Developing Pervasive Systems as
Service-Oriented Multi-Agent Systems

Jorge Agiiero, Miguel Rebollo, Carlos Carrascosa, and Vicente Julidn

Departamento de Sistemas Informdticos y Computacién,
Universidad Politécnica de Valencia,
Camino de Vera S/N 46022 Valencia (Spain)
{jaguero,mrebollo, carrasco, vinglada}@dsic.upv.es

Abstract. The development of Pervasive Systems is an emerging re-
search topic due to the high heterogeneity of involved technologies and
the changing nature of the existing platforms/devices, which make it
hard to develop this kind of systems. This work presents a Model Driven
Development approach to develop agent-based software for Pervasive En-
vironment in order to design and implement application prototypes in
an easy and productive way. Our approach provides a method for the
specification of Pervasive Systems, which allows to face the development
of such systems from a higher abstraction level. The deployment over
different execution platforms is achieved by means of automatic trans-
formations among models that described entities and the environment
(UML-like). The result is a simplified and homogeneous deployment pro-
cess for Agent-Based Pervasive Systems.

Keywords: Multi-Agent Systems, Pervasive Systems, Model Driven
Development.

1 Introduction

Pervasive Systems is a paradigm in which technology is virtually invisible in our
environment. Pervasive Systems are very common nowadays and will be even
more in the next years. This is due to the appearance of new objects (of daily
usage) with different technological capabilities, because they incorporate differ-
ent electronic devices [I4]. So, it is easy to think that this paradigm requires,
from a designer point of view, the development of applications in different soft-
ware and hardware platforms depending on the diversity of the objects in the
environment. This raises big challenges.

In this way, the development of Pervasive Systems is a complex task, with
multiple actors, devices and different hardware environments; where it is diffi-
cult to find a compact view of all components. The requirements of this kind
of systems are very different[I5]. However some of them are basic: (i) integra-
tion of external devices and software systems, the services that are provided by
Pervasive System can be supplied by physical devices and also by existing soft-
ware systems, and it is essential that the system supports these issues; (ii) the

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 78 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Developing Pervasive Systems as Service-Oriented Multi-Agent Systems 79

isolation of the technology and the manufacturer-dependent devices, in order to
facilitate the development of this kind of systems, the manufacturer dependent
devices must be well encapsulated in independent and generic functionalities.

Software engineering based on Multi-Agent Systems (MAS), particularly Open
MAS, has the capability to fulfill these requirements[4]. This approach supports
the integration of highly heterogeneous platforms, where agents work together to
support complex tasks, in a collaborative and dynamic way, with the ability to
adapt, coordinate and organize each other[20]. Therefore, it seems appropriated
a MAS-based development process to facilitate the orchestration and integration
of the functionalities of physical devices.

Moreover, Model Driven Development (MDD) approach can facilitate and
simplify the design process and the software quality in the development process
of a MAS-based Pervasive System. It allows to re-use software and the transfor-
mation between models[23]. This methodology can be applied in the development
of embedded agents for Pervasive Systems, where different technologies and exe-
cution platforms coexist. That is, to design applications automatically, where the
toolkits guide the developer in the design process, using unified models to apply
transformations allowing to obtain specific code for the deployment platforms.

This work proposes to use a MDD approach to facilitate the development pro-
cess of Agent-Based Pervasive Systems, providing the user with a set of abstrac-
tions that ease the implementation of Pervasive Systems and the deployment
of a platform for their execution. To sum up, this work presents: (i) an Envi-
ronmental meta-model, which allows to incorporate in the modeling process the
different environment devices of a Pervasive System; and (ii) a layered deploy-
ment architecture. This allows to design pervasive applications using high-level
abstractions, avoiding the low-level implementation details and, after that, the
Pervasive System deployment (with embedded agents and devices) is generated
by using automatic transformations. In this way, a non-expert programmer will
be able to develop Agent-Based Pervasive Systems, reducing the gap between
the design and the implementation phases.

This document is structured as follows. Section 2 explains the MDD approach
and some related works. Section [B] explains how we use MDD for Agent-Based
Pervasive Systems. Section Ml presents the proposed Environment meta-model.
Section Bl shows how to implement the MDD approach in order to develop Perva-
sive Systems and explains the deployment architecture. Finally, some conclusions
are presented in section

2 Model Driven Development

The purpose of MDD is to create models legible by computers that can be
understood by automatic tools to generate code templates and proof models,
integrating them in multiple platforms[b]. Model driven methods make a clear
distinction between the problem space (centered on what the system is) and the
solution space (centered on how it is implemented as a software product).

80 J. Agiiero et al.

2.1 MDD for MAS

From the viewpoint of the design of agent-oriented systems, application develop-
ment consists of how to obtain the agent code that could be executed in different
platforms. That is, to concentrate the development of the application from a
unified agent meta-model and, after that, to apply different transformations to
obtain implementations for different platforms.

In MAS literature, researchers have formulated a set of typical meta-models
that guide the process of MAS development using a model-driven approach.
Some works have concentrated their efforts on creating a generic unified model
for analyzing and modeling the system using different methodologies. Some of
the most significant proposals are: INGENTAS[I7], PIMAAGENTIS] FAMLI[9],
Agent UML(AUML)[7] and AML[I3]. However, although these proposals use
similar components in their meta-models, none of them focus in the development
of the MAS as a Pervasive System. Those approaches have a limited scope in
order to design how the agents perceive/act on the physical world.

The difference of our proposal with respect to the existing approaches is that
we propose specific Environment meta-model which provides access to physical
devices located in the real world. Furthermore, some of the proposals (FAML,
AUML and AML) just define high-level meta-models, and they do not arrive
to the implementation phase, and difficulting enormously the developer work
when trying to obtain executable code. Moreover, even in those methodologies
that include the implementation phase, there exist a gap between design and
implementation models. Since there exist notable differences between the high-
level agent definition and the implemented agent class.

2.2 MDD for Pervasive Systems

Although the application of model-driven approaches has no been widely adopted
in the Pervasive System field, some heterogeneous efforts can be identified that
follow this development paradigm. The most important proposals include:
CML[19], pervML[22], VRDK|[2T], among others [ITI][I9]. These approaches us-
ing a modeling language to model Pervasive Systems, focused on the description
of context-aware data (or framework system), and to provide visual tools to facil-
itate the system development. Some proposals (such as CML and VRDK) focus
directly on the device as the main system component and the implementation
of the functionality using this device.

Our proposal provides high-level abstractions to decouple the dependencies
of the devices with the functionality that the device provides. So, it is based on
the encapsulation of the device in an independent service controlled by agents.
Similarly as pervML and other[IT], we have the aim to decouple the system
functionality from the implementation software, using a Service Oriented Archi-
tecture (OSGi environment).

The OSG{] framework, (Open Service Gateway Initiative) is a standard tech-
nology that defines an environment for the execution of services and their

! http://www.osgi.org/

http://www.osgi.org/

Developing Pervasive Systems as Service-Oriented Multi-Agent Systems 81

life-cycle management. The OSGi is originally focused in networked devices mar-
ket, using services that provide access to different existing device networks (EIB,
UPnP, X10, etc.). These features are very interesting for developing Pervasive
Systems. The OSGi proposal uses a component called Bundle, which is Java-base
technology that provides a mechanism for releasing and deploying applications.

In summary, our approach allows agents to manage, interact and control phys-
ical worlds and thereby create a versatile Pervasive System model, since the
agents (and developer) interacts with the environment using independent ser-
vices, which can be combined, composed, and so on.

3 @wVOM Approach

Models is a MDD approach are defined through meta-models|23]. One funda-
mental challenge when defining a meta-model is selecting which concepts or com-
ponents will be included in order to model the system. To achieve this objective,
some of the most well-known approaches in the area of MAS and Pervasive Sys-
tems were studied (mentioned in Section [2)). The purpose of this analysis was to
extract the common features from the methodologies studied and adapt them
to the current proposal, specifying a generic platform-independent meta-model
of an Agent-Based Pervasive System.

This set of meta-models is created by the detection of common concepts in an
iterative cycle consisting of a bottom-up analysis. Common elements in existing
MAS and Pervasive Systems methodologies, have been identified and incorpo-
rated to the Computation Independent Model (CIM) level (see Figure[Il). These
models can be adjusted as MDD models that specify the concepts of the sys-
tem, as roles, behaviors, tasks, environment, interactions or devices. The models
can be used to describe an Agent-Based Pervasive System without focus on
platform-specific details and requirements, as a Platform Independent Model
(PIM). After that, it is possible to transform PIM models into Platform Specific
Models (PSM). Figure [1l shows relationships between the concepts of different
MDD models and their transformations.

The proposed set of meta-models integrate different MAS modeling approaches,
and it mainly focuses on the integration of Services and MAS techniques for sup-
porting dynamical and open MAS societies[4]. This set of meta-models is called
7VOM (Platform-Independent Virtual Organization Model). The main views of
wVOM are the Structure, Functionality, Normative, Agent, and its Environment.
Therefore, to model the characteristics of these components in our approach, five
key concepts are used: Organizational Unit, Service, Environment, Norm, and
Agent[d]. According to this, 7VOM is structured in five meta-models or views,
which cover the above mentioned key aspects.

These five elements describe those members (entities) that form the orga-
nization: the topology of the organization; the services and features that the
organization offer; the evolution of the organization over time; the environment
where the organization is situated; and the rules about the behavior of mem-
bers respectively. These five elements are described in more detail in [3]. In this
paper, an extension of the Environment meta-model is described in detail. This

82 J. Agiiero et al.

0 ethodology Pervasive System models
=
= VOM AML AUML =R e {
O _
- - N T 4_ - - - - Key
nVOM meta-model . Abstract
(9] Environments, concepts
E and MAS and relationship
o Meta-models Horizontal
Agents/Org. Environment Transformation

‘ Vertical
—— —— ‘%&T - - - Transformation
> -

(]

= 4 4

2| 28 [aeal lath) Hm
e St Eelilier Sl

[Android Code} JAI%IE)—(I;:ap] [Code] code

Fig. 1. MDD for MAS

meta-model allows agents to easily interact with the different physical devices
in the environment, which enables agents to manage, perceive and be located in
a Pervasive System. This new Environment meta-model is able to capture the
details and requirements of a Pervasive Systems (whereas the old meta-model
no). Next section explains in detail this Environment meta-model.

4 Environment Meta-model: An Ubiquitous Meta-model

This new meta-model is focused on describing environmental components, rep-
resenting perceptions and acts of the devices. Moreover, it defines permissions
for accessing them. The proposed Environment meta-model is showed in Fig-
ure 2l The Environment concept represents the physical world where the agent
is located. The Environment can be perceived using the Perceive relationship.
The Environment is a recursive model, which allows the creation of sub-worlds
(workplaces) contained one inside another. These sub-worlds may be connected
with other neighboring worlds using the relationship neighborhood.

The Environment consists of Resources and Devices. A Resource is a software-
oriented environment component and its access is performed by a standard pro-
tocol, not requiring an adjustment of the device drivers. A Device represents
a physical component, which access is made directly through a physical inter-
face (sensor or actuator). In this case, it is required to bind the low-level driver
(firmware) to a software component.

The EnvironmentService concept allows to use the functionalities of the phys-
ical devices through a service, decoupling the low-level abstraction. Resources
and Devices are accessed through an EnvironmentPort. An entity (agent or or-
ganization) is in charge of managing the access permissions to these elements
using the Port abstraction. Each Port is controlled by an entity and it can be
used by one or more roles (played by the entities). A Port represents a point of
interaction between the Entity and physical devices, and it serves as an interface

Developing Pervasive Systems as Service-Oriented Multi-Agent Systems 83

*
composed Environment 2504 Event

¥ +Name

1..%)
+Neighbors ew Role use port *

neighborhood [+Type 1% Port
1 +Features T..% +CanBeInput
located la has_port +CanBeOutput |
has|artifact 1
1 - =
Device Entity
+Name Artifact| ~1 EnvironmentPort ServicePort
+Type
+Model |tNumber | +Number
+DataType 1 1
+IsSensor nanaged acceps
aqcess
+IsActuator
+Capability 1 1
+Interface Resource 1 : i i
+Configuration() EnvironmentService D Service
+GetValue() +Name
+PutValue() +Interface
+BindDriver() +BindProtocol()

Fig. 2. Environment meta-model of 7 VOM

Table 1. Main concepts used in the Environment meta-model

7 VOM concepts Description

Entity Specification of something that has an individual existence in the MAS.
Role Specification of a behavioral pattern expected from some MAS entities.
Service A single activity (or complex block of activities) that represents a functionality
of the agents/devices/resources.
Environment Physical world, workspace where the agents are situated.
Resource Specification of a software artifact, that has a reasonable representation in the
environment, which can be perceived and shared using data protocols.
Device Specification of a hardware artifact, which we can perceive and act through
low-level interfaces (using proprietary firmware).
Port This abstraction is an interface to the service, that allows the input/output of
data.
EnvironmentPort Access point to interact with the environment (with the physical world).
ServicePort Access point to use an agent-based service.

EnvironmentService High-level functionality, which decouples the protocol or firmware of the envi-
ronmental artifacts.

to the physical world. Finally, all these basic concepts and relationships will en-
able agents (and users) to create new high-level representations of the Pervasive
Systems, as context-aware models[6], Service discovery/composition models[10],
and adaptation models[24]. Table [Il summarizes the main concepts used in the
Environment meta-model.

Finally, in order to illustrate the use of this meta-model, a typical case study
of a Pervasive System is analyzed. The case study presents a little office where
some pervasive services are provided. The office is structured in three locations:
the reception desk, the head office and meeting room. Every location provides
a lighting service which is activated when is detected in the space the presence
of a user. The head office and the meeting room provide services for multimedia
content (audio, video, and presentations). When employees make a presentation
or use multimedia devices in the meeting room, the light intensity is decreased
and the blinds are automatically closed to improve the visibility. The ubiquitous

84 J. Agiiero et al.

office provide others services, such as: security and recording; but, due to the
space limitations of the paper, these functionalities are not described.

In order to model the ubiquitous office, the developer must specify the different
components which model the different devices, resources, environments, services
and agents, of the Pervasive System. Figure [3] shows the partial model (focused
on meeting room) of the office using ¥VOM Environment meta-model. Figure (3]
shows that the ubiquitous office uses different devices, such as: smart bulbs (using
X10 protocol), gradual light bulbs and blinds automatic, are used to control the
lighting room. Also, the ubiquitous office uses infrared sensors that are motion
detectors and cameras. Furthermore, the developer can create new services such
as Security and Recording, using the basic services (EnvironmentService) offered
by each device.

5 Implementing Agent-Based Pervasive Systems

This work proposes to use a homogeneous and unified model for implementing
Agent-Based Pervasive Systems permitting its translation into different execu-
tion MAS platforms through MDD, in which agents act/perceive about the en-
vironment and thereby manage/control the Pervasive System. This means that
the user can design a Pervasive Systems with a unified, intuitive, visual model,
i.e., with a high level of abstraction. Then, the user can get the agent code au-
tomatically using MDD with minimal user intervention. Finally, the drivers or
firmware must be added to support environmental devices. These drivers will
be encapsulated within a service (an OSGi service), to export their functional-
ity as a high-level abstraction (which will be managed by agents). Finally, this
code should be compiled for execution over an OSGi framework, as is showed in
Figure @

5.1 Development Process

The design process starts trying to modelize the agents and the environmental
devices using the abstract components of the proposed meta-models (commented
in the previous section). The Pervasive System design process is formed by a set
transformations that finally will obtain the OSGi-Java code. In order to do these
steps, a set of tools, which support the process, are required. The tools used at
each stage of the design can be summarized as follows (see Figure [l):

Step 1: At the beginning, the developer must create the different diagrams
(using the EMFGormas toolkit[I6]) which model the different devices, resources
or services of the agents. To perform this step, an Eclipse IDE with a set of
plugins is employed[16]. These plug-ins are mainly EMF, Ecore, GMF and GEF,
which allow the user to draw the models that represent the Pervasive System.

Step 2: Once the model has been developed, it is necessary to select in which
platforms the user wants to execute the agents. This phase corresponds with the
PSM model definition of each agent. To do this, it is necessary to apply a model-
to-model transformation (PIM-to-PSM). This is done using the Eclipse IDE and
the ATL plug-in incorporating the appropriated set of transformation rules. It

Developing Pervasive Systems as Service-Oriented Multi-Agent Systems 85

Table 2. Transformation rules between agent meta-model and JADE-Leap model

Rule Concept Transformation
1 Agent mVOM.Agent = JADE.Agent
2 Behaviour wVOM.Behaviour = JADE.ParallelBehaviour
3 Capability 7VOM.Capability == JADE.OneShotBehaviour
4 Task 7 VOM.Task = JADE.Behaviour

Located

«0OrganizacionalUnit»
OfficeUnit

«Environment»
Head

neighborhood neighborhood
T«Device» ~Devicer
Light
 —

«Device»
| «Devices «Device»

Blinds
«Device»
Infrared Detector Light
I = g L Camera

«EnvironmentSevice»
BlindManagement
«EnvironmentSevice» | «Enwnl:-rimrl:inanew:ew «Envirorlln‘_lent"’s_evi:e»
Pr i I ghting] MuEimec:a «EnvironmentSevice»
f { ! /r : s 1 GradualLighting

«Service» «Service»
Securi Recording

Envir

Meetin

«Device»
InfraredDetector

«Device»
InfraredDetector

«Device»
DimmerLight

Fig. 3. Partial view of the office using Environment meta-model of 7VOM

is important to remark that the same agent model can be transformed into
different specific agent platforms. Table 2] illustrates the agent transformations,
from agent meta-model of 1 VOM to JADE-Leap[8]. These rules are a subset of
the transformation rules needed in this phase, which are explained in detail in
[2]. In this way, agent concepts are mapped from source models to target models,
and agent components are transferred or changed from one model to another.

Step 3: After the second step, the developer must apply a transformation to
convert the models into the MAS code (OSGi-based). To do this, we must use a
PSM-to-code transformation. In this case, we use MOFScript which is an Eclipse
plug-in that uses templates to do the translation. These templates have been de-
veloped for two MAS platforms: JADE-Leap and ANDROMEDA[I]. Figure [illus-
trates how one rule is implemented using MOFScript. Part of the code of the rule
shows the transformation of the agent concept.

Step 4: Finally, the process finishes by adding the necessary drivers for the
different environment devices needed in the Pervasive System. All the function-
ality of physical devices are encapsulated as OSGi services, which allow agents
to use them without worrying about low-level features. However, it is neces-
sary to provide the driver/firmware/protocol of the new devices that are not in
the OSGi bundle library. This application has a bundle library, which store the
EnvironmentService (service devices) for frequent use or re-use.

86 J. Agiiero et al.

Design Platform: UML-like Deployment Platform
Structural| (Funtional| (Normative i | Bundle
model model model JAR

model model JAR ™~ | 0SGi framework
PIM: nmvVOM
MDD
rule set Compile/Build
MDD
rule set agent Device add
service
<=
PSM .)
drivers + firmware
Agent Specific Model 0SGifjava projects: + configuration files

Agent-based code

Fig. 4. Implementing Agent-based Pervasive System using MDD transformations

texttransformation AGENT2ANDROMEDA (in myAgentModel:uml2)
//Rulel: Agent transformation
uml.Package: :mapPackage () {
self.ownedMember->forEach(c:uml.Class)
if (c.name !'= null)
if (c.name = Agent) c.outputGeneralization() }
uml.Class: :outputGeneralization(){
file (package_dir + self.name + ext)
self.classPackage()
self.standardClassImport ()
self.standardClassHeaderComment ()
<% public class %> self.name <), extends Agent { %>
self.classConstructor()
<% // Attributes %>
self.ownedAttribute->forEach(p : uml.Property) {
p.classPrivateAttribute()
} newline(2)

Fig. 5. Agent translation using MOFScript

5.2 Deployment Platform

Implementing Pervasive Systems is a challenging and exciting task, since a
solid background knowledge about how to implement this kind of systems do
no exist. Many research efforts are currently being developed on prototype
implementations[I5]. However, some Pervasive System prototypes share a com-
mon architectural style, which correctly fits the requirements of this systems.
As discussed above, the requirements of this kind of systems are basically two:
(1) is essential that the Pervasive System must support the integration of services
provided by external devices and software systems (as another services); (ii) the
isolation of the low-level abstraction of the devices (manufacturer dependent),
the environmental devices must be well encapsulated in independent and generic
functionalities. Therefore, an architecture style that meets these requirements is
the well-known layered architecture[I5]. By means of this architecture, the sys-

Developing Pervasive Systems as Service-Oriented Multi-Agent Systems 87

Organlzatmn layer R Servi ” Service Registration,
o ational Organization ervice Somies Dasmany >
rganizational manager manager Service Composer £
Units =
=
[} 5
Agent layer 1 Knowledge, Ontol <
" ol AMS: Agent W DE: Diretory | 4Sp A 59, (Ol gy g
. and reasoning engine
8 1 Manag. System Facilitator
Agents |
i
Service layer
Organizational\
and Agent 3 y Single Services
Services
-~
. o N
Environment N 1 \
Serftess { OSGi framework | } \
Envi t layg ;
nvironment laygr Bundle Bundle /I
\'A OSGi service OSGi service o OSGi service
Sensor/Actuator Sensor/Actuator et Sensor/Actuator
drivers drivers drivers
o]
Sensor 1 =
ensor layer . Sensor/ -8
Sensor Actuator Actuator 8
Physical layer]
Devices Resources Objects =

Fig. 6. Proposal architecture of Pervasive System

tem elements are organized in different levels with well-defined responsibilities.
Our proposal follows this architecture style. Figure[6lshows our deployment plat-
form, which is a framework based on OSGi technology. The main layers of this
deployment platform are:

Physical layer, has the resources/devices that are perceived in the environ-
ment. Fully represents the real world, where the Pervasive System is located.

Sensor layer, has the responsibility of accessing to physical devices, through
actuators and sensors, which allow to change or read the state of the devices.

Environment layer, has the responsibility of encapsulating the manufac-
turer dependent technology of the environment devices. The drivers that con-
form this level directly export their functionalities through a bundle. The bundles,
which manage similar devices of software systems from different technology or
vendors, are implemented as a common interface, in order to provide a uniform
way of communicating within the environment devices.

Service layer, provides the system functionality, offering services that the
Pervasive System must supply. The services are provided by the devices located
in the physical world, and by the MAS entities (agent or organizational unit).
Also, at this level the services can be single or composite services, which are
formed by the composition of other services.

Agent layer, supports the mechanisms in order to register, de-register and
discovery of agents. In this layer the agents work together through different

88 J. Agiiero et al.

interactions to support complex tasks in a collaborative and dynamic way. This
layer also supports the information management (knowledge) and the needed
knowledge models, including the reasoning engine and ontologies needed by the
agents. Furthermore, this layer provides the necessary mechanisms to support
the communications and needed languages used by agents, such as FIPA ACL.

Organizational layer, is used as a regulatory framework for the coordina-
tion, communication, and interaction among different computational entities.
This layer is formed by a set of individuals and institutions that need to coordi-
nate resources and services across institutional boundaries. This layer supports
high level interoperability to integrate diverse information systems in order to
share knowledge and facilitate collaboration among entities. This layer is an
open system formed by the grouping and collaboration of heterogeneous entities.
From a technical view, these functionalities are obtained using the THOMAS
platform[I2], which consists basically of a set of modular services that enable
the development of agent-based organizations in open environments.

6 Conclusions

This work presents the application of the ideas proposed by the MDD for the
design of Agent-Based Pervasive Systems. Although the use of MDD refers pri-
marily to methodologies of object-oriented software, it was verified that the
approach can be adopted in the development of Agent-Based Pervasive Systems.
The application of these technologies to the development of Pervasive Sys-
tems can provide many benefits: (i) the Pervasive System can be adapted to
new devices technologies in an easy way, because the approach uses high-level
abstraction that are not so hardware dependent; (ii) the development of a Perva-
sive System is more intuitive using this model-driven method than using classical
approaches, because the developer models the Pervasive System as an UML-like
model avoiding technical details; (iii) the implementation of Pervasive System
over a service-based framework (as OSGi) using agent-oriented software engi-
neering, allows agents to manage the services, the context, adapting the envi-
ronment, giving the possibility to create more advanced and powerful models.
Future work of this research will focus on developing an explicit support to
Context-Awareness specification, using ontologies to describe the contextual in-
formation, allowing new knowledge in the environment to be inferred.

Acknowledgment. This work was partially supported by TIN2009-13839-C03-

01 and PROMETEQO/2008/051 projects of the Spanish government and CONSO-
LIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. Agiiero, J., Rebollo, M., Carrascosa, C., Julidn, V.: Towards on embedded agent
model for Android mobiles. In: Proceedings of Mobiquitous 2008, pp. 1-4 (2008)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Developing Pervasive Systems as Service-Oriented Multi-Agent Systems 89

. Agiiero, J., Rebollo, M., Carrascosa, C., Julidn, V.: Agent design using Model

Driven Development. In: 7th Int. Conf. on PAAMS 2009, vol. 55, pp. 60-69 (2009)

. Agiiero, J., Rebollo, M., Carrascosa, C., Julidn, V.: MDD for Virtual Organization

design. In: Trends in Int. Conf. on PAAMS 2010, vol. 71, pp. 9-17 (2010)

. Argente, E., Julian, V., Botti, V.: MAS Modeling Based on Organizations. In: Luck,

M., Gomez-Sanz, J.J. (eds.) AOSE 2008. LNCS, vol. 5386, pp. 16-30. Springer,
Heidelberg (2009)

. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.

IEEE Software 20(5), 36-41 (2003)

. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. In-

ternational Journal of Ad Hoc and Ubiquitous Computing 2(4), 263-277 (2007)

. Bauer, B.: UML Class Diagrams Revisited in the Context of Agent-Based Systems.

In: Wooldridge, M.J., WeiB, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,
pp. 101-118. Springer, Heidelberg (2002)

. Bergenti, F., Poggi, A.: LEAP: A FIPA Platform for Handheld and Mobile Devices.

In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333, pp.
436-446. Springer, Heidelberg (2002)

. Beydoun, G., Low, G., Henderson-Sellers, B., et al.: FAML: A Generic Metamodel

for MAS Development. IEEE Trans. on Software Engineering, 841-863 (2009)
Brgnsted, J., Hansen, K., Ingstrup, M.: A survey of service composition mechanisms
in ubiquitous computing. In: RSPSI 2007 at Ubicomp (2007)

Cano, J., Madrid, N., Seepold, R., Aguilar, F.: Model-driven development of em-
bedded systems on OSGi platforms. In: FDL 2007, pp. 1-6 (2007)

Carrascosa, C., Giret, A., Julian, V., Rebollo, et al.: Service oriented multi-agent
systems: An open architecture. In: AAMA 2009, pp. 1-2 (2009)

Cervenka, R., Trencansky, I.: The Agent Modeling Language — AML. Whitestein
Series in Software Agent Technologies and Autonomic Computing (2007)
Davidsson, P., Boman, M.: Distributed monitoring and control of office buildings
by embedded agents. Inf. Sci. Inf. Comput. Sci. 171(4), 293-307 (2005)

Endres, C., Butz, A., MacWilliams, A.: A survey of software infrastructures and
frameworks for ubiquitous computing. Mobile Inf. Syst. 1(1), 41-80 (2005)
Garcia, E., Argente, E., Giret, A.: A modeling tool for service-oriented Open Multi-
agent Systems. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA
2009. LNCS, vol. 5925, pp. 345-360. Springer, Heidelberg (2009)

Garca-Magario, 1., Gémez-Sanz, J., Fuentes, R.: INGENIAS Development Assisted
with Model Transformation By-Example. In: PAAMS 2009, pp. 4049 (2009)
Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. In: AAMAS 2008, vol. 18(2), pp. 239-266 (2008)

Henricksen, K., Indulska, J.: Developing context-aware pervasive computing appli-
cations: Models and approach. Pervasive and Mobile Comp. 2(1), 37-64 (2006)
Huhns, M., Singh, M., Burstein, M., et al.: Research directions for service-oriented
multiagent systems. IEEE Internet Computing 9(6), 65-70 (2005)

Knoll, M., Weis, T., Ulbrich, A., Brandle, A.: Scripting your home. In: Location
and Context-Awareness, pp. 274-288 (2006)

Munoz, J., Pelechano, V., Fons, J.: Model driven development of pervasive systems.
In: International Workshop MOMPES 2004, pp. 3-14 (2004)

OMG: Object management group. MDA guide version 1.0.1 (June 2008),
http://www.omg.org/docs/omg/03-06-01.pdf

Poladian, V., Sousa, J., et al.: Task-based adaptation for ubiquitous computing.
IEEE Trans. on System, Man, and Cybernetics 36(3), 328-340 (2006)

http://www.omg.org/docs/omg/03-06-01.pdf

	Developing Pervasive Systems as
Service-Oriented Multi-Agent Systems
	Introduction
	Model Driven Development
	MDD for MAS
	MDD for Pervasive Systems

	VOM Approach
	Environment Meta-model: An Ubiquitous Meta-model
	Implementing Agent-Based Pervasive Systems
	Development Process
	Deployment Platform

	Conclusions
	References

