
Towards Enabling Next Generation Mobile

Mashups

Vikas Agarwal1, Sunil Goyal1, Sumit Mittal1,
Sougata Mukherjea1, John Ponzo2, and Fenil Shah2,�

1 IBM Research - India, New Delhi
{avikas,gsunil,sumittal,smukherj}@in.ibm.com

2 IBM T.J. Watson Research Center, NY, USA
{jponzo,fenils}@us.ibm.com

Abstract. Evolution of Web browser functionality on mobile devices
is the driving force for ‘mobile mashups’, where content rendered on a
device is amalgamated from multiple Web sources. From richness per-
spective, such mashups can be enhanced to incorporate features that
are unique to the mobile setting - (1) native Device features, such as
location and calendar information, camera, Bluetooth, etc. available on
a smart mobile platform, and (2) core Telecom network functionality,
such as SMS and Third Party Call Control, exposed as services in a
converged IP/Web network setup. Although various techniques exist for
creating desktop-based mashups, these are insufficient to utilize a three-
dimensional setting present in the mobile domain - comprising of the
Web, native Device features and Telecom services. In this paper, we de-
scribe middleware support for this purpose, both on the server side deal-
ing with processing and integration of content, as well as on the device
side dealing with rendering, device integration, Web service invocation,
and execution. Moreover, we characterize how various components in this
middleware ensure portability and adaptation of mashups across differ-
ent devices and Telecom protocols. Based on our approach, we provide an
implementation of mashup framework on three popular mobile platforms
- iPhone, Android and Nokia S60, and discuss it’s utility.

1 Introduction

‘Mashups’ are applications created by integrating offerings from multiple Web
sources, and have become very popular in recent years. Further, adoption of
mobile mashups is being driven by the evolution of Web browsers on the mo-
bile device. Most modern smart phones today have browsers that are HTML
and JavaScript standards compliant, and provide a rich, powerful Web browsing
experience to the mobile users. With rapid enhancements in processing power,
memory, display and other features of mobile phones, and with continuous im-
provement in mobile network bandwidth, mobile mashups bear the potential of
being as successful as the desktop ones.

� This author is currently working at Google Inc., USA.

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 13–25, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

14 V. Agarwal et al.

Fig. 1. Overview of a Mobile Mashup

To help developers create rich mobile applications, popular platform vendors
like Nokia, Blackberry and Android expose interfaces for a variety of features
available on the mobile handset, for both data (user’s contacts, calendar, geo-
graphic location, etc.) and functionality (making calls, sending SMSes, using the
camera, etc.) [2]. On similar lines, there is willingness by Telecom operators to
move from a walled-garden model to an open-garden model [12], whereby they
expose core functionalities of Location, Presence, Call Control, etc. as services
to developers. From the perspective of mobile mashups, it is desirable that such
Device and Telecom features are utilized to enhance the entire mashup experi-
ence of a mobile user. For example, location and presence information available
on mobile phones/Telecom can be used to design interesting mashups related
to directory services, workforce management, social networking, etc. Similarly,
camera on the phone can help enrich a retail mashup with the facility to retrieve
product information based on scanning of bar-codes.

Various tools and technologies exist [4,11,18] that help developers create
mashup applications for the desktop. However, these fall short in the context
of a three-dimensional setting present in the mobile domain - native Device fea-
tures, Telecom services and Web-based offerings. In this paper, we start with
our view of a next generation mobile mashup consisting of device side and server
side mashup components, as depicted in Figure 1. The server side mashup ex-
ecutes on a Web server and deals with processing and integration of content
received from each dimension. The device side portion, on the other hand, re-
sides on the browser environment of different platforms, such as iPhone, Android
or Nokia S60, and renders the content received from server. Through client-side
scripts (JavaScript and AJAX), this portion executes Telecom functionality -
SMS, Third Party Call Control, etc., Web offerings - Map information, News,
etc., as well as various features of the device, such as Camera and Bluetooth.
Moreover, this portion also participates actively in a mashup by feeding device
information, such as Location and Calendar, to the server side component for
inclusion in the processing logic.

We argue that in order to enable the above mashup scenario, the following
novel characteristics need to be incorporated -

Mobile Mashups 15

(1) Two-way Mashup Model. In current mashups, the client is responsible
only for rendering the content it receives from the server. However, for mobile
mashups, the device can act as an active component, augmenting a mashup with
its own information and features. In essence, a client1-server architecture for
mashups requires middleware enhancements to provision (a) a two-way flow of
information - from device to server, apart from server to device, and (b) a two-
way mashup support where the device and Telecom features can be used ‘both’
on the server (during processing and content integration) and the client (during
mashup rendering and execution).

(2) Device Integration. On most platforms, APIs for device features are
available in native language (J2ME, C++, Objective C, etc.), while for mashup
development the interfaces are required along the Web programming model, i.e.
JavaScript. Therefore, on a given mobile platform, we first need a bridge that
takes the native APIs and exposes them in a Web mashable form. We emphasize
that such a bridge needs to have three distinct attributes -
(i) support for a bidirectional communication between the mobile browser and
the native APIs, so that a) input objects required for invoking a native feature
can be passed from within the mashup, through the browser, to the underlying
platform, and b) output objects (return values, exceptions) available as a result
of native invocation can be marshaled back to the mashup through the browser.
(ii) provisioning a channel for callbacks, in case result of an API invocation is
not immediately available or possible - for example, periodic proximity alerts. In
essence, events generated in the native context on a mobile platform should be
channeled through appropriate signaling and notification to the invoking browser
context of a mashup.
(iii) handling immense fragmentation in syntax and semantics of various device
features across different platforms - starting from diversity in the ‘name’ of the
interface, to ‘name’, ‘data type’ and ‘ordering’ of attached parameters, to the
differences in the set of ‘exceptions’ thrown by each platform.

(3) Telecom Support. A number of legacy protocols exist in the Telecom
domain, while new standards continue to be drafted and absorbed by different
operators. Therefore, to reduce burden on a mashup developer, we need an ab-
straction layer that lets various Telecom features be invoked without requiring
the developer to know the underlying protocol specifics. Moreover, for a given
feature, this layer should enable a seamless switch among different protocols; es-
pecially required in scenarios where the Telecom networks are gradually evolving
to move from legacy interfaces to standards like Parlay-X [14] and SIP [8].

2 Mobile Mashup Framework

In this section, we describe a framework that enables realization of the mobile
mashup view outlined above. Our framework consists of middleware components,
both on the device side, as well as the server side. We describe these components
next, while characterizing the role played by each component in the mobile
mashup setting.

1 in this case, the device

16 V. Agarwal et al.

2.1 Mobile Device Middleware

As shown in Figure 2, the device side middleware runs on top of existing platform
middleware, and provides an Enhanced Browser Context in which the client
side mashups execute. In essence, the enhanced browser context uses the exist-
ing Browser Runtime available on a platform to render the HTML pages and
to execute associated JavaScript code. It further uses a Native-to-Mashup
Bridge to allow access to device features, such as Camera, Calendar, Con-
tacts, etc., using JavaScript interfaces from within a mashup. As discussed in
the previous section, this bridge provides a bi-directional communication capa-
bility between the browser context and the native APIs (allowing the browser to
invoke native APIs, pass inputs and receive outputs), and also supports passing
of events from native APIs to the browser through JavaScript callbacks. The
bridge can be realized in multiple ways, - 1) through modification of the source
code of an existing browser to allow access to native capabilities via JavaScript,
2) through creation of a plugin for the browser that adds device features with-
out modifying the browser source code, and 3) by embedding a browser runtime
(where it is available as a ‘class’ in the native programming language) within
a native mobile application, and enabling access to native features for mashups
rendered through the embedded runtime. Depending on the specifics of a given
platform, one or more of these techniques could be used.

Hardware Abstraction Layer

Operation System

Middleware

Device Mashup Middleware

S6
0

A
nd

ro
idiP
ho

ne

Enhanced Browser Context

Browser

Runtime

Defragmentation
Layer

Native to Mashup
Bridge

(Camera, Calendar, Bluetooth …)

Mobile
Mashups

B
la

ck
be

rr
y

A
c
c
e
s
s
 C
o
n
tr
o
l
L
a
y
e
r

Hardware Abstraction Layer

Operation System

Middleware

Device Mashup Middleware

S6
0

A
nd

ro
idiP
ho

ne

Enhanced Browser ContextEnhanced Browser Context

Browser

Runtime

Browser

Runtime

Defragmentation
Layer

Native to Mashup
Bridge

(Camera, Calendar, Bluetooth …)

Mobile
Mashups

B
la

ck
be

rr
y

A
c
c
e
s
s
 C
o
n
tr
o
l
L
a
y
e
r

Fig. 2. Middleware Support on Device

Another component of device mashup middleware is the De-fragmentation
Layer. This layer builds on the JavaScript interfaces exposed by Native-to-
Mashup bridge and exposes a consistent set of interfaces across various platforms.
Our generic model for common JavaScript interfaces is -

<interface name> (<arguments 1 ... n>, <callback>, <errorCallback>, <options>)

For instance, consider the following listing that defines a uniform API across An-
droid, iPhone, and Nokia S60 for invoking periodic location updates -

startUpdatesOnTimeChange (timeFilter, callback, errorCallback, options)

Here, semantics of the above API as well as data structures of the parameters
involved, such as timeFilter, are uniform across the platforms. Similarly, up-
dates for location information, encapsulated in a Location object are provided
through a commonly defined callbackmethod, while errors are propagated with
the help of a common errorCallbackmethod. Note that a generic options pa-
rameter is also provided with the interface. Similar to what we argue in one

Mobile Mashups 17

of our earlier works [2], this parameter is optional and can be used to con-
figure platform-specific attributes, such as Criteria in the case of S60, Location
Provider in the case of Android, and accuracy for iPhone. The structure and val-
ues of this parameter are platform dependent, and therefore should be strictly
used only when a developer wishes to fine-tune mashups on a particular platform.
Normally, null value should be used for this parameter, in which case default
values for various attributes would be used on the corresponding platform.

Accessing a device or Telecom feature might have monetary cost associated
to it, such as sending an SMS, making a Call, etc. or mashup might deal with
sensitive personal information stored on the device, for instance Location and
Calendar entries. Therefore, a component that becomes intrinsic to the entire
set-up is the Access Control Layer that performs the task of regulating access
to these features based on user defined policies. More specifically, this component
intercepts each request from within a mashup application for invoking a feature,
and performs appropriate checks to determine whether the desired access is
allowed. These policies take into consideration different factors such as frequency
of access, time of day, user’s current location, etc. to take automatic decisions or
prompt the user for explicit approval. A user should be able to configure various
policies when the mashup is first accessed and refine the same over time.

2.2 Server Side Middleware

As shown in Figure 3, the server side middleware consists of two blocks - 1) a
Telecom block to enable access to Telecom network functionalities, and 2) a
Device block to receive information feeds from mobile devices and to perform
device specific adaptation of mashups.

At the heart of Telecom block is the Protocol Binding component that con-
nects to various Telecom services using the underlying network protocols, such as
SIP, Parlay-X and CORBA. Through these binding components, the framework
removes the burden - from mashup developer - of knowing Telecom specifics,
for instance session management for SIP, broker object for CORBA and SOAP
headers for Parlay-X. Note that once the bindings are in place, the Telecom
block provides mashable interfaces for different services in various programming

Telecom Service Delivery Platform / 3rd Party Server

Telecom

Services

(Presence,

Location,

Call Control …)

SIP

Parlay-X

CORBA Telecom Block

Java/C/C++

Servlets/PHP

JavaScript

Device

Listener

Device

Adapter

iPhone

Android

Blackberry

Nokia S60

Native JS Libraries

Mobile
Mashups

Device Block

Mashup Middleware on Server

Protocol
Binding

Telecom Service Delivery Platform / 3rd Party Server

Telecom

Services

(Presence,

Location,

Call Control …)

SIP

Parlay-X

CORBA Telecom Block

Java/C/C++

Servlets/PHP

JavaScript

Device

Listener

Device

Listener

Device

Adapter

Device

Adapter

iPhone

Android

Blackberry

Nokia S60

Native JS Libraries

Mobile
Mashups

Device Block

Mashup Middleware on Server

Protocol
Binding

Fig. 3. Middleware Support on Server

18 V. Agarwal et al.

languages - Java, C, C++, etc. While these interfaces can be directly used in
a server side mashup, REST based interfaces are also exposed so that Telecom
services can be invoked from client side mashups using JavaScript.

Binding stubs also enable seamless switching between different protocols. Con-
sider a scenario where network location information can be fetched using both
SIP and Parlay-X. In SIP, this information is obtained by subscribing to a Pres-
ence Server for the presence information, and parsing the returned document.
Parlay-X, on the other hand, requires the request to be made using a SOAP en-
velope, and returns the location information encapsulated again under SOAP. In
our framework, these disparate steps are wrapped under generic interfaces and
corresponding stubs for various Telecom protocols are provided. Properties and
attributes required for each protocol, such as service port information, tolerable
delay, accuracy, etc. are configured using an options parameter similar to the
device middleware model.

The device block consists of a Device Listener component that receives data
feeds from a device side mashup and provides this information to the server side
mashup for processing and integration. As mentioned earlier, these feeds enable
the mobile device to participate actively in a mashup for server side content gen-
eration. Another component in this block is the Device Adapter that performs
device specific adaptation of mashups. For example, appropriate JavaScript li-
braries (containing code to access device features) need to be included in a
mashup page depending on the device where the mashup is being rendered.
Also, the look and feel of a mashup is adjusted based on the device properties,
such as screen size, resolution, etc. by including appropriate CSS files. Further,
any other device specific adaptation, for example, altering the layout of a mashup
to resemble native look-and-feel, is done using this component.

As shown in Figure 3, the server side middleware can be hosted either on the
service delivery platform (SDP) of a Telecom operator or on a third party server.
In the first scenario, Telecom features only from a single operator are available. In
the second setup, however, multiple operators can make their offerings available,
which makes it imperative for the Telecom block to provide uniform APIs across
different providers for enabling easy portability of mashups.

3 Implementation

In this section, we describe an implementation of our mobile mashup framework
consisting of device-side and server-side middleware components.

3.1 Device Middleware

On all the three platforms we consider in this paper - Android, iPhone, and
Nokia S60 - it is possible to embed a browser engine inside a native application
that allows rendering of Web content developed using artifacts like HTML and
JavaScript. We extend this embedded browser model to develop mashup bridges
for native device capabilities on each platform.

Mobile Mashups 19

TheAndroid platform provides a WebView class in Java for creating a browser
instance inside a native Android application. Further, this class provides a generic
API ‘addJavaScriptInterface()’ that allows addition of Java objects within a
WebView browser instance, and lets them be treated as pure JavaScript entities.
In essence, any such object now becomes a ‘connection’ between the browser con-
text and the native Android platform; we use this facility as the basis to expose
JavaScript functions for various device features. An issue that required resolution
pertained to callbacks, since a JavaScript ‘connection’ object in thebrowser context
lacks the ability to provide a callback function for the underlying Java object. To
overcome this, we utilize the ‘loadUrl()’ method in the WebView class using which
a JavaScript function, qualified as a URL, can be invoked from a Java object. Also,
since only string arguments can be passed to the called JavaScript function using
this technique, all parameters are marshaled as string serialized JSON objects.

The iPhone andNokia S60 platforms providemechanism for attaching listen-
ers to the embedded browser for receiving events corresponding to changes inURL,
title and status text of the browser.Weuse thismechanism for accessing nativeAPIs
through JavaScript on these platforms. In essence, we first define listeners that lis-
ten for changes in URL, title or status text of the embedded browser. Specifically,
on iPhone we attached listener for URL change event, whereas on Nokia S60 we
intercepted the title change event. Now, whenever we need to call a native API
from JavaScript we change the URL/title to <mashupDomain>?Id=<id>&Name

=<deviceFeature>&Values=<values>. Here, Id is the request identifier, Name is the
native feature being called and Values contains the parameters needed to invoke
the feature. Execution of this code is trapped by above listeners, where the unique
mashupDomainqualifier helps to deduce that a native service is being accessed. The
listener extracts the values of the parameter and calls the specified native API.
Moreover, these platforms provide amechanism similar to that onAndroid for call-
ing a JavaScript function from the native code - iPhone provides a method called
stringByEvaluatingJavaScriptFromString() in the UIWebView class, whereas S60
provides a method called setUrl() in the Browser class. We use these methods to
send the response back to JavaScript from the called native API.

Using the mashup bridges, we exposed various device features such as Loca-
tion, Contacts, Camera, etc. through JavaScript interfaces within an embedded
browser context on each platform. We then provided a de-fragmentation layer
that absorbs differences in syntax and semantics of these interfaces across different
platforms. Towards this, we build upon our previous work [2], and handle hetero-
geneity of mobile features using a three-phased process - 1) semantic phase, where
we fix the structure of the interface, in terms of the method name, associated pa-
rameters (including their name, ordering and dimensions), as well as the return
value, 2) syntactic phase, in which we remove differences in data structures of var-
ious objects, and 3) binding phase, which contains implementation of the common
interface on top of the original platform offering, and also provides mechanisms
to fine-tune an interface using platform specific attributes and properties. Due to
lack of space, we omit further details here, and direct the interested reader to [2]
for more information.

20 V. Agarwal et al.

Finally, we designed an access control layer [1] that allows a user to configure
access policies for various device and Telecom features. Currently, the implemen-
tation is available for Android platform, and allows policies defined around three
basic tenets - domain (determined by URL) of the mashup in consideration, con-
text of the user (determined through a combination of user’s current location and
the current time), and frequency of access (for example, how often can a feature
be accessed). In essence, whenever a feature is invoked in a mashup, depending
upon the policies configured for that mashup, the invocation is either allowed or
denied.We are working towardsmaking this access control layer available on other
platforms as well.

3.2 Server Middleware

ForTelecomsupport, we first defined commonAPIs for various services in Javaand
then created protocol bindings for different Telecom protocols. In particular, we
took two real-life Telecom products - IBMTelecomWeb Services Server (TWSS)2

and IBMWebSphere Presence Server (WPS)3, and built stubs for calling SMS, Lo-
cation, Presence and Third-Party Call Control (3PCC) services. TWSS allows ac-
cess to network services through standards-based Parlay-XWeb Services, whereas
WPS provides real-time presence information via the SIP protocol. Apart from
this, we also created stubs for various network services exposed in CORBA by a
Telecom network simulator - Open API Solutions (OAS)4 version 2. As discussed
earlier, these Protocol Binding stubs allow easy switching of Telecom protocols
without requiring any changes in a mashup application.

For mashable client side APIs, we created JavaScript interfaces for Parlay-X
based functionality bydefiningXML fragments containing the desired SOAPhead-
ers - sending the XML as AJAX requests to the server, and parsing the returned
XML fragments that contained SOAP responses. However, for SIP based Pres-
ence service, this procedure does not work since SIP messages are exchanged over
TCP/UDP. A JavaScript interface in this case was created by first implementing a
servlet that talks to the Presence Server using SIP over UDP messages. The Pres-
ence JavaScript interface interacts with this servlet to fetch presence-related infor-
mation. Interfaces for CORBA based OAS services were similarly developed using
the servlet model.

For the device block implementation, we develop three JavaScript files contain-
ing code for invoking features of eachdevice and threeCSSfiles to tailor themashup
UI for the corresponding platform, one each for Android, iPhone and Nokia S60.
The Device Adapter component is implemented as a servlet that detects the de-
vice platform using ‘user-agent’ field in the request header and adds appropriate
JavaScript and CSS files. An option is also added to selectively disable certain de-
vice features that are not available - an instance in case is the SMS service which is
not exposed in iPhone. The Device Listener component was also implemented as a
servlet where information from the device can be submitted using the servletPost

2 http://www-306.ibm.com/software/pervasive/serviceserver/
3 www.ibm.com/software/pervasive/presenceserver/
4 www.openapisolutions.com

http://www-306.ibm.com/software/pervasive/serviceserver/

Mobile Mashups 21

method. The device data is stored by the listener using a 3-tuple<mobile phone#,
device data, time-stamp> and made available to various mashup applications.

3.3 Integration withMashup Environments

We took two environments for creating mashup applications, Eclipse5 - a popular
open source meta application framework, and Lotus Mashups [11] - an integrated
suite from IBM for mashing widgets and data feeds frommultiple sources, and en-
hanced them to enable mashing of device and Telecom features in addition to web
offerings. ForEclipse, theseAPIswere integrated via the ‘SnippetContributorPlu-
gin’ that provides drag-n-drop of APIs in the web editor. In Lotus Mashups, on the
other hand, the APIs were made available in the required ‘iWidget’ format. We do
not provide integration details here due to lack of space, and direct the interested
readers to [3] for more information.

4 Discussion

We have developed several mashups that use Device and Telecom features enabled
byour framework;Figure 4presents snapshots of one such socialnetworkingmashup.
As shown, the mashup brings together various offerings from the device (Camera
to take pictures, Contact List to obtain a user’s friends list, Location Updates to
get GPS location periodically), Telecom network (Call and SMS to communicate
with friends, Presence Services to get their presence data), and the Web (Twitter
to publish and fetch tweets of friends, Facebook for photo and profiles,Google Maps
for visual display of friends on a map).

Note that a single application was developed, which looks and behaves exactly
the same acrossAndroid, iPhone andNokia S60 platforms. The common interfaces
provided by the framework hide semantic and syntactic heterogeneities of device
features, thereby allowing a single code base and ease of programming. Moreover,
when a new version of a platform introduces changes in device APIs, it is absorbed
in our framework, alleviating the need of application maintenance ‘as platforms
evolve’. For example, APIs for accessing contact information were changed in An-
droid platformmoving from release 1.5 to 2.1 - these changes were accounted for in
the mashup bridge implementation of the corresponding Android releases. Similar
arguments apply to usage of various Telecom features.

The core of our device middleware is the bi-directional communication between
themobile browser and the native platform.Figure 5shows the overhead associated
with this communication for eachplatform.Here,we took three device features and
measured the time for - 1) invoking a native device feature from
JavaScript code, and 2) callback from native code to JavaScript. Each number re-
ported is an average of ten execution traces. As the figure shows, the overhead of
device middleware is very small, and indicates a fast transfer between the embed-
ded browser context and the corresponding native feature. There are variations,

5 www.eclipse.org

22 V. Agarwal et al.

(a) (b) (c)

Fig. 4. Social Networking Mashup on (a) Android (b) iPhone (c) Nokia S60

0

20

40

60

80

100

120

6 4 10 13 22 35 91 117 92

6 7.8 16.8 67 33 97 35 21 21

getContacts
S60

getLocation
S60

locnUpdates
S60

getContacts
Android

getLocation
Android

locnUpdates
Android

getContacts
iPhone

getLocation
iPhone

locnUpdates
iPhone

API Invocation
Callback

T
im

e
(in

 m
s)

APIs on different platforms

0

20

40

60

80

100

120

0

20

40

60

80

100

120

6 4 10 13 22 35 91 117 92

6 7.8 16.8 67 33 97 35 21 21

getContacts
S60

getLocation
S60

locnUpdates
S60

getContacts
S60

getContacts
S60

getLocation
S60

getLocation
S60

locnUpdates
S60

locnUpdates
S60

getContacts
Android

getLocation
Android

locnUpdates
Android

getContacts
Android

getContacts
Android

getLocation
Android

getLocation
Android

locnUpdates
Android

locnUpdates
Android

getContacts
iPhone

getLocation
iPhone

locnUpdates
iPhone

getContacts
iPhone

getContacts
iPhone

getLocation
iPhone

getLocation
iPhone

locnUpdates
iPhone

locnUpdates
iPhone

API Invocation
Callback

T
im

e
(in

 m
s)

APIs on different platforms

Fig. 5. Performance of Device Middleware

however, across the platforms and across the APIs on a given platform, due to dif-
ferences in JavaScript processing engines, event passing and handling mechanisms
in the embedded browser, de-fragmentation logic, etc.

On the server side, we did a similar performance evaluation of various compo-
nents - device adapter, device listener, and Telecom block. The overhead of these
components too was found to be small - of the order of a few milliseconds. From
a broad perspective, considering the time a typical application spends in UI in-
teraction, business logic, etc., we conclude that the cost of using our middleware
components is negligible as compared to the total mashup runtime.

Mobile Mashups 23

5 RelatedWork

There are several professional tools in the industry that facilitate the creation of
Webbasedmashups.Examples areYahooPipes [18], and IBMLotusMashups [11].
Academic research on mashup tools has also been undertaken. For instance, [10]
presents an environment for developing spreadsheet-basedWeb mashups. None of
theseworks, however, establish components for integrating device andTelecom fea-
tures in a mobile mashup. [6] presents a mobile mashup platform that integrates
data from Web-based services on the server side and utilizes users’ context
information from sensors to adapt the mashup at the client side. However, this
framework is far from a comprehensive approach required for incorporating the
three-dimensional mobile setting that we outline in this paper. Also, it currently
runs on certain Nokia devices only.

Most smart-phone platforms todayprovide nativeAPIs for several services, such
as GPS location, address book, calendar and camera. We find that APIs for com-
mon services in even J2ME-basedplatforms have become fragmented on platforms
that support new hybrid Java runtimes, such as Android. Fragmentation is further
exacerbated on non-Java based platforms like iPhone, which uses the Objective-C
language and theCocoa user interface library.Various standardization efforts, such
as OMTPBondi [13], attempt to overcome this fragmentation. In [2], we presented
a three-tiered model for absorbing heterogeneity in syntax, semantics and imple-
mentation of interfaces corresponding to device features acrossmultiple platforms.
Similarly, PhoneGap [15] is an effort towards enabling uniform JavaScript access
to native APIs. From the perspective of our framework,we could use either of these
approaches as building blocks in our device middleware stack.

Session Initiation Protocol (SIP) is a standard being widely adopted byTelecom
operators to expose their core functionalities - voice service, SMS service,CallCon-
trol, etc. - using SIP. JSR-289 [9] has been proposed by Sun andEricsson to enhance
existing SIPServlet specification and support development of composed applica-
tions involving both HTTP and SIP servlets. Web21C [17] from British Telecom
is aWeb 2.0 based service aggregation environment that allows developers to inte-
grate core Telecom functionality with otherWeb services into a single application.
On the other hand, [5] gives a broad overview of existing approaches for enabling
a unified Telecom and Web services composition. However, both fall short in de-
scribing a generic model for supporting mashable Telecom interfaces. In [12], we
introduced SewNet which provides an abstraction model for encapsulating invo-
cation, coordination and enrichment of Telecom functionalities; but did not deal
with mobile mashups.

One of themajor challenges in the area ofmobile applications is the huge privacy
and security implication around sensitive user information like location, contacts
and calendar entries [7]. PeopleFinder [16] is a location sharing application that
gives users flexibility to create rules with varying complexity for configuring pri-
vacy settings around sharing their location. In this paper, we have created a sim-
ilar policy framework, but differ on two counts. Firstly, we move beyond location
and cover other sensitive information as well. Secondly, we apply the policies to a
generic mobile mashup setting, and not to a specific application.

24 V. Agarwal et al.

6 Conclusion and FutureWork

Evolution of mobile browsers is driving the adoption of mashups that are accessed
through the mobile device. In this paper, we proposed a framework for creating
next generation mobile mashups that amalgamate data and offerings from three
dimensions: Device features, Telecom network, and Web accessible services. To-
wards this, we described middleware components, both on the server side as well
as the device side, to provide support formashing device andTelecom features.Our
framework allows portability across different device platforms and different Tele-
com protocols. We demonstrated the utility of our framework using three popular
platforms - Nokia S60, Android and iPhone.

In the future, we would like to extend our framework to cover more platforms,
Device features and Telecom services, as well as enhance the existing security and
privacy considerations.Moreover,we wish to integrate our frameworkwith several
mashup andmobile development environments. Finally, we intend to conduct user
studies thatwill help us gain valuable feedback from the developer communitywith
respect to further refinements and extensions.

References

1. Adappa, S., Agarwal, V., Goyal, S., Kumaraguru, P., Mittal, S.: User Controllable
Security and Privacy for Mobile Mashups. Technical Report RI10011, IBMResearch
(October 2010)

2. Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S.: MobiVine: A Framework to Han-
dle Fragmentation of Platform Interfaces for Mobile Applications. In: Proceedings of
10th International Middleware Conference, Illinois, USA (November 2009)

3. Agarwal, V., Goyal, S., Mittal, S., Mukherjea, S., Ponzo, J., Shah, F.: A Middleware
Framework for Mashing Device and Telecom Features with the Web. Technical Re-
port RI10009, IBM Research (July 2010)

4. BEA AquaLogic Family of Tools,
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/

content/products/aqualogic/

5. Bond, G., Cheung, E., Fikouras, I., Levenshteyn, R.: Unified Telecom and Web Ser-
vices Composition: Problem Definition and Future Directions. In: Proceedings of the
3rd International Conference onPrinciples, Systems andApplications of IPTelecom-
munications, Georgia (2009)

6. Brodt, A., Nicklas, D.: The TELAR Mobile Mashup Platform for Nokia Internet
Tablets. In: Proceedings of 11th International Conference on Extending Database
Technology (EDBT), Nantes, France (March 2008)

7. Hypponen, M.: Malware Goes Mobile. Scientific American (November 2006)
8. Rosenberg, J., Schulzrinne, H., et al.: SIP: Session Initiation Protocol (2002),

http://www.rfc-editor.org/rfc/rfc3261.txt

9. JSR 289, http://jcp.org/en/jsr/detail?id=289

10. Kongdenfha, W., Benatallah, B., Vayssiere, J., Saint-Paul, R., Casati, F.: Rapid De-
velopment of Spreadsheet-basedWebMashups. In: Proceedings of 18th International
World Wide Conference (WWW), Madrid, Spain (April 2009)

11. Mashups, L.: http://www-01.ibm.com/software/lotus/products/mashups/

http://www.bea.com/framework.jsp?CNT=index.htm\&FP=/content/products/aqualogic/
http://www.bea.com/framework.jsp?CNT=index.htm\&FP=/content/products/aqualogic/
http://www.rfc-editor.org/rfc/rfc3261.txt
http://jcp.org/en/jsr/detail?id=289
http://www-01.ibm.com/software/lotus/products/mashups/

Mobile Mashups 25

12. Mittal, S., Chakraborty,D., Goyal, S.,Mukherjea, S.: SewNet -AFramework for Cre-
ating Services Utilizing Telecom Functionality. In: Proceedings of 17th International
World Wide Conference, Beijing, China (April 2008)

13. OMTP Bondi, http://bondi.omtp.org/
14. Open Service Access (OSA); Parlay-X Web Services; Part 1: Common. 3GPP TS

29.199-01
15. PhoneGap, http://phonegap.com/
16. Sadeh, N., Hong, J., Cranor, L., Fette, I., Kelley, P., Prabaker, M., Rao, J.: Under-

standing and Capturing People’s Privacy Policies in aMobile Social Networking Ap-
plication. Journal of Personal and Ubiquitous Computing 13(6) (August 2009)

17. Web 21C SDK, http://web21c.bt.com/
18. Yahoo Pipes, http://pipes.yahoo.com/pipes/

http://bondi.omtp.org/
http://phonegap.com/
http://web21c.bt.com/
http://pipes.yahoo.com/pipes/

	Towards Enabling Next Generation Mobile Mashups
	Introduction
	Mobile Mashup Framework
	Mobile Device Middleware
	Server Side Middleware

	Implementation
	Device Middleware
	Server Middleware
	Integration with Mashup Environments

	Discussion
	Related Work
	Conclusion and Future Work
	References

