
Safe Execution of Dynamically Loaded Code

on Mobile Phones

Glen Pink, Simon Gerber, Michael Fry, Judy Kay,
Bob Kummerfeld, and Rainer Wasinger

University of Sydney, Australia
{gpin7031,sger6218,Michael.Fry,Judy.Kay,Bob.Kummerfeld,

Rainer.Wasinger}@sydney.edu.au

Abstract. Mobile phones are personal devices, and as such there is an
increasing need for personalised, context-aware applications. This paper
describes DCEF (Dynamic Code Execution Framework), a framework
which allows applications to securely execute dynamically loaded code,
providing new functionality such as client-side personalisation. DCEF en-
sures the user’s personal information remains safe while executing code
from potentially untrusted sources. Our contributions are: the abstract
design of DCEF; an evaluation of the security of our design; the im-
plementation of DCEF; a demonstration that runtime performance is
acceptable and validation of DCEF by using it to create an application
which provides personalised information delivery about cultural heritage
and museum sites.

Keywords: Client-side user modelling, security frameworks, personalised
mobile applications.

1 Introduction

Mobile phones have become important personal devices. There were over 4.1
billion mobiles worldwide in 2009 [13], with smart phones making up 5%. This
is predicted to rise to anywhere from 23% by 2013 (Juniper)1 to 37% by 2012
(Gartner)2. This suggests a future where many users could benefit from the
ability to easily download third party applications.

However, this can be risky because the developers of an application may have
malicious intent, or write ‘misbehaving code’ that unintentionally damages the
phone. This creates a tension between exploiting the value of smart phone ap-
plications and the risk of exposing users to misbehaving or malicious code. One
attempt to reducing this risk is the app store model ; third-party providers can
only release code vetted by the app store provider, who ensures that it can be

1 Press Release: Smartphones to Account for 23% of All New Mobile Phones by 2013,
as Application Stores Help Drive Demand, According to Juniper Research: http://
juniperresearch.com/viewpressrelease.php?pr=131

2 Gartner Says PC Vendors Eyeing Booming Smartphone Market:
http://www.gartner.com/it/page.jsp?id=1215932

P. Sénac, M. Ott, and A. Seneviratne (Eds.): MobiQuitous 2010, LNICST 73, pp. 1–12, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

http://juniperresearch.com/viewpressrelease.php?pr=131
http://juniperresearch.com/viewpressrelease.php?pr=131
http://www.gartner.com/it/page.jsp?id=1215932


2 G. Pink et al.

trusted. Our work aims to support a more dynamic model for application de-
livery, allowing phones to safely download and execute dynamic code with no
additional risk of misbehaving code.

A significant driver for this requirement is personalisation. To date, person-
alised services on mobile phones have predominantly used server-side personali-
sation, storing the individual’s user-model on a central server. This is in part due
to the limited storage and power of older phones. The improved capabilities of
smart phones can support client-side personalisation, making use of potentially
private information, such as the user’s preferences, recent activity and current
context, without allowing the data to leave the phone. We illustrate our vision
with the following scenario:

Alice installs the MuseumGuide application from an app store on her smart
phone. It immediately asks if it may access her age, education level and interests.
It assures her that it keeps these on her phone and does not release them. When
she visits a new museum, she can load a specific guide for that site. So arriving
at the Nicholson Museum, she confidently downloads their tour and receives a
personalised experience, tailored to her particular interests.

This scenario begins with a trusted application, the MuseumGuide, being
downloaded from an app store. Note that it gives the user control over what per-
sonal information they allow it to use. After installation, our framework enables
Alice (via the MuseumGuide) to download arbitrary code at any new tourist site,
such as the Nicholson Museum. The code is provided by a third party, in this
case the museum, as opposed to being shipped with the MuseumGuide. We call
these dynamic third-party applications phonelets. Alice’s phone can dynamically
load phonelets without her needing to take any action. Importantly, phonelets
cannot access Alice’s private data, corrupt or release that information.

This paper presents DCEF, our Dynamic Code Execution Framework. It en-
ables a mobile phone to dynamically load code but it prevents that code from
doing damage. The code is permitted to access, under controlled conditions,
private data on the device so that it can personalise the user experience.

The next section describes DCEF and its implementation. We then present a
qualitative evaluation of its security, an empirical evaluation of its performance
and demonstrate its use with a low-fidelity prototype. We then review related
work and conclude with a summary of our contributions.

2 The Framework and Its Implementation

DCEF is a generalised framework that can support a broad class of trusted
applications and associated phonelets. This section discusses the design goals
and implementation of the framework.

2.1 Android

DCEF was developed for the Android platform primarily due to the open and
accessible nature of the framework. Android applications have two core com-
ponents: Activities (user interface screens) and Services (background workers).



Safe Execution of Dynamically Loaded Code on Mobile Phones 3

Activities and Services can be started via asynchronous messages called Intents.
Activities can directly communicate with Services via Android’s Inter-Process
Communication [IPC] mechanism3. This isolation of applications and processes,
along with Android permissions, effectively creates a sandbox within which each
application operates. By default, no Android application can perform any oper-
ation that affects any other application, the OS, or the user4. Each application
runs as a unique user and can only read and write to their own allocated memory.
However, applications can explicitly mark their files as globally accessible and
users can allow applications to access more sophisticated phone functionality.
This access is provided through the use of Android permissions.

The permissions that an application requires, such as the ability to make
phone calls, are defined by the developer when writing the application. When the
application is installed the user is informed of which permissions it requires and
must decide whether to proceed with the installation. Any dynamically loaded
code executed by an application exists within its sandbox and will inherit all of its
permissions. It will be able to read and write any file, and access any phone fea-
tures accessible to the loading application. If the loading application has no An-
droid permissions then there is little risk. However, useful applications will want
some access to phone functionality. The trade-off is that they become vulnerable
to misbehaving code. At worst, access to the “android.permission.INTERNET”
permission would allow dynamic code full access to the Internet, creating major
vulnerabilities. Hence we need to separate the permissions that dynamic code is
given from the permissions of the application that is loading it. This was one of
the primary design goals of our framework.

2.2 Architecture

The DCEF has four components:

1. Third-party applications which request code to be downloaded and executed.
2. The application which dynamically loads the code and executes it (Code

Execution Service).
3. The application which downloads and stores code for dynamic execution

(Download Service).
4. Third party web server or other location where the dynamic code to be

loaded is hosted.

These components communicate using Android’s IPC mechanism, except for 3
and 4 which communicate with each other via standard sockets. We now de-
scribe these components in the order they are invoked. This is shown visually in
Figure 1.

The user must first install an application, obtained from a trusted third party.
This application will provide a personalised service to the user via dynamically

3 Android Developer, Designing a remote interface using aidl:
http://developer.android.com/guide/developing/tools/aidl.html

4 Android Developer, Security and Permissions:
http://developer.android.com/guide/topics/security/security.html

http://developer.android.com/guide/developing/tools/aidl.html
http://developer.android.com/guide/topics/security/security.html


4 G. Pink et al.

Fig. 1. Framework architecture

loaded code. The application will be obtained by an established method such
as an app store. The application will require certain Android permissions, e.g.
access to phone sensors, files, profile data, etc. The user is asked explicitly to
grant these permissions when the application is installed.

We refer to this application as a ‘stub’ because, when executed, it acquires and
executes dynamic code to realise its functionality. A URL defines the location
of the dynamic code. The code resides as a JAR file on a web server and is
downloaded using HTTP. Therefore, the application must acquire the download
URL. This could be achieved, for example, by having the user scan a QR code.
The application also obtains any on-phone data needed for the service. Step 1 in
Figure 1 shows the URL and data being passed to the Code Execution Service
[CES] via Android IPC.

The CES is the key component of the system. It manages the loading and
execution of code and provides an interface for the third party applications.
Importantly, the CES has no permissions, sandboxing potentially misbehaving
code. However, in order to download code, we require the ‘Internet’ permission.
To achieve this, the CES invokes the Download Service (Step 2 in Figure 1),
passing it the URL of the code to download.

The Download Service exposes an interface via the standard Android IPC
mechanism. This interface exposes two methods. The first downloads a Jar from
a given URL, and the second returns a list of available Jars and dynamically
loadable classes. Downloaded jars are stored in the Download Service’s private
data directory. This Jar is deliberately made world readable so it can be accessed
by the CES, as shown by Steps 3-5 in Figure 1. The Download Service requires
the Android ‘Internet’ permission to perform its task. Hence the Download Ser-
vice exists as a separate application from the CES. We must also protect the
dynamically loaded code from being modified. Since the Jars are only writable
by the Download Service itself, this requirement is already met.



Safe Execution of Dynamically Loaded Code on Mobile Phones 5

Finally, the CES loads the code dynamically in a separate thread and executes
it using the data provided by the third party application (Step 6). The thread
is monitored for attacks such as denial-of-service (described below). The result
of the code execution is then returned to the third party application (Step 7).

The interaction between the Download Service and the CES provides a mech-
anism for allowing the stub to execute dynamic code on the device while pre-
venting misbehaving code from damaging the phone or leaking data.

3 Evaluation

Securing the system against misbehaving code is our highest priority, so we first
present a security analysis. We then report measures of system performance and
describe a demonstrator application.

3.1 Security

Fundamental to securing an application is the Principle of Least Privilege [10].
Every dynamically loaded piece of code should have access to just the function-
ality it needs and that the user allows. Significant permissions for protecting user
data are those which allow user data to be transferred off the device. On the
Android platform, these are CALL PHONE, CALL PRIVILEGED, SEND SMS
and INTERNET, the last being critical. If it is granted, any number of sockets
can be opened to send or receive data across the Internet. These are not the only
permissions that can be used maliciously. Any permission that allows access to
any phone component can be used maliciously, e.g. for a denial of service attack.

Accordingly, when designing DCEF, we gave dynamic code no Android per-
missions except for those required to communicate with calling applications.
This minimises the effect the code can have on the device. We created a sand-
box, the CES, in which dynamic code runs. However, one element of extended
functionality can still be used by dynamic code, indirect communication with
other processes. This is addressed in the third of the conditions set out below.

The following is a set of four conditions which, if met, allow us to reasonably
conclude that DCEF is secure against misbehaving code. We provide our justi-
fication for choosing these requirements and explain how our framework meets
the requirements.

Dynamically loaded code may only interact with the phone via DCEF:
This is achieved by sandboxing the executing code. We prevent all access to the
phone’s data and restrict access to all functionality that would require Android
permissions.

Since CES has no permissions, the dynamically loaded code has no permis-
sions. This protects most of the phone from manipulation. The only application
it can supply data to is the DownloadService, which has no other functionality.
It cannot affect the data of any other application. Dynamically loaded code can
write to globally writable locations, such as an SD card or any file an application
chooses to create as ‘world writable’, but this is the case with any application.



6 G. Pink et al.

This requirement prevents access to data on the phone or removable storage.
It also prevents direct access to all phone functionality, but not indirect access
via other processes. Nor does it prevent Intents from being fired. This is discussed
below.

Dynamically loaded code must not be able to interact with other
dynamic code: Since multiple pieces of dynamic code can be executed con-
currently by the CES, they must not be allowed to interact with each other or
they could potentially corrupt data or collect information they are not allowed
to access. Processes are prevented from interacting with each other by Android.
Dynamically loaded code cannot overwrite the private data used by other dy-
namically loaded code files as it is executed within CES. This is because code
storage is controlled by the Download Service and dynamically loaded code does
not have permission to store data there. As a result, when designing applica-
tions that use DCEF, any persistence of data should be provided by the ‘stub’
application as any dynamic code can overwrite data stored by the CES.

This requirement restricts direct and indirect access to code loaded dynami-
cally. This still leaves direct and indirect access to processes in memory.

Dynamically loaded code must not be able to access the memory of
other processes: We must prevent direct access to other processes, otherwise
dynamic code could simply escalate its privileges by accessing another process
with more permissions (and of course corrupt those processes themselves). This
requirement is provided by Android as previously discussed.

Android prevents direct process access, but indirect process interaction is still
possible by using Intents5. However, Intents may still be allowed within dynamic
code. This does not allow dynamic code access to any data that it should not
have access to, as any data provided by Intents is globally accessible. Hence,
it does not compromise the system to allow dynamic code to also have this
privilege.

The device, user and user experience should otherwise be protected
from misbehaving dynamic code: By meeting the above requirements, many
of the security and privacy risks of executing code downloaded from the internet
are avoided. However, there are still risks of denial of service attacks. Code can
be loaded which can, if not otherwise restricted, execute for any amount of time.
The dynamically loaded code can also create Intents. Rapidly creating Intents
acts as a denial of service attack against the whole device. In order to deal with
denial of service attacks, the thread in which the dynamic code is executed is
monitored and given a run-time limit.

We could also, as future work, limit the resources that the code can access to
mitigate any damage that denial of service attacks may cause.

5 Android Developer, Intents and Intent Filters:
http://developer.android.com/guide/topics/intents/intents-filters.html

http://developer.android.com/guide/topics/intents/intents-filters.html


Safe Execution of Dynamically Loaded Code on Mobile Phones 7

In summary, DCEF separates the dynamic code from the device. To achieve
this, DCEF relies on Android acting as documented without bugs or exploits.
There may be unforeseen highly sophisticated attacks. For example, it is conceiv-
able that a timing attack could be implemented by making dynamically loaded
code run for certain periods of time. An application could be structured so that
it could make download requests at particular intervals, potentially signalling an
external server by timing requests appropriately. Our security analysis demon-
strates that DCEF meets the defined requirements and that these deal with
important security risks.

3.2 Performance

We evaluated the device footprint and execution time. Both the Download Ser-
vice and CES applications have small footprints: their sizes on disk are 12kB
and 13kB respectively, modest demands on a typical smart phone.

We then built and tested two demonstrator applications, DynamicLocator and
MuseumGuide. We now report results for MuseumGuide, which implements the
functionality described in the introductory scenario. We present measurements
of its download and execution times. Results for the second application were
excluded as they were similar.

Performance was measured internally using a code profiler, adding a small
overhead. We determined and report below on the time for: downloading within
the Download Service (Actual Download Time); the downloading method using
IPC (Extra Download Process Time); loading the class (ClassLoad Time); in-
stantiating the class and running it dynamically (Dynamic Process Execution);
doing other tasks in the framework (Other Execution Time); and other process-
ing in the third party application including displaying output (Other Process
Time).

Measurement starts once a user initiates a download and stops when the tour
is displayed. This includes time required to render text and images for ten items.

Table 1. Aggregated Download Times for 3G

Jar Size (KB) Tests Average download time (s) Standard deviation

1.4 10 2.436 0.730
41 40 2.769 1.832
140 40 2.804 0.641

Table 2. Aggregated Download Times for Wifi

Jar Size (KB) Tests Average download time (s) Standard deviation

41 40 0.784 0.480
140 40 0.617 0.659



8 G. Pink et al.

ss

Fig. 2. Execution Time, Museum Guide Using 3G

Tests were run on a G1 phone6 running other processes in the background as
would be normal for a phone in use. The size of the jar for the Museum Guide was
140KB. The significance of the download size is discussed below. Typically jars
would contain only small amounts of code, and no media which is downloaded
separately. Download was initially performed over a commercial 3G network.
Tests were run 40 times and are displayed in Figure 2.

The total elapsed time is typically only a few seconds, usually less than 4.5s,
with the download time dominating. The variances can be attributed to other
processes running on the phone and latency variations in the 3G network. ‘Other
Process Time’ takes the next largest amount of time, but this is part of the
third party application so is not strictly a cost of DCEF. The processing time,
which represents the actual dynamic loading and execution of code, is minor
compared to the download time. Overall, the times are of a similar order to
other applications and should be acceptable.

The jars used in the tests were larger than necessary, potentially hundreds
of times larger in the case of MuseumGuide. This was for ease of testing and
implementation of testing components. To compare the effect of download size a
set of tests was run on the download component with Jars of 1.4KB and 41KB.
The results are in Table 1. This indicates the size of the file has a modest effect on
total time. Rather, download times for smaller files are dominated by latencies
in the 3G network.

We then ran the same set of tests over a standard WPA2 encrypted Wifi
network. This yielded the results in Figure 3 and in Table 2 (for two file sizes).
Downloads were much faster on the Wifi network. In fact, the average down-
load of the larger file was faster than the smaller one, suggesting that latency

6 HTC G1 specifications: http://www.htc.com/www/product/g1/specification.

html

http://www.htc.com/www/product/g1/specification.html
http://www.htc.com/www/product/g1/specification.html


Safe Execution of Dynamically Loaded Code on Mobile Phones 9

ss

Fig. 3. Museum Guide Using WiFi

and other factors have more effect on the download speed than the size of the
downloaded file. It is notable that there are still spikes in total time when using
Wifi, indicating that variables on the phone and/or the server affect the response
times. Overall, these results indicate DCEF provides adequate response times.

3.3 Demonstrator Application

While the last section referred to the MuseumGuide’s security and performance,
we now provide a brief description of it. It demonstrates the use of the DCEF
to create a valuable class of applications which provide personalised informa-
tion about a museum or cultural heritage site, as described in our introductory
scenario. This makes use of PersonisJ, a client-side user-modelling framework
[4]. PersonisJ holds and manages arbitrary information about the user, such
as their name, age, interests and location. The user first downloads the Muse-
umGuide application from a trusted source. At this point, the user is informed
that MuseumGuide would like to use the PersonisJ user-model (these are specific
permissions defined within the PersonisJ service; see [4] for more details) and
that the MuseumGuide needs to access the Internet.

Later, as the user travels to new museums, they can download phonelets im-
plementing the personalised tour created by each museum. While MuseumGuide
(i.e. the ‘third party app’ shown on the left in Figure 1) has the privileges needed
to access PersonisJ and the internet, the tour app for a given museum (i.e. the
‘dynamic code’ shown on the right in Figure 1) does not have access to the user
model or the internet. We implemented both the MuseumGuide and a demon-
stration phonelet for the Nicholson Museum at Sydney University. Figure 4 illus-
trates this in use, with the leftmost screen showing the alert that MuseumGuide
issues when it detects a nearby museum that matches the user’s preferences.
Upon clicking the notification, the user is invited to download the phonelet with



10 G. Pink et al.

Fig. 4.MuseumGuide application showing: a) museum proximity notification, b) down-
load prompt, c) ‘download complete’ notification, and d) personalised museum tour

the personalised tour (Figure 4b). At this point, the tour’s content and code
are downloaded and run in DCEF’s safe execution environment and the user is
informed when their tour is ready (Figure 4c). The phonelet is provided with the
user model, via DCEF, which it uses to generate the personalised tour. Figure
4d shows an example of one screen of a personalised tour.

4 Related Work

There has been considerable previous work on the broader topic of personalisa-
tion, such as that reviewed in [5] for the case of e-commerce. To date, the focus
has been on server side personalisation, as in [7], an m-commerce application
which targets promotions to users based on their preferences. Our work breaks
new ground in supporting client-side personalisation on mobile devices. This
goes beyond the recognition of the notion of portable profiles on mobile devices
described in a survey of issues [12] for mobile personalisation. The similar task
of customising multimodal interactions with smart phones was developed in [6].
However, this did not provide customisation of applications. Similarly, several
mobile application platforms allow users to download data from third parties (for
example, Layar7, Wikitude8, and Urban Spoon9). While these allow third parties
to link into their framework with ‘content’ layers, they do not allow third parties
to provide supporting ‘code’, and thus lack the flexibility and ability to support
personalised applications, such as those enabled by DCEF. Many researchers
have noted the need to ensure the privacy of personal preferences, especially in
so-called smart environments [1,3], with broad recommendations that point to
the potential value of client-side personalisation on mobile phones.

Our framework aims to ensure security for client-side personalisation and
other facilities that can be supported by dynamically loaded code on mobile

7 Layar: http://www.layar.com/
8 Wikitude: http://www.wikitude.org/
9 Urban Spoon: http://www.urbanspoon.com/choose

http://www.layar.com/
http://www.wikitude.org/
http://www.urbanspoon.com/choose


Safe Execution of Dynamically Loaded Code on Mobile Phones 11

phones. There are various attack vectors on mobile phones [2,11], such as Blue-
tooth, messaging and Internet access. These vectors allow the placement and
execution of malicious code on a device. However, because such code must be
platform specific, the diversity of current phone platforms has, so far, afforded
some protection. The main platform targeted has been Symbian OS [11]. This is
unsurprising, since for much of the last decade it has been the dominant platform
in the mobile phone market. Trojans masquerading as applications have been
detected for Symbian OS10. Java trojans have also been developed and further
potential for malware exists for mobile Java platforms [8,9]. Even so, the actual
number of attacks on mobile phones has been infinitesimal compared to the PC
world. With the recent explosive growth in smart phone sales, this may be about
to change.

Perhaps the greatest potential for the spread of malware on smart phones
lies in the form of third party applications. We have already noted that one
approach, adopted for the iPhone, relies on manual filtering mechanisms. The
Apple App Store acts as a trusted third party to verify that applications are
safe11. This does not guarantee security as errors can occur in the verification
process. Defences against malware derived from the PC world are beginning
to be adopted for mobiles, such as virus detection. However, to the best of
our knowledge, there have not been any developments aimed at permitting the
secure, automatic download and execution of code.

5 Conclusions

We have described the motivation for a secure dynamic code loading framework
and described DCEF, which combines the use of an execution proxy with a code
download mechanism. This framework enables a mobile phone to dynamically
load third party ‘phonelets’ into trusted ‘stub’ applications. Through the use
of an execution proxy, thread monitoring and other mechanisms, this dynamic
code protects the phone against misbehaving code. Importantly, it ensures that
both the ‘stub’ and ‘phonelet’ have only the access rights the user has explicitly
granted. We have demonstrated the security of DCEF in terms of four key con-
ditions that the framework satisfies: dynamically loaded code may only interact
with the phone via DCEF; dynamically loaded code must not be able to interact
with other dynamic code; dynamically loaded code must not be able to access
the memory of other processes; and the device, user and user experience should
otherwise be protected from misbehaving dynamic code. We have reported anal-
ysis of DCEF performance in terms of its modest memory and time demands.
We have also provided details of one of the demonstrator applications that makes
use of DCEF.

10 Mobile malware evolution: An overview:
http://www.viruslist.com/en/analysis?pubid=200119916

11 Apple iPhone SDK Agreement:
http://blog.wired.com/gadgets/files/iphone-sdk-agreement.pdf

http://www.viruslist.com/en/analysis?pubid=200119916
http://blog.wired.com/gadgets/files/iphone-sdk-agreement.pdf


12 G. Pink et al.

Our work makes an important contribution, the provision of a framework for
the secure and automatic execution of third-party code on mobile devices. Using
DCEF, programmers can develop applications that acquire new functionality on-
the-fly. This enables an important and large class of applications, namely those
that provide dynamic on-device, client-side personalisation, to operate without
compromising a user’s privacy. DCEF also provides the ability to enhance func-
tionality of a user’s device without the user having to intervene.

References

1. Armac, I., Rose, D.: Privacy-friendly user modelling for smart environments. In:
Mobiquitous 2008, pp. 1–6. ICST, Brussels (2008)

2. Chen, T., Peikari, C.: Malicious Software in Mobile Devices. In: Handbook of Re-
search on Wireless Security, p. 1 (2008)

3. Cottrill, C., Thakuriah, P.: GPS use by households: early indicators of privacy
preferences regarding ubiquitous mobility information access. In: Cahill, V. (ed.)
MobiQuitous. ACM, New York (2008)

4. Gerber, S., Fry, M., Kay, J., Kummerfeld, B., Pink, G., Wasinger, R.: PersonisJ:
Mobile, Client-Side User Modelling. In: User Modeling, Adaptation and Personal-
ization (UMAP), pp. 111–122. Springer, Heidelberg (2010)

5. Goy, A., Ardissono, L., Petrone, G.: Personalization in e-commerce applications. In:
Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321,
pp. 485–520. Springer, Heidelberg (2007)

6. Korpipaa, P., Malm, E., Rantakokko, T., Kyllonen, V., Kela, J., Mantyjarvi, J.,
Hakkila, J., Kansala, I.: Customizing user interaction in smart phones. IEEE Per-
vasive Computing, 82–90 (2006)

7. Kurkovsky, S., Harihar, K.: Using ubiquitous computing in interactive mobile mar-
keting. Personal and Ubiquitous Computing 10(4), 227–240 (2006)

8. Reynaud-Plantey, D.: New threats of Java viruses. Journal in Computer Virol-
ogy 1(1-2), 32–43 (2005)

9. Reynaud-Plantey, D.: The Java Mobile Risk. Journal in Computer Virology 2(2),
101–107 (2006)

10. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.
Proceedings of the IEEE 63(9), 1278–1308 (1975)

11. Töyssy, S., Helenius, M.: About malicious software in smartphones. Journal in
Computer Virology 2(2), 109–119 (2006)

12. Uhlmann, S., Lugmayr, A.: Personalization algorithms for portable personality. In:
MindTrek 2008, pp. 117–121. ACM, New York (2008)

13. Union, I.T.: Measuring the Information Society 2010. International Telecommuni-
cation Union (2010)


	Safe Execution of Dynamically Loaded Code 
on Mobile Phones
	Introduction
	The Framework and Its Implementation
	Android
	Architecture

	Evaluation
	Security
	Performance
	Demonstrator Application

	Related Work
	Conclusions
	References




