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Abstract. The paper describes algorithms required to enable the crowd sourcing 
of indoor building maps, i.e., where GPS is not available. Nevertheless to 
enable crowd sourcing we use the 3-axis accelerometers and the 3-axis 
magnetometers available in many smart phones and the piezometer in a Nike 
running shoe. Volunteers carry the sensors while walking around in buildings, 
and use some application on their smart phone to send the data to a mapping 
server. We present the algorithms to obtain walking trajectories from the data 
by dead reckoning, and to estimate indoor maps with multiple walking 
trajectories.  
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1   Introduction 

Open map systems (e.g., openstreetmap.org, waze.com) are viable today due to the 
rise of crowd sourcing. Open map systems combine two major sources of data: GIS 
databases and motion trajectories contributed by the crowd. Any person with a GPS 
receiver/logger on an increasing number of consumer devices can record his/her own 
trajectory and send it in to help an open map system. However, this approach does not 
work when the GPS signal is poor or not available, for example, within buildings. 
Thus the objective of this paper is to explore ways to crowd source indoor maps 
without relying on GPS. 

The literature shows how to navigate and map indoor environments with relative 
and absolute positioning technologies other than GPS. For example, [1] describes the 
use of laser to scan buildings from outside through windows and map the interior of 
buildings. The quality of the map depends on obstructions due to the windows. The 
work in [2] uses radio frequency (RF) ranging to measure the distance from a sensor 
worn by a person to multiple base stations, and then triangulate to localize the person, 
in a manner similar to GPS. The accuracy of the positioning depends on the severity 
of the multi-path effect. These mapping methods require the installation of a bases 
station infrastructure. 

In the relative positioning literature, maps are built using inertial navigation 
systems (INS) and imaging sensors such as vision, lidar, sonar, or radar. A robot 
equipped with such sensors navigates through the environment to be mapped without 
any absolute position measurement [3, 4, 5, 6]. [7] describes the use of a compass and 
an accelerometer to locate personnel within buildings. The work is similar to ours, but 
requires the compass to be fixed with known orientation. 



126 Y. Xuan, R. Sengupta, and Y. Fallah 

We focus on indoor mapping using smart phones (iPhone or G-Phone) and Nike 
shoes. This paper describes the algorithms developed to crowd source indoor maps.  
We envisage people carrying these phones and wearing piezometer equipped shoes 
installing an application and communicating data to the mapping server. The shoe 
automatically networks with the phone. Our algorithms utilize the 3-axis 
accelerometers and 3-axis magnetometers on the smart phone. These are fused with 
the piezometer in the Nike running shoe. We do not need prior information about the 
orientation of the sensors as in [7]. 

The rest of the paper is organized as below. Section 2 introduces the sensors 
involved; section 3 presents the methodology to produce walking trajectories with the 
sensors; section 4 describes how floor map is estimated; section 5 summarizes and 
discusses the result. 

2   Sensors 

The 3-axis accelerometer and magnetometer used in this study are integrated in a G-
Phone. The G-Phone coordinate is defined as in Fig. 1a: +x direction extends along the 
short edge of the screen to the right; +y direction extends along the long edge of the 
screen to the front; +z direction extends perpendicularly out of the screen. The G-
Phone measures its own accelerations and the magnetic intensity along the three axes 
at a frequency of about 46Hz. The bias in the magnetic intensity measurements is well 
documented [8, 9], and can be calibrated by simply rotating the G-Phone along its 
three axes. 

  

(a)    (b) 

Fig. 1. The devices. (a) G-Phone with its three axes; (b) Nike sensor 

The piezometer is mounted under the inner sole of the Nike shoe, as shown in  
Fig. 1b. The sensor measures the amount of time that the foot spends on the ground, 
and estimate pace based on the contact time [10]. The information is then sent to and 
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recorded in an iPod or iPhone. The iPhone/G-Phone mix is only to facilitate data 
collection as a proof of concept. We envision that for a real application, data will be 
collected from a single platform. 

During our study, volunteers walk around within the same building multiple times, 
carrying the G-Phone and wearing the Nike+ sensor. The logged data are used to map 
the building. We make the following assumptions to create an experiment simple 
enough for a proof of concept: (1) the map is restricted to one floor; (2) the hallways 
are straight, and are parallel or perpendicular to each other; (3) the orientation of the 
G-Phone is unknown (i.e., we do not know how people carry it during data 
collection), but is fixed or changes slowly with respect to the trunk of the volunteer 
(for example, as happens when carried in a chest pocket or backpack). 

3   Navigation 

The methodology for navigation is described in three steps. First, the orientation of 
the G-Phone is estimated with the measurements of the gravity and the magnetic 
north. Second, the walking direction is estimated with some human walking patterns. 
Finally, walking speed is estimated with the piezoelectric accelerometer. Then dead 
reckoning is applied to produce the walking trajectories. 

3.1   Estimation of Phone Orientation  

Besides the G-Phone coordinates, we define the world coordinate, with +E/+N/+U 
direction pointing to magnetic east/magnetic north/vertically up. Thus the orientation 
of the G-Phone can be described by a transformation matrix 

X Y Z

X Y Z

X Y Z

e e e

n n n

u u u

=
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

T , 

where unit vectors along the +E, +N, and +U direction can be expressed as 

[ ]T

X Y Z
e e e=e , [ ]T

X Y Z
n n n=n , and [ ]T

X Y Z
u u u=u  respectively in 

the G-Phone coordinate. With this definition, T =T T I . Also, if a vector can be 

expressed as [ ]T

G X Y Z
V V V=V  in the G-Phone coordinate and as 

[ ]T

W E N U
V V V=V  in the world coordinate, then 

W G
=V TV  and T

G W
=V T V . 

To estimate the orientation of the G-Phone, some prior knowledge is exploited: the 
gravity points into the –U direction; the magnetic north lie on the plane formed by the 
–U and +N directions. So we want to estimate T , with the measurements of gravity 
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where ×  denotes cross product.  
Note that the magnetic north is not the true north, and the magnetic declination 

angle (the direction of magnetic north with respect to the true north) can be looked up 
by location and by date [11].  

3.2   Estimation of Walking Direction 

Accelerometers have been widely used to predict human moving behavior [12, 13, 
14]. Here, the accelerations along the 3 axes are used to predict the walking direction 
of the volunteer, with the knowledge of two human walking patterns. These walking 
patterns have been identified previously by researchers, but they have not been used 
to predict walking direction. 

Define the volunteer coordinate: +AP (for anteroposterior) direction points to the 
front, +ML (for mediolateral) direction points to the left, and +V (for vertical) 
direction points up. We find that the acceleration along the ML axis always has the 
smallest root mean square (RMS) compared with the acceleration along the V/AP 
axis. For example, in one of our walking samples with speed 1.3 m/s, the RMS of the 
acceleration along the AP, ML, and V axes are 1.0 m/s2, 0.6 m/s2, and 2.4 m/s2 
respectively. Figure 4 of [15] confirms our finding, although the purpose of [15] is to 
estimate walking speed rather than to use this pattern to obtain the direction of 
walking. Since the average acceleration for motion with uniform speed is theoretically 
zero, the RMS can be interpreted as the intensity of motion. Thus the physical 
interpretation of this pattern is that there is less motion in the ML direction compared 
with AP and V directions.  

Making use of this pattern, we carry out a principal component analysis (PCA) on 
(part of) the time series of the 3-D acceleration. PCA decomposes the 3-D 
acceleration into three principal components, so that the first principal component 
captures as much variance as possible, and the second principal component captures 
as much of the remaining variance as possible. Thus the third principal component is 

the estimate of the ML axis ( ML ). Among the first and second principal components, 

the one closer to gravity is the estimate of the V axis ( V ), and the other is the 

estimate of the AP axis ( AP ). 

Now we have identified the axes AP , ML , and V  of the volunteer coordinate. 
But these axes are bidirectional and we need to decide whether the walking direction 

is in the AP+  direction or the AP−  direction. 
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We further find out that during walking the up and down movement along the V 
axis and the acceleration and deceleration along the AP axis are correlated. The 
acceleration along the AP axis is followed by the up movement along the V axis, then 
the deceleration along the AP axis, and then the down movement along the V axis. 
The process is shown with sample walking data in Fig. 2. [16] confirmed this pattern 
with similar experiments, though the purpose of their study is to estimate the energy 
related to walking, not to predict walking direction. 

 

(a)     (b) 

Fig. 2. Walking pattern: correlated V-axis component and AP-axis component of acceleration. 
(a) V-axis and AP-axis components vs. time; (b) V-axis component vs. AP-axis component. 

Using this pattern, one can easily determine whether the walking direction is in the 

AP+  direction or AP−  direction, based on whether the gravity lies in the V+  or 

V−  direction. The estimated walking direction is then converted from the G-Phone 
coordinate into the world coordinate with the estimated transformation matrix T  from 
Section 3.1. 

3.3   Estimation of Walking Speed  

The walking speed is estimated by measuring the contact time of foot on the ground 
with the piezoelectric accelerometer [10]. We do not have access to the contact time 
to calibrate the relationship between the contact time and the walking speed. Thus we 
use the calibration software available on the iPod or iPhone. The predicted speeds 
from the software are then calibrated against the true walking speeds measured from a 
treadmill with preset speeds. The result of the calibration is shown in Fig. 3. There are 
still errors in the speed estimation, and these errors are later diminished by 
aggregating multiple measurements. 

The walking speed can also be estimated through the RMS of the acceleration 
(from the G-Phone). The rationale is that the RMS of the acceleration, which is an  
 



130 Y. Xuan, R. Sengupta, and Y. Fallah 

 

 

Fig. 3. Calibration of the speed predicted by iPod software against true speed 

indicator of motion intensity, is correlated with walking speed. There have been 
studies like this [15, 17, 18]. But the motion intensity also depends on where the 
accelerometer (or the G-Phone) is located. Thus the relationship between the RMS of  
the acceleration and the walking speed will be different depending on where the G-
Phone is located. This factor can introduce inaccuracy to the measurement of walking 
speed, and has been partially corrected by the proposed method here. 

3.4   Post-processing  

After obtaining the walking direction and walking speed in sections 3.2 and 3.3 
respectively, dead reckoning is applied to obtain the walking trajectories as post-
processing. During post-processing, we correct the trajectories, to assure that the 
hallways are straight and any two hallways are parallel or perpendicular.  

The walking direction is represented by the azimuth angles, with 0, π/2, π, and 3π/2 
indicating true north, east, south, and west. Fig. 4a shows the azimuth angle versus 
time for a sample walking trajectory. First, we discretize the azimuth angle  
by clustering, with the assumption that hallways are straight. The center of the 
clusters are shown in Fig. 4a, while the discretized azimuth angle versus time is shown 
in Fig. 4b.  

Note that the discretized azimuth angles can be neither parallel nor perpendicular 
due to distortion of the local magnetic field. To account for this problem with the 
assumption that any two hallways are either parallel or perpendicular, we define an 
independent orientation parameter to be the orientation of an arbitrary hallway. Then 
the orientation of all the hallways can be expressed by this orientation parameter plus 
or minus integer times of π/2. Thus we use the measured azimuth angles to estimate  
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(a)     (b) 

 

(c) 

Fig. 4. Adjustment of azimuth angle. (a) clustering of azimuth angle; (b) discretized azimuth 
angle; (c) correction for distortion of the local magnetic field. 

this parameter, and then express the orientation of all the hallways with the estimate 
of this orientation parameter. This adjustment is shown in Fig. 4c. If however, the 
magnetic distortion can be well corrected, then this assumption of parallel or 
perpendicular hallway is not needed. 

A volunteer walked the hallways of the 5th floor of Davis Hall at the University of 
California, Berkeley, holding/wearing the aforementioned sensors. During walking, 
the G-Phone is held still with respect to the trunk of the volunteer, but the orientation 
of G-Phone is not used in the study. Shown in Fig. 5a is the center of the hallways, 
which is comprised of two side-by-side rectangles. The aforementioned method is 
used to obtain walking trajectories (we have no information about the walls though), 
two of which are shown in Fig. 5b and Fig. 5c. With discrete azimuth angles, it is easy 
to find out when the volunteer takes a turn. Note that the north shown in the figures is 
the true north, after correcting for the magnetic declination angle.  
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(a) 

 

 (b)     (c) 

Fig. 5. True floor map and walking trajectories of the 5th floor of Davis Hall, UC Berkeley. (a) 
true floor map; (b) one sample walking trajectory; (c) another sample walking trajectory. 

4   Estimation of Floor Map  

One way to model a floor map is to represent each leg of the hallways with a length 
parameter and an orientation parameter. Not all parameters are independent. Since the 
hallways form loops, not all length parameters are independent. For example, only 
three length parameters are needed to determine the floor map shown in Fig. 5a. Also, 
all the hallways are either parallel or perpendicular, thus there only needs to be one 
parameter for orientation. We use the orientation of the northbound hallway. 

Here we propose a method to estimate the dimension of floor maps with multiple 
walking trajectories, to diminish the inaccuracies in the estimation of walking speed. 
We assume the walking always starts and ends at the same location, e.g., the elevators 
or the entrance of buildings. To integrate the floor map into a geo-coded outside map, 
this location needs to be known in some global reference, e.g., from GPS or Wi-Fi 
hotspots. 
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(a)    (b) 

Fig. 6. Imaginary floor map.  
(a) with only one loop; (b) with two loops (map of 5th floor of Davis Hall). 

The floor map is divided into loops (Fig. 6a shows one such loop). Each leg of a 
loop is represented with unknown length parameters Di (i=1 to n, n is the number of 
legs) and known azimuth angles ai (i=1 to n). Let us assume that with trajectory j 
(from 1 to mi, leg i is measured mi times for each trajectory), the measurements of Di 
is Lij. Then the estimation of Di’s can be formulated as a constrained optimization 
problem so that the total sum of squared errors is minimized: 

( )2

1 1

1 1

{ *} arg min

. . cos( ) 0, sin( ) 0

i
mn

i i ij

i j

n n

i i i i

i i

D D L

s t D a D a

= =

= =

= −

= =

∑∑

∑ ∑
.

 
Singularity problem may arise with quadratic optimization when the number of 
parameters is huge. But this is unlikely to happen because the number of parameters 
in this application is generally much less than the number of measurements. 

For our example of the 5th floor of Davis Hall, as shown in Fig. 6b, it turns out that 
the sample mean is the best estimate for Di, due to its simple geometry: 
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Fig. 7a – Fig. 7c show how the estimates of D1, D2, and D3 converge to their true 
values with increasing number of walking samples. With just six walking samples, the 
length parameters can be estimated with a relative standard error of 3%. 
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(a)     (b) 

 

(c)     (d) 

Fig. 7. Estimation of the length and orientation parameters vs. number of walking samples. (a) 
estimation of D1; (b) estimation of D2; (c) estimation of D3; (d) estimation of the orientation of 
the northbound hallway. 

Similarly, the orientation parameter is estimated with the measured azimuth angles 
as described in the previous section. The estimate of the orientation of the northbound 
hallway is shown in Fig. 7d. With six walking samples, the orientation parameter can 
be estimated with a standard error of 0.074 radian (about 4 degrees).  

With just six walking samples, the estimated floor map has 
1

D = 26.75m, 
2

D = 

26.58m, 
3

D = 20.02m. The estimated orientation of the northbound hallway is -

0.3538 radian (about -20.3 degrees). The estimates are comparable with the true floor 
map with D1 = 26.51m, D2 = 26.51m, D3 = 19.35m, and the orientation of the 
northbound hallway -0.2934 radian (about -16.8 degrees). The estimated and true 
floor maps are shown together in Fig. 8. 



 Crowd Sourcing Indoor Maps with Mobile Sensors 135 

 

Fig. 8. Estimated vs. true floor map of the 5th floor of Davis Hall, UC Berkeley 

5   Discussion and Conclusion 

A successful project to crowd source indoor maps includes at least the following 
problems: the relative mapping, the global mapping, and the incentive problem. The 
relative mapping problem is to make a map with the correct proportions and 
orientation. This problem is the focus of the paper. The global mapping problem 
locates the relatively correct map in a common coordinate system such as the GPS 
Universal Transverse Mercator (UTM) system. We intend to address this problem 
next by using GPS readings at the entrances and exits of buildings (trajectory starting 
and ending point) and Wi-Fi hotspot readings. The incentive problem is about how to 
motivate the crowd to collect walking data and send them to a mapping server. 
Waze.com does an excellent job on this problem. 

The contribution of this paper is a solution to the relative mapping problem. We 
proposed a methodology to estimate the lengths and orientations of the hallways. We 
then validate it by showing that we are able to estimate a floor map accurately with 
just a few walking samples. We compute the map for one floor requiring the correct 
estimation of three lengths and one orientation. The length parameters are estimated 
with a relative standard error of 3%, and the orientation parameter is estimated with a 
standard error of 0.074 radian (about 4 degrees), with six walking samples. The 
methodology should be generally applicable to other floors as long as the lengths and 
orientations of hallways can be estimated correctly. We expect the difference from 
floor to floor to lie in the number of samples required to obtain a correct map.  

As future work, the proposed method needs to be tested on more than just one 
floor. Also, our study is restricted to identify hallways within buildings. They are 
relatively easy and not a lot of samples are needed. Looking forward, there are also 
open space and stairs within buildings, which are hard to identify, these are the cases 
when “crowd sourcing” will truly be needed. 
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