
P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 366–371, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Policy-Based Personalized Context Dissemination
for Location-Aware Services

Yousif Al Ridhawi, Ismaeel Al Ridhawi, Loubet Bruno, and Ahmed Karmouch

School of Information Technology and Engineering (SITE).
University of Ottawa, PO Box 450,
Ottawa, Ontario, K1N 6N5, Canada

{yalri098,ialri083}@uottawa.ca, karmouch@site.uottawa.ca

Abstract. This paper presents a policy-based context-level negotiation protocol
and context-aware system architecture to personalize consumer-received
context information through negotiations. Location tracking and prediction
empower the system to shape contextual information delivered to users
according to their expected needs.

Keywords: Context, negotiation,location prediction, context-aware architecture.

1 Introduction

This paper provides an enhanced context-aware system architecture expanding our
earlier work [1],[2],[3] to evaluate and enforce CLAs through policies, and enhance
Client Views generation, modification, and adaptation by tracking and predicting
client location. The remainder of this paper is organized as follows. In section 2 we
provide our modified an enhanced context-aware system architecture. In section 3 we
present our CLA policy management. In section 4 we discuss some related work.
Finally in section 5 we discuss our conclusion and future work.

2 Context-Aware System Architecture

Readers are advised to refer to [2] for our complete ontology-based context model
used in our system architecture. A tri-layered system architecture was developed by
our group and presented in [1]. The three levels were a context acquisition layer, a
management layer, and a consumer layer. Since then, the system has been
improved, and the updated architecture is provided in Figure 1. The management
layer design has been expanded to include a new multi-sourced location tracking
and prediction component for initiating negotiations with clients, predicting future
movement, and adapting CVs to predicted paths within system’s coverage area.
The CIC is the CLA Policy Management unit responsible for attaining CLAs and
generating respective internal policies. The policies are in turn enforced to supply
clients with needed contextual knowledge. Further negotiations affecting the
original CLA must be reflected within their respective policies; hence the need for a
Policy Update unit.

 Policy-Based Personalized Context Dissemination for Location-Aware Services 367

Context Clients
Layer

CLA Policy Management

CLA Policy Generation

Policy Decision Point and
Enforcement

Policy Repository

Policy Update

Context Information Center (CIC)

C
ontextInform

ation
C
enterAccess

Point

Views Generator

Views Generation
Policies

View Generation Policy
Amendment Unit

Views Repository

Client Views Management

CLA Generator

CLA Negotiation Unit

CLA Conflict Resolution

Negotiation Management

CLA Negotiation
Policies

Context Coordinator (ConCoord)
ConCoord Access Point

Context Management
Global Concrete
Ontology (GCO)

Context
Repository

Ontology
Amendment Unit

Ontology
Modification
Policies

GCO Generator

Conflict Resolution
QoC Evalution
Inference Engine

GCO Adjustment

Context
Management
Policies

Context Listeners

Context
Sources
LayerLocation Tracking Center

Location Tracking Parallel Sourced

Location Conflict
Resolution

Instantaneous
Location DP

Location
Storage
Updater

Signal
Strength
Interpreter

Signal
String
Retrieval

Location
Historical
Repository

Location Prediction Center
Location
Prediction
Engine

In
st
an
ta
ne
ou
s

Lo
ca
tio
n
Li
st
en
er

Mobility
Prediction Unit

Location
Prediction
Repository

Negotiation Management
Access Point

Prediction
Conflict
Resolution

Location Tracking and Prediction Center

Global Skeletal
Ontology (GS)

System
Management

POLICY GENERATION

Client-Based
Context Sources

Context Listeners

Fig. 1. Three-layered context-aware system architecture with location tracking enhancements

All established CLAs are utilized by the management system to modify existing
CVs reflecting provider’s changing abilities to supply context information. As CVs
are modified, the provider must renegotiate some CLAs to reflect the changes.
Modifications affixed to existing CLAs must be promoted into the respective CLA
policies generated by the CLA Policy Management unit in the CIC. Our context-level
negotiation protocol has been described in our earlier works [2], [3].

3 CLA Policy Management

All CLAs are translated into policies for enforcement and conflict resolution. The
Policy Decision Point (PDP) examines applicable policies and determines actions to
take, and the Policy Enforcement Point (PEP) enforces the outcome of policy
decisions. ConCoord’s CLA Policy Generator converts established CLAs into a set of
policies that are enforced by the PDP in the CIC. In our system, the generator had as
input a structure representing a CLA (from ConCoord Access Point) and a single
external function call (from Policy Repository) to convert the CLA into policies.

Our choice of policy language must consider that all rules generated from our
CLAs have a form of Event-Condition-Action. Additionally, users must be able to
define their own operations added to existing ones, hence our decision to use
Ponder[4]. Ponder policies act on Managed Objects representing a part of the system
to control. The Ponder toolkit with its Java-based APIs allows writing new managed
objects and creating operations for these objects. Two types of managed objects exist:

1. Managed objects shared between all policies in the system. It has two shared
managed objects with one instance per CLA Policy Generator; GCO with context
access operations, and CICAP with methods to send context information to clients.

2. Managed objects created specifically for a CLA. Two managed objects are created
for each CLA. First a CLA object containing information about CLA clients, and
methods to activate/deactivate the CLA. Second is a CV object representing a CV.

368 Y. Al Ridhawi et al.

Every type of event carries information used in the condition and action parts of
policies. Additionally, every event type must represent an element that triggers
behaviour of the system thus executing a set of policies. Four elements are defined:

1. Time: contains information on the current date and time.
2. GCO_Change: generated every time a change occurs in the GCO property.
3. CV_Change: generated every time a change occurs to a Client View.
4. CV_Request: generated every time a client requests its CV from the provider.

The CLA policies we have implemented thus far are aimed at describing all the CLA
applicability conditions which involve two steps.

1. Creating elementary policies to activate/deactivate the CLAs.
2. Grouping the policies to obtain complete CLA applicability conditions.

Some policies can take the following form: at the occurrence of a TIME event, if the
time matches START/END date and time, then ACTIVATE/DEACTIVATE the CLA.
Continuous CLAs, as seen in [3], require regular activations and deactivations and
can be achieved through time patterns. For example, activating a CLA every Monday
from the year 2010 at 8:30, the time pattern will be: “year: 2010; month: -1; day: -1;
day of the week: Monday; hour: 8; minute: 30; second: 0”, -1 marks irrelevant data.

Logical Applicability Conditions; for both WHILE and START/END, the
activation and deactivation of the CLA is triggered by logical conditions on the GCO.
In both cases the following policy is used: At any change in the GCO, if the condition
C is true, then activate/deactivate the CLA. Generating policies for the Hybrid CLA
Validity Conditions, two policies are needed to activate/deactivate the CLA, and other
policies are needed to activate/deactivate these policies. These can be logical
conditions (WHILE or Start/END) embedded within a Periodic condition (Continuous
or Non_Continuous). Other policies have been established for Continuous Periodic
Hybrid Conditions, and Conditional-Periodic Hybrid Validity Conditions.

Context Request policies have also been implemented and divided into 3 types:
Notification_Request, Property_Value Request, and Class_Value_Request. Refer to
[3] for further details. Each context request can have an activation condition guarding
delivery of its context. These conditions are translated into Activation policies similar
to those of CLA Activation Policies and hence will not require further description.
Delivery of CVs follows three types of policies; No_Updates, Periodic_Delivery, and
On_Change. Periodic policies are similar to those of periodic CLA activation policies
while the On_Change is similar to the START Trigger policies.

Managed Objects and Policies are stored into different domains and sub-domains
to avoid mix-ups. For each CLA, a domain CLA_#XX_Domain is created, where XX
is the ID of the CLA. This domain contains the CLA_#XX managed object from the
CLA type to activate/deactivate the CLA, the CLA policy or policy group, the CV
Policy or Policy Group, the Request and activation sub-domains containing all request
policies and activation policies respectively. Figure 2a illustrates the CLA Domain.

The policy generator consists of several modules, figure 2b. During system
initialization the Coordinator creates event templates and stores them in the Event
Repository. At runtime, and for every established CLA, the Coordinator sends a
description of the CLA to the Generator that creates domains and managed objects
related to the CLA. The Coordinator also sends a description of the policy to the

 Policy-Based Personalized Context Dissemination for Location-Aware Services 369

ECA Policy Generator which creates an empty policy. The Generator then picks the
right Event Template and adds it to the policy and sends the information to the
Condition Block Generator which returns the condition block back to the Generator.
The ECA Condition Block Generator adds the condition and action block to the
policy and returns it to the CLA Generator which sends to the Coordinator a set with
all the managed objects and policies. The Coordinator interacts with the clients and
has the responsibility of executing the necessary policies to enforce established CLAs.

CLA_#XX_Domai
n

CLA_#XX
Request
_Domain

Activation
_Domain

CLA_Policy

CV_Policy

Request_Po
licy_#XX01

Request_Po
licy_#XX02

Request_Po
licy_#XX03

Request_Po
licy_#XX04

GCO

CIC Access
Point

Client Views

Domain

Policies/
Policy Groups

Other
managed
objects

Shared Objects
Managed Objects

Coordinator

CLA
Generator

ECA
Policy

Generator

Events Repository

Action
Block

Generator

Condition
Block

Generator

Par
am
ete
rs

Parameters

Action Block
Condition Block

Parameters

Policy

C
om
plete

C
LA

O
bj
ec
ts
&

P
ol
ic
ie
s

Stores event
templates

Ev
en
t

Te
m
pl
at
e

Policy Generator

 (a) (b)

Fig. 2. a) CLA Domain with all sub-domains b) Policy Generator archiecture

We can adapt CVs according to current clients’ locations and their predicted motion
paths. Responsible components are located within the Location Tracking and
Prediction Center (fig. 1) and a complete description of this component was presented
in [5]. Accordingly, the steps of adapting CVs are:

1. Create an initial set of CVs based on policies entered by system management.
2. Update a set of existing policies to fit the context access rights presented within

the Client’s Profile (CPs are received during client-provider negotiations).
3. Track/Predict the user’s location/path and update existing CV policies to

reveal/hide context according to the client’s needs and rights, as well as the
availability of contextual sources.

Our system also involves prediction methods for service pre-configuration and
enhancement. Multiple position sensing technologies were incorporated to enhance
current user location estimation. Location is identified through signal strengths
emitted from WLAN access points and RFID readers. The first step consists of
discovering surrounding access points and measuring WLAN signal strengths sent to
mobile devices. The second step improves accuracy by active RFID tagging, where
signal strengths from the RFID reader is measured and transferred to a 2-D map.

WLAN location tracking unit uses NetStumbler to gather information about
available access points and emitted signal strengths. The values are compared with
those stored in the repository to provide a signal strength map. Once the offline
process of information gathering is complete, live user tracking is initiated. Signal
strengths from available access points are compared to those in the repository. Once a
location is estimated, it is stored in the location history repository.

The RFID location tracking unit uses RFID readers and active tags operating at a
frequency of 433.92MHz, giving a range of up to 150 feet. Each reader is responsible

370 Y. Al Ridhawi et al.

for its zone, where it signs the user’s RFID tag in and out as the client moves into and
out of its coverage area. When a client enters a coverage area, the profile is obtained
from the repository and tracking begins. Signal strengths emitted from the RFID
reader are gathered and plotted onto an RFID signal strength map. Those values are
stored in the repository, where they are compared to find the user’s estimated
location. The locations are also stored in the location history repository for future use.
Location Conflict Resolver Center aims at resolving conflicts between the two sets of
location estimates. If the two methods estimate conflicting locations, conflict
detection is triggered to choose the candidate closest to previous location.

Fig. 3. System results with/without RFID and conflict resolution

4 Experimental Results

A prototype of our system was built and results were presented in [2]. Since then, a
testing scenario was conducted at the University of Ottawa to simulate benefits of the
dual location-tracking method. The system was implemented using Java built on the
same server onto which the provider was activated. This was a 2.00 GB, 3.6 GHz
Intel Pentium D station. Clients were installed on 2.0 GHz Intel Pentium Centrino
laptops with an RF Code M100 active RFID tag.Information regarding nearby access
points and received signal strength values were gathered using NetStumbler by all
clients. Once user’s location was determined, this information was displayed on a UI
containing a map of the client’s surrounding area. Since RSS decreases with distance
and presence of obstacles, we enhanced our system through RFIDs.

Location tracking experiments were conducted over three different positions with
low, medium and high RSS values respectively. Tests in the three locations were done
first without utilizing conflict resolution or RFID tags, and then were repeated with the
use of our conflict resolution center and RFID tags. As illustrated in figure 3,
reductions in the overall distance errors between actual user location and the deduced
user location were seen when the dual mode of RSS and RFID were used. Similar
results were experienced in tests at positions 2 and 3.

5 Related Work

CASS [6] is a server-based middleware separating reasoning from context-aware
applications, and provides event-based supply of context to mobile devices. CASS
lacked a description on how context knowledgebase was structured and modeled, and
there was no indication to the syntax and semantics of received context notifications.

Gaia’s [7] distributed middleware permits development of context-aware
applications and acts as a coordinator between software entities and network devices.

 Policy-Based Personalized Context Dissemination for Location-Aware Services 371

Context knowledge within Gaia is presented to applications through a Context File
System (CFS) in the form of directories whose path components represent context
types and values. Gaia is unsuitable for an environment characterized by mobility.
Querying the CFS for context information requires context-aware applications to be
aware of the directory structure and path to the needed context.

Hydrogen [8] provides a distributed solution with a firmware located on each
device to share context knowledge with other devices. However, Hydrogen lacks two
important components: an ontology on which context information is modeled, and a
protocol by which context is shared between context servers located on different
devices. The missing protocol for sharing context between devices is of particular
interest since we provided a negotiation protocol for establishing CLAs. that could
greatly improve Hydrogen architecture, by establishing CLAs between servers located
on each mobile device giving it ability to acquire context outside its limited abilities.

6 Conclusion

The goal of our work was to develop a context-level negotiation protocol to establish
CLAs in context-aware systems. We proposed a tri-layer architecture composed of
context sources, providers, and consumers. The design allowed context-level
negotiations with Clients and CLA enforcement through policy generation. The
system also provided location tracking and prediction components to enhance CLA
negotiation. We believe that the protocol can sufficiently meet location tracking and
prediction requirements. However, we continue to improve on this system and
protocol by adding new options and capabilities as our research progresses.

References

[1] Al Ridhawi, Y., Karmouch, A.: Ontology-Based Context-Level Agreements and Negotiations
Protocol. In: International Conference on Intelligent Environments, USA (2008)

[2] Al Ridhawi, Y., Karmouch, A.: Ontology-Based Negotiation Protocol and Context-Level
Agreements. In: 4th International Conference on IEs, pp. 1–8 (2008)

[3] Al Ridhawi, Y., Harroud, H., Karmouch, A., Agoulmine, N.: Policy Driven Context-
Aware Services in Mobile Environments. In: IIT 2008 International Conference on
Innovations in Information Technology, pp. 558–562 (December 2008)

[4] Damianu, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language.
In: Workshop on Policies for Distributed Systems and Networks, pp. 18–39 (2001)

[5] Al Ridhawi, I., Aloqaily, M., Karmouch, A., Agoulmine, N.: A location-aware user
tracking and prediction system. In: Global Information Infrastructure Symposium, GIIS
2009, June 23-26, pp. 1–8 (2009)

[6] Fahy, P., Clarke, S.: CASS-Middleware for Mobile Context-Aware Applications. In:
Workshop on Context Awareness, MobiSys 2004 (2004)

[7] Roman, M., Hess, C., Cerqueira, R., Anand, R., Campbell, R.H., Nahrstedt, K.: A
Middleware Infrastructure for Active Spaces. IEEE Pervasive Computing, 74–83

[8] Devlic, A., Reichle, R., Wagner, M., Pinheiro, M.K., Vanrompay, Y., Berbers, Y., Valla,
M.: Context Inference of User’s Social Relationships and Distributed Policy Management.
In: Proceedings of IEEE International Conference on Pervasive Computing and
Communications, pp. 1–8 (2009)

	Policy-Based Personalized Context Dissemination
for Location-Aware Services
	Introduction
	Context-Aware System Architecture
	CLA Policy Management
	Experimental Results
	Related Work
	Conclusion
	References

