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Abstract. Many vehicles rely on the Global Positioning System (GPS)
to compute their locations. The inaccuracy of GPS devices means
sometimes vehicles believe they are located in different lanes or roads
altogether. Vehicular Ad Hoc Networks (VANETs) allow vehicles to com-
municate with each other using wireless means and thus connect them
in a very dynamic wireless network. The algorithm VANET LOCation
Improve (VLOCI), proposed in this work, uses VANETs and distance
measurements taken by each vehicle to improve the location estimates
provided by all GPS devices. VLOCI is shown to perform efficient when
erroneous distance measurements are present in the environment/
computations.

Keywords: vehicular ad hoc networks, localization, GPS, distance mea-
surements, location improve/refinement.

1 Introduction

VANETs are types of mobile networks—where the nodes are vehicles. The vehi-
cles are equipped with wireless communication devices allowing them to trans-
mit and share real-time information. With this information vehicles and drivers
will have up-to-date information regarding the state of traffic, allowing them
to avoid congested and other abnormally affected areas. VANETs are dynamic
with vehicles travelling at speeds up to, and in excess of, 100 km/h. This leads
to ever-changing wireless connections between vehicles resulting in some dense
(on some city roads) and sparse (on country roads) areas which change over time
(some city roads are dense only during certain hours of the day).

Many vehicles are nowadays equipped with GPS devices and it is quite possible
that most, if not all, vehicles will have these devices as well in the future. GPS
devices are accurate to within 10 metres [1]—more than the length of most
family cars—resulting in situations where the GPS device incorrectly places
its vehicles on the wrong road. Obtaining more accurate coordinates (position
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estimates) allows the vehicles to construct more precise models of their local
traffic conditions.

With increased accuracy and better models, accidents can be prevented. Multi-
car ‘pile-ups’ can be avoided if vehicles know immediately that other vehicles
further in front are stopping suddenly or skidding. Although some sensors are
already providing information about the vehicles directly in front and around
the vehicle—VANETs can be used to provide information about vehicles fur-
ther away. For example, when a vehicle detects a dangerous pot hole or other
situation on the road, the exact co-ordinates of the problematic area can be im-
mediately passed on to nearby vehicles. VANETs can be used to increase driver
safety on the roads, but accurate coordinates is required for all vehicles—some
drivers may incorrectly assume an accident or other incident is occurring on the
wrong road.

This paper will look at using VANETs to improve on the position estimates
provided by the GPS devices. Every vehicle can provide their position estimate
to all vehicles within broadcasting range. It is also assumed every vehicle can
measure the distance between them and other vehicles using already existing
sensors/equipments [2,3]. When all vehicles combine the collected information,
the algorithm LOCI can be used to adjust the GPS estimated position into a
more accurate one.

An overview of previous work found in literature is presented in Section 2. Sec-
tion 3 introduces the notation and defines the problem addressed in this paper.
The method used to solve the problem is described and the VLOCI algorithm
is presented in Section 4. Section 5 describes the simulations performed to test
the devised algorithm. An discussion of the simulation results and concluding
remarks are presented in Section 6 and 7, respectively.

2 Related Work

There does not seem to be much work in literature with the idea of improving
location estimates in VANETs. There are algorithms designed to take advantage
of some nodes that have GPS, or some other positioning, functionality to allow
all nodes to compute their location.

Priyantha et al. proposed a technique called anchor-free localization (AFL)
of providing localization to wireless sensor networks [4]. Their algorithm is de-
centralised where each node starts with a random initial coordinate assignment,
and modifies its location estimates based on local distance measurements. The
only information each node collects is the relative distance to its neighbouring
nodes. With this information, the nodes construct a graph with the edges at
the measured length/weight. A mass-spring based optimization is used to ad-
just the edge lengths of the graph. The edge lengths are adjusted based on the
difference between the measured distances between neighbouring nodes and the
corresponding computed distances in the constructed graphs.

Barani and Fathy [5] looked at the problem where not all vehicles are equipped
with GPS devices or cannot receive signals from the GPS satellites. In their
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approach, the vehicles first attempt to find three neighbours within one-hop
distance. If there is only one or two neighbours within one-hop, then distance
information from neighbours within two-hop distance is used. They found when
more than 40% of vehicles are equipped with GPS, most of the vehicles in the
network will have at least three GPS-equipped neighbours. From these neigh-
bours, methods such as trilateration [6] can be used to compute their location.
Here the problem is not to improve GPS coordinates, but to provide localization
to those unable to use the GPS.

Liu and Lin [7] improved location accuracy using the least-squares technique.
Their technique is applied to cellular networks, where base transceiver stations
are established and within communication range. Results obtained in field tri-
als are compared to the co-ordinates computed by GPS devices. Consequently,
these tests assume the GPS devices provide sufficient accuracy. The mean error
produced, using their technique, is within the range of 200 metres: extremely
large for use in VANETs.

Xu et al. [8,9] have developed an algorithm for use in wireless sensor net-
works where some of the sensors are located indoors—preventing detection of
the signals from the GPS satellites. In their approach, only a subset of nodes are
GPS-equipped, while other anchor nodes also know their true locations. The re-
maining nodes are able to compute their location based on distances between the
GPS nodes and the GPS satellites, and distances between the GPS nodes and
anchor nodes; as a result, not every node uses GPS to estimate their location.
The DV-Hop algorithm is used by the remaining nodes for localization. Other
techniques also exist that utilize the DV-Hop algorithm, where its accuracy is
significantly proportional to the network density. Therefore, this cannot be used
in VANETs where the network density continuously changes. Their tests results
show the location error for the non GPS nodes achieving the same range as the
nodes which use the GPS. However their algorithm does not improve further on
this location error.

Some alternative solutions [10,11,12] are applied in situations where a subset
of nodes, usually termed anchor nodes or base stations, have knowledge of their
own positions. The remaining nodes then communicate with the anchor nodes
to determine their locations as they have no other method to estimate their lo-
cations. Similarly, Benslimane [13] addresses the situation where not all vehicles
are equipped with GPS devices, or some cannot obtain data from their GPS
devices and need to collaborate with the GPS-equipped vehicles to determine
their locations.

No work have so far been found in literature where all nodes are equipped
with GPS devices and the problem addressed is finding ways to improve these
estimates.

3 Problem Statement

The network in question is a VANET, thus the nodes are in fact vehicles. The
set of all vehicles will be denoted V . The number of vehicles in the network is
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N = |V |. Given any particular vehicle ni ∈ V , any other vehicle that ni can send
and receive messages from are deemed its neighbour. The set of all neighbours
of ni is denoted nbrs(ni) and the number of neighbours of ni is mi = |nbrs(ni)|.

Each vehicle ni is located at pi = (xi, yi) (true location) and, due to inaccu-
rate measurements, believes it is located at p̂i = (x̂i, ŷi) (computed/estimated
location). The location error for ni is the distance between its true and computed
location δi = ‖pi − p̂i‖. It is assumed that every vehicle is able to take distance
measurements between them and other vehicles. The true distance between ve-
hicles ni and nj is denoted di,j , while the distance measured by ni between itself

and vehicle nj is given as ̂di,j = ε · di,j , for some ε ∈ R. Since each vehicle is

assumed to have their own measuring device, it is also assumed that ̂di,j �= ̂dj,i
because ̂di,j is the distance measured by ni while ̂dj,i is the distance measured
by nj .

A metric used to gauge the performance of the localisation algorithm of a
network is the network location error (Definition 1). For each vehicle ni, its
location error is already defined as δi. The network location error is the average
of every vehicle’s location error.

Definition 1 (Location Error). Given a network of vehicles V , where each
vehicle ni believes it is located at p̂i, while its true location is pi. The location
error of the network (EV ) is defined as

EV =
1

n

∑

ni∈V

δi =
1

n

∑

ni∈V

‖pi − p̂i‖

Using the definition of network location error, the problem of localization can
be formulated as shown in Definition 2.

Definition 2 (Localization). Given a network of vehicles V , the goal of lo-
calization is for every vehicle ni ∈ V , located at pi = (xi, yi), to compute its
position p̂i = (x′

i, y
′
i) such that the network location error is minimised.

The problem of Location Improvement (Definition 3) is addressed in this pa-
per. The aim is to find a method of adjusting every vehicle’s current estimated
position p̂i such that the location error is reduced.

Definition 3 (Location Improvement). Let V be a network of vehicles. As-
sume that every vehicle ni has computed its own estimated position p̂i. The prob-
lem of Location Improvement is to find a function f which modifies some or
all of the vehicle’s estimated position such that the location error of the modified
network has minimised.

4 Method and Algorithm

4.1 Network Topology

In many situations, also addressed in literature, the topology of the network
in question is modelled as a random topology with little or no restrictions on



VLOCI: Location Refinement in VANETs 153
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Fig. 1. The network topology within a single lane of a road. Node nα has three neigh-
bours {a, b, nβ} and node nβ has four neighbours {nα, b, c, d}.

the nodes’ locations: a non-realistic issue in VANETs sometimes. For example,
within a lane of a road, the local network topology is already known and all
vehicles in the same lane are lined up one behind another. Figure 1 depicts the
‘lane topology.’

In this paper the vehicles are assumed to be travelling in one lane and in the
same direction. In this model a co-ordinate scheme is used where yi = yj for all
ni, nj ∈ V . Each vehicle ni ∈ V has an estimate of their position p̂i and this
information is periodically sent to its neighbours. Using their distance-measuring
device, each node measures the relative distance ̂di,j .

Road-side infrastructures (permanent, static nodes) can be used to provide
vehicles the necessary linear transformation required to convert the local co-
ordinates into their global counterparts.

4.2 Accuracy of Distance Measurements

The accuracy of the distance measurement devices refers to the values of ̂di,j in
the simulation and how far they differ from true distances di,j . Two techniques
used to measure distance are time-of-arrival and received signal strength [14].
The accuracy of these techniques can be modelled such that as the distance to
be measured increases, the accuracy of the measurements taken also decreases
[15,16]. This is how distance measuring is modelled in this paper. The statement

‘the accuracy is set to α metres’ means that ̂di,j = E ·di,j for all ni, nj ∈ V , where
E ∼ N(1, α2); N(1, α2) refers to the Gaussian distribution with mean 1 and
standard deviation α. Thus, if a vehicle is di,j meters away, then roughly 68% of

the distance measurements ̂di,j lie within the range (1−α)di,j < ̂di,j < (1+α)di,j .
Using this model, vehicles further away have a larger probability of producing

more erroneous data. The further away a neighbouring vehicle is (i.e. the larger
the value of di,j), the larger the error range of the measured distance. Measuring
the distance to vehicles within close range is more accurate than measuring the
distance to those further away.

4.3 Neighbourhood Size

Since the network is modelled as a single lane, the size of the network is straight-
forward. There are N vehicles, two are at the end points while the rest form the
line. This leads to the definition of a vehicle’s set of neighbours. Every vehicle
has at most 2M neighbours (for some M ∈ Z) they can communicate with; the
M closest vehicles in front and the M vehicles in behind. That is, M defines the
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maximum number of neighbours in either direction. Figure 1 gives an example
when M = 2. Here, every vehicle has at most 4 neighbours. Vehicle nβ has the
maximum of four neighbours—two in front and two behind—while vehicle nα

only has three.
In this paper, the statement ‘the half-neighbourhood size is M ’ means every

vehicle can communicate with up to 2M vehicles.

4.4 Computing Position Estimates

Each vehicle receives messages from its neighbours containing their estimated
positions. Additionally, each vehicle can measure the distance between itself and
its neighbours. To counter the variance in erroneous distance measurements,
multiple measurements can be taken for which the average can be used as the
final distance measurement.

If vehicles nj and ni are neighbours, then ni can obtain nj ’s estimated position

p̂j and the measured distance ̂di,j . Using these two pieces of information, vehicle
ni can calculate its position assuming that nj ’s estimated position is correct, i.e.

p̂ji = (x̂j
i , ŷi) = (x̂j ± ̂di,j , ŷj) (1)

remembering that since in this model yi = yj , the vehicles can assume ŷi = ŷj =
0. Converting these co-ordinates into global co-ordinates requires a simple linear
transformation. For generality define p̂ii = p̂i and ̂di,i = 0. The reason for the
plus/minus term in Equation 1 is that vehicle nj may be relatively in front or

behind vehicle ni and so the value of x̂j
i should be adjusted accordingly.

Now given the set of neighbours nbrs(ni), vehicle ni can construct the set
{p̂ji |nj ∈ {ni} ∪ nbrs(ni)}. With this set of co-ordinates, an average can be
computed to calculate a new estimate for p̂i. A weighted average function w :
V → R is defined in this work to estimate x̂′

i as follows:

x̂′
i =

∑

{ni}∪nbrs(ni)
w(nk) · x̂k

i
∑

{ni}∪nbrs(ni)
w(nk)

(2)

This value becomes the new estimated x co-ordinate for vehicle ni. Figure 2
shows graphically how an average estimate is used to compute the new estimated
position from the cluster of points.

p̂1 p̂2p̂1i p̂i p̂2i

p̂′i

Fig. 2. The cluster of points from the computed set {p̂ii, p̂1i , p̂2i , . . . , p̂mi
i }
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This weighted average position becomes the new estimated position for ve-
hicle ni, and this is the coordinate transmitted to its neighbours in the next
turn/iteration.

4.5 The Weight Function

To compute the weighted average, a weight function w needs to be defined. As
the measured distances become more inaccurate the further away neighbouring
vehicles are, it was decided the weights should be influenced by the measured
distance ̂di,j . For example, vehicles should put more weight to the estimated
position constructed from data obtained from a vehicle that is 20 metres away,
compared to a vehicle that is 400 metres away since there is more error involved
in the calculations involving the latter case.

The weight function must therefore be inversely proportional to the measured
distance. Two functions were considered: (1) inverse functions of the form g(x) =

A/xB and (2) inverse exponential functions of the form f(x) = Ae−x2/B. In both

cases, x = ̂di,j . Thus the weight function takes the distance ̂di,j as the parameter
and gives more weight to vehicles closer to ni. The latter form f was chosen over
the alternate inverse function because results have shown g generally decreases
too quickly and better results were achieved using a function of the form of f .

4.6 VLOCI Algorithm Overview

The concepts explained in the previous section are used to design a location-
improvement algorithm that is both (1) distributed as multiple vehicles collabo-
rate to achieve the goal of improving every vehicle’s position estimates, and (2)
scalable as the number of vehicles able to participate is not restricted.

An iteration, performed by vehicle ni is the process of receiving messages
from its neighbours then updating its estimated position. The number of itera-
tions hence determines the number of times every vehicle updates its estimated
position as shown in Algorithm 3

1. Transmit a message containing the current estimated position (p̂i).
2. Wait to receive messages from neighbouring vehicles. The received messages

should contain the estimated position of the vehicle that sent the message.
3. For each vehicle a message was received from, measure the distance to it. The

vehicle that is taking the measurements should take multiple measurements
(D times) and use the average as the final measured distance. The value of
D is based on the technique used to obtain distance measurements. Smaller
values of D can be used with more accurate distance measuring devices.

4. Vehicle ni now knows the values of {p̂j, ̂di,j} for each of its neighbours.
Equation 1 is then used to compute possible co-ordinates it could be located
at. A set of these possible position estimates {p̂ii, p̂1i , p̂2i , . . . , p̂mi

i } is then
constructed.

5. The weighted average of the set of possible position estimates (Equation 2)
is calculated. This final co-ordinate becomes the new estimated position.
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while iterationCount < I do
transmitMessage(p̂i) M contains the received messages

// We have each nj’s computed position. Now measure the distance from

them.

// Wait for λ messages

wait(M) foreach Mj ∈ M do
// Use avg of D measurements.

̂di,j = 1
D

∑D

k=1
takeDistMeas(nj)

if x̂i < x̂j then

p̂ji = (x̂j
i , ŷi) = (x̂j − ̂di,j , 0)

else

p̂ji = (x̂j
i , ŷi) = (x̂j + ̂di,j , 0)

end

end
// Now compute the weighted average of all the probable co-ordinates

of ni.

x̂′
i =

∑

w(nk)·̂xk
i

∑

w(nk)
ŷ′
i = 0

end

Fig. 3. Algorithm VLOCI: updating position estimates (vehicle ni)

4.7 Skewed Positions

Additional scenarios were devised where the initial estimated positions were pre-
determined. A vehicle ni is said to be skewed to the left, if x̂i < xi and skewed to
the right when x̂i > xi. Figure 4 gives a examples of this concept. The number
of vehicles initially skewed to the left is γ. The remaining N − γ vehicles are
then positioned skewed to the right.

(a) Skewed to the
right

(b) Skewed to the
left

Fig. 4. Example of cars “skewed to one side”

4.8 Metric for Measuring Performance of VLOCI

The metric used to gauge the performance of VLOCI is the location error (Defini-
tion 1). The location error is the average distance between a vehicle’s computed
position and its actual position at the current point in time. The smaller the
location error, the better the computed model of the vehicle’s locations.
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Assessing how the computed positions of all the vehicles would improve over
time was the goal of the tests. The vehicles were simulated to receive GPS
measurements only once and at the beginning. Afterwards, only VLOCI was
used to further improve the position estimates.

5 Simulation Results

Simulations were performed to assess the effect of two variants in VLOCI: the ac-
curacy of the distance measuring devices α (Section 4.2) and the neighbourhood
size 2M (Section 4.3). The simulations were run with the parameters shown in
Table 1. The network itself was static and the vehicles were set to be stationary.
The weight function coefficients were chosen empirically. When vehicles were ap-
proximately 50m away the error in distance measurements were not detrimental
to VLOCI’s performance. The coefficients of the weight function were chosen to
reflect this. It was the aim of the simulations to find how the neighbourhood size
affects the rate of improvement of VLOCI and for what values of α does VLOCI
still perform adequately.

Table 1. The simulation parameters used

Parameter Value

Network size (N) 10
Half-neighbourhood size (M) 1–10
Distance measurement accuracy (α) 0–30%
No. distance measurements taken (D) 5
Distance between vehicles 20 metres
Weight function f coefficients A = 100,

B = 550
No. iterations (I) 10
No. tests per scenario 10 000
No. Vehicles skewed to left (γ) 0,1,2,3,4,5

5.1 Results

Figure 5a shows how the neighbourhood size effects VLOCI’s performance, for
half-neighbourhood sizes (M) of 1–5. To give a clearer picture of how the different
curves compare after 7 iterations, Figure 5b shows the same graph for iterations
8–10 inclusive. The distance measurement error (α) was set to zero for these
simulations to model errors only arising from the initial GPS measurements.

When the half-neighbourhood size ranges from 5–10, Figure 6 shows how
the location error reduces, for iterations 8–10 inclusive. Again α = 0. The best
results occurred when the half-neighbourhood size is set to M = 7. This is the
value M was fixed at when testing VLOCI’s ability to handle errors in distance
measurements.
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Fig. 5. The effects of local neighbourhood size on location error. Half-neighbourhood
size 1–5. α = 0.
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Fig. 6. The effects of local neighbourhood size on location error. Half-neighbourhood
size 5–10. α = 0. Magnified for iterations 8–10.

The graphs in Figure 7 show how VLOCI performs when errors are incorpo-
rated in distance measurements. For the value of α > 0.20 the location error
began to increase after the fifth iteration. When α < 0.20 the location error still
decreases during the first 10 iterations.

One of the reasons explaining why the location error begins to increase after
some time is due to how the vehicles are skewed over time. Eventually too many
cars believe they are located on the same side of their actual position. That is,
too many cars are skewed on the same side. Figure 8 shows that once all the
vehicles are on the same side (skewed to the right) the location error no longer
improves. Here α = 0.

The effectiveness of VLOCI when α = 0.1 and 0.20 and with multiple cars
skewed to one side is shown in figures 9a and 9b respectively.

6 Discussion and Analysis

The results show a definite improvement on the location error. Figures 5a, 5b
and 6 show that with accurate distance measurements (i.e. α = 0) VLOCI
does indeed improve the average location error. When α = 0 and the half-
neighbourhood size is set to M = 7, after 10 iterations the average location error
reaches a value of 2.38 meters—an improvement of 52%. With the accuracy set
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Fig. 7. Effects of the accuracy of distance measurements on location error. Half-
neighbourhood size 7.
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Fig. 8. Effects of skewness in initial positions. Half-neighbourhood size 7. α = 0.

to α = 0.20, the average location error improves by 41%, before increasing from
the fifth iteration. This is still acceptable as there is an overall improvement on
the location error after 10 iterations and due to the mobile nature of VANETs,
the vehicles sometimes cannot perform time-consuming operations restricting
the number of iterations possible.

Figure 7 shows that VLOCI still improves the location error when inaccurate
distance measurements are introduced. For values of α < 0.20 the location error,
after 10 iterations, has improved to values less than 2.7 metres. If VLOCI is set to
iterate 10 times, this value of α is an upper bound on the average location error.

Figures 8, 9a and 9b shows how VLOCI is affected when the initial position
estimates of the vehicles, relative to their actual positions, is set to have a portion
of vehicles skewed to one side (Section 4.7). When all the vehicles are skewed
to one side, the location error does not noticeably increase or decrease within
the first 10 iterations. This is because while the vehicles have adjusted their
estimated positions such that the distance between them is consistent with the
true distance, they are still skewed to the same side. There needs to be at least
one vehicle skewed to the other side to ‘pull’ the other vehicles from one side
of their true position to the other. As expected, the best results occur when
approximately half the vehicles are skewed to one side (and the other half skewed
to the other side). Even when only one vehicle is skewed to one side, the average
location error still improves.
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Fig. 9. Effects of skewness in initial positions. Half-neighbourhood size 7. α = 0.1.

7 Conclusions

The VLOCI algorithm presented in this paper is shown to improve every vehi-
cle’s initial position estimate. Assuming the vehicles are connected via a VANET
and are equipped with a distance measuring device, along with a GPS device
to provide the initial position estimate, VLOCI is still able to improve locations
estimation when erroneous distance measurements are included in the computa-
tions. The effect of skewness is also shown in this paper. Only in the situation
where all vehicles are skewed to one side does VLOCI not improve the average
location error. For the remaining situations, VLOCI still reduces the average
location error.
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12. Lazos, L., Poovendran, R., Čapkun, S.: ROPE: robust position estimation in wire-
less sensor networks. In: Fourth International Symposium on Information Process-
ing in Sensor Networks, IPSN 2005, pp. 324–331 (April 2005)

13. Benslimane, A.: Localization in vehicular ad hoc networks. In: Proceedings of Sys-
tems Communications, pp. 19–25 (August 2005)

14. Boukerche, A.: Algorithms and Protocols for Wireless, Mobile Ad Hoc Networks.
Wiley-IEEE Press (2008)

15. Bellusci, G., Janssen, G.J.M., Yan, J., Tiberius, C.C.J.M.: Modeling distance and
bandwidth dependency of TOA-based UWB ranging error for positioning. Research
Letters in Communications, 1–4 (January 2009)

16. Powell, S., Shim, J. (eds.): Wireless Technology: Applications, Management, and
Security. Springer, Heidelberg (2009)


	VLOCI: Using Distance Measurements to Improve the Accuracy of Location Coordinates in GPS-Equipped VANETs
	Introduction
	Related Work
	Problem Statement
	Method and Algorithm
	Network Topology
	Accuracy of Distance Measurements
	Neighbourhood Size
	Computing Position Estimates
	The Weight Function
	VLOCI Algorithm Overview
	Skewed Positions
	Metric for Measuring Performance of VLOCI

	Simulation Results
	Results

	Discussion and Analysis
	Conclusions
	References




