov points in which the state
of the system is observed. Therefore we monitor the number of the tasks in the
system (both in service and queued) at the moments immediately before the task
request arrival. If we consider the system at Markov points and number these
instances 0, 1, 2, . . . , then we get a Markov chain [4]. Here, the system under
consideration contains m servers, which render service in order of task request
arrivals.

Task requests arrival process is Poisson. Task request interarrival time A is
exponentially distributed with rate to 1

λ . We will denote its Cumulative Distribu-
tion Function (CDF) as A(x) = Prob[A < x] and its probability density function
(pdf) as a(x) = λe−λx. Laplace Stieltjes Transform (LST) of interarrival time is
A∗(s) =

∫ ∞
0
e−sxa(x)dx = λ

λ+s .
Task service times are identically and independently distributed according to

a general distribution B, with a mean service time equal to b = 1
μ . The CDF of

the service time is B(x) = Prob [B < x], and its pdf is b(x). The LST of service
time is B∗(s) =

∫ ∞
0 e−sxb(x)dx.

Residual task service time is time from the random point in task execution
till the task completion. We will denote it as B+. This time is necessary for our
model since it represents time distribtion between task arrival z and departure
of the task which was in service when task arrival z occured. It can be shown
as well that probability distrubtion of elapsed service time (between start of the
task execution and next arrival of task request B− has the same probability
distribtion [12].

The LST of residual and elapsed task service times can be calculated in [12]
as

B∗
+(s) = B∗

−(s) =
1 −B∗(s)

sb
(1)

The offered load may be defined as

ρ � λ

mμ
(2)

For practical reasons, we assume that the system never enters saturation, which
means that any request submitted to the center will get access to the required
facility node after a finite queuing time. Furthermore, we also assume each task
is serviced by a single server (i.e., there are no batch arrivals), and we do not
distinguish between installation (setup), actual task execution, and finalization
components of the service time; these assumptions will be relaxed in our future
work.
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3.1 The Markov Chain

We are looking at the system at the moments of task request arrivals – these
points are selected as Markov points. A given Markov chain has a steady-state
solution if it is ergodic. Based on conditions for ergodicity [4] and the above-
mentioned assumptions, it is easy to prove that our Markov Chain is ergodic.
Then, using the steady-state solution, we can extract the distribution of number
of tasks in the system as well as the response time.

Let An and An+1 indicate the moment of nth and (n + 1)th arrivals to the
system, respectively, while qn and qn+1 indicate the number of tasks found in the
system immediately before these arrivals; this is schematically shown in Fig. 2.
If vn+1 indicates the number of tasks which are serviced and depart from the
system between An and An+1, the following holds:

qn+1 = qn − vn+1 + 1 (3)

Fig. 2. Embedded Markov points

Fig. 3. State-transition-probability diagram for the M/G/m embedded Markov chain

We need to calculate the transition probabilities associated with this Markov
chain, defined as

pij � Prob [qn+1 = j|qn = i] (4)

i.e., the probability that i+1−j customers are served during the interval between
two successive task request arrivals. Obviously for j > i+ 1

pij = 0 (5)
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since there are at most i+ 1 tasks present between the arrival of An and An+1.
The Markov state-transition-probability diagram as in Fig. 3, where states are
numbered according to the number of tasks currently in the system (i.e those
in service and those awaiting service). For clarity, some transitions are not fully
drown, esp. those originating from states above m. We have also highlighted the
state m because the transition probabilities are different for states on the left
and right hand side of this state (i.e., below and above m).

3.2 Departure Probabilities

Due to ergodicity of the Markov chain, an equilibrium probability distribution
will exist for the number of tasks present at the arrival instants; so we define

πk = lim
n→+∞Prob [qn = k] (6)

From [12], the direct method of solution for this equilibrium distribution requires
that we solve the following system of linear equations:

π = πP (7)

where π = [π0, π1, π2, . . .], and P is the matrix whose elements are one-step
transition probabilities pij .

To find the elements of the transition probability matrix, we need to count the
number of tasks departing from the system in between two successive arrivals.
Consider the behaviour of the system, as shown in Fig. 4. Each server has zero
or more departures during the time between two successive task request arrivals
(the inter-arrival time). Let us focus on an arbitrary server, which (without loss
of generality) could be the server number 1. For a task to finish and depart
from the system during the inter-arrival time, its remaining duration (residual
service time defined in (1)) must be shorter than the task inter-arrival time. This
probability will be denoted as Px, and it can be calculated as

Fig. 4. System behaviour in between two arrivals
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Px = Prob [A > B+] =
∫ ∞

x=0

P{A > B+|B+ = x }P{B+ = x}

=
∫ ∞

0

e−λxdB+(x) = B∗
+(λ)

(8)

Physically this result presents probability of no task arrivals during residual task
service time.

In the case when arriving task can be accommodated immediately by an idle
server ( and therefore queue length is zero) we have to evaluate the probability
that such task will depart before next task arrival. We will denote this probability
as Py and calculate it as:

Py = Prob [A > B] =
∫ ∞

x=0

P{A > B|B = x }P{B+ = x}

=
∫ ∞

0

e−λxdB(x) = B∗(λ)
(9)

However, if queue is non-empty upon task arrival following situation may
happen. If between two successive new task arrivals a completed task departs
from a server, that server will take a new task from the non-empty queue. That
task may be completed as well before the next task arrival and if the queue is
still non-empty new task may be executed, and so on until either queue gets
empty or new task arrives. Therefore probability of k > 0 job departures from a
single server, given that there are enough jobs in the queue can be derived from
expressions (8) and (9) as:

Pz,k = B∗
+(λ)(B∗(λ))k−1 (10)

note that Pz,1 = Px.
Using these values we are able to compute the transition probabilities matrix.

3.3 Transition Matrix

Based on our Markov chain, we may identify four different regions of operation
for which different conditions hold; these regions are schematically shown in
Fig. 5, where the numbers on horizontal and vertical axes correspond to the
number of tasks in the system immediately before a task request arrival (i) and
immediately upon the next task request arrival (j), respectively.

Regarding the region labelled 1, we already know from Eq. 5 that pij = 0 for
i+ 1 < j.

In region 2, no tasks are waiting in the queue, hence i < m and j ≤ m. In
between the two successive request arrivals, i + 1 − j tasks will complete their
service. For all transitions located on the left side of state m in Fig. 3, the
probability of having i+ 1 − j departures is

pij =
(

i

i− j

)

P i−jx (1 − Px)jPy +
(

i

i+ 1 − j

)

P i+1−j
x (1 − Px)j−1(1 − Py)

for i < m, j ≤ m
(11)
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Fig. 5. Range of validity for pij equations

Region 3 corresponds to the case where all servers are busy throughout the inter-
arrival time, i.e., i, j ≥ m. In this case all transitions remain to the right of state
m in Fig. 3, and state transition probabilities can be calculated as

pij =
σ∑

s=φ

(
m

s

)

P sx (1 − Px)m−sP i+1−j−s
z,2 (1 − Pz,2)s

for i, j ≥ m

(12)

In the last expression, the summation bounds are σ = min [i+ 1 − j,m] and
φ = min [i+ 1 − j, 1].

Finally, region 4, in which i ≥ m and j ≤ m, describes the situation where
the first arrival (An) finds all servers busy and a total of i − m tasks waiting
in the queue, which it joins; while at the time of the next arrival (An+1) there
are exactly j tasks in the system, all of which are in service. The transition
probabilities for this region are

pij =
σ∑

s=1

(
m

s

)

P sx (1 − Px)m−s
(
η

α

)

Pψz,2(1 − Pz,2)ζβ

for i ≥ m, j < m

(13)
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where we used the following notation:

σ = min [m, i+ 1 − j]
η = min [s, i+ 1 −m]
α = min [s, i+ 1 − j − s]
ψ = max [0, i+ 1 − j − s]
ζ = max [0, j −m+ s]

β =
{

1 if ψ ≤ i+ 1 −m
0 otherwise

(14)

4 Numerical Validation

The steady-state balance equations outlined above can’t be solved in closed
form, hence we must resort to a numerical solution. To obtain the steady-state
probabilities π = [π0, π1, π2, ...], as well as the mean number of tasks in the
system (in service and in the queue) and the mean response time, we have
used the probability generating functions (PGFs) for the number of tasks in the
system:

P (z) =
∞∑

k=0

πzz
k (15)

and solved the resulting system of equations using Maple 13 from Maplesoft,
Inc. [6]. Since the PGF is an infinite series, it must be truncated for numerical
solution; we have set the number of equations to twice the number of servers,
which allows us to achieve satisfactory accuracy (as will be explained below),
plus the necessary balance equation

i=2m∑

i=0

πi = 1. (16)

the mean number of tasks in the system is, then, obtained as

E[QS] = P
′
(1) (17)

while the mean response time is obtained using Little’s law as

E[RT ] = E[QS]/λ (18)

We have assumed that the task request arrivals follow the gamma distribution
with different values for shape and scale parameters; however, our model may
accommodate other distributions without any changes. Then, we have performed
two experiments with variable task request arrival rate and coefficient of vari-
ation CV (which can be adjusted in the gamma distribution independently of
the arrival rate).

To validate the analytical solutions we have also built a discrete even simulator
of the cloud server farm using object-oriented Petri net-based simulation engine
Artifex by RSoftDesign, Inc. [10].
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(a) CV = 0.7.

(b) V = 0.9.

Fig. 6. Mean number of tasks in the system: m = 50 (denoted with squares), 100
(circles), 150 (asterisks), and 200 (crosses)
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(a) Results for CV = 0.7, m = 50 and 100 servers.

(b) Results for CV = 0.7, m = 150 and 200 servers.

Fig. 7. Mean response time CV = 0.7, m = 50 (denoted with squares), 100 (asterisks),
150 (circles), and 200 (crosses)
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(a) Results for CV = 0.9, m = 50 and 100 servers.

(b) Results for CV = 0.9, m = 150 and 200 servers.

Fig. 8. Mean response time for CV = 0.9, m = 50 (denoted with squares), 100 (aster-
isks), 150 (circles), and 200 (crosses)
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The diagrams in Fig. 6 show analytical and simulation results (shown as lines
and symbols, respectively) for mean number of tasks in the system as functions
of the offered load ρ, under different number of servers. Two different values
of the coefficient of variation, CV = 0.7 and 0.9, were used; the corresponding
results are shown in Figs. 6(a) and 6(b). As can be seen, the results obtained by
solving the analytical model agree very well with those obtained by simulation.

The diagrams in Fig. 8 show the mean response time, again for the same
range of input variables and for the same values of the coefficient of variation.
As above, solid lines correspond to analytical solutions, while different symbols
correspond to different number of servers. As could be expected, the response
time is fairly steady up to the offered load of around ρ = 0.8, when it begins to
increase rapidly. However, the agreement between the analytical solutions and
simulation results is still very good, which confirms the validity of our modelling
approach.

5 Conclusions

Performance evaluation of server farms is an important aspect of cloud comput-
ing which is of crucial interest for both cloud providers and cloud customers.
In this paper we have proposed an analytical model for performance evaluation
of a cloud computing center. Due to the nature of the cloud environment, we
assumed general service time for requests as well as large number of servers; in
the other words, our model is flexible in terms of scalability and diversity of ser-
vice time. We have further conducted numerical experiments and simulation to
validate our model. Numerical and simulation results showed that the proposed
method provided a quite accurate computation of the mean number of tasks in
the system and mean response time.

In future work we plan to extend our model for burst arrivals of requests or a
kind of task including several subtasks; we are also going to examine other types
of distributions as service time which are more realistic in cloud computing area,
e.g. Log-Normal distribution. Looking in to the facility node and breaking down
the response time into several components such as setup, execution, return and
clean up time will be another dimension of extension. We will address all these
issues in our future work.

References

1. Boxma, O.J., Cohen, J.W., Huffel, N.: Approximations of the mean waiting time
in an M/G/s queueing system. Operations Research 27, 1115–1127 (1979)

2. Hokstad, P.: Approximations for the M/G/m queues. Operations Research 26,
510–523 (1978)

3. Kimura, T.: Diffusion approximation for an M/G/m queue. Operations Re-
search 31, 304–321 (1983)

4. Kleinrock, L.: Queueing Systems. Theory, vol. 1. Wiley-Interscience, Hoboken
(1975)



264 H. Khazaei, J. Mǐsić, and V.B. Mǐsić
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