
Self-managed Microkernels:
From Clouds towards Resource Fabrics

Lutz Schubert', Stefan Wesner', Alexander Kippl, and Alvaro Arenas/

, HLRS - Hochstleistungsrechenzentrurn Universitat Stuttgart,
Nobelstr. 19,70569 Stuttgart, Germany

{schubert,wesner,kipp}@hlrs.de
2 STFC Rutherford Appleton Laboratory, e-Science Centre,

Didcot, oxu OQX, UK
alvaro.arenas@stfc .ac.uk

Abstract. Cloud Computing provides a solution for remote hosting of applica
tions andprocesses in a scalable and managed environment. With theincreasing
number of cores in a single processor and better network performance, provi
sioning on platform level becomes lessof an issuefor future machines andthus
for future business environments. Instead, it will become a major issue to man
age the vast amount of computational resources within the direct environment
of each process - across the web or locally. Future resource management will
have to investigate in particular into dynamic & intelligent processes
(re)distribution according to resource availability and demand. This paper
elaborates the specific issues faced in future "cloud environments" and pro
poses a microkemel architecture designed to compensate these deficits.

Keywords: distributed operating systems, SOA, multi-core systems, large-scale
HPC, heterogeneous systems.

1 Misconceiving the Cloud?

Cloud Computing is often considered the future of computing platform provisioning:
reliable application hosting over the web allows easy accessibility from everywhere to
everything. Notably, however, this is a slight misconception of the actual working
focus of "cloud computing", which focuses primarily on the manageability and scal
ability aspects of hosting. Remote hosting as such (i.e. reliable server farms) is not in
itself a novelty and has been supported by multiple providers for a long time now 
with remote access such as enabled by VMWare' or Remote Desktop", and replicated
virtual machines, this already provided most of the capabilities associated today with
Clouds. Only increased network and computational performance, as well as the ad
vent of simple web "APIs" have allowed the sudden success of this approach.

Virtualisation, enhanced routing, on-the-fly replication, reconfigurable resources
etc. are the core features of modern clouds and thus lead to other, more commercially

1 http://www.vmware.com/
2 http://www.microsoft.com/windows/windows-vistalfeatures/remote-desktop-connection.aspx

D.R. Avreskyet aI. (Eds.): Cloudcomp2009, LNICST34, pp. 167-185,2010.
© Institutefor ComputerSciences, Social-Informatics and Telecommunications Engineering 2010



168 L. Schubert et aI.

oriented use cases which make use of the more innovative features of cloud comput
ing. This includes aspects such as hosting of web "services" (e-Commerce) with de
mand-specific scalability and thus availability, as well as improved reliability - in
other words, the application and data is highly available, independent of problems
with the resources and amount of concurrent invocations. This becomes particularly
interesting for e-Commerce environments with a high amount of customers, such as
Amazon or eBay, which notably belong to the first entities actually making use of
cloud-like environments internally.

Many users mistake cloud computing with high performance computing and whilst
the same principles can principally be applied in the HPC environment, machine re
strictions and requirements of the respective applications only allow for a certain
degree of scalability and manageability, as replication is not easily achieved with the
amount of resources in use, and scalability in the context of HPC is dependent on the
algorithm, not the amount of requests.

Considering the current development in processor architectures and in network per
formance, future systems will effectively incorporate a cloud environment within a
single machine . Due to their nature, these machines effectively allow for both: dis
tributed / parallelised process execution (current HPC), as well as scalable and reli
able application hosting. It should be noted in this context that "cloud computing" is
not a technology as such, but rather a concept, respectively a paradigm. This paper
will therefore examine the specific requirements put forward towards hosting applica
tions in future environments, and elaborate an approach to address these requirements
using approaches from Cloud Computing , Grid and SOA.

2 From Historical to Future Systems

The current development in computing system clearly indicates that the amount of
cores being integrated into a single processor / machine will steadily increase in future
years, whilst the speed of individual cores will increase only minimally. Implicitly,
the system will not become more efficient regarding individual (single-thread) appli
cations, but will provide an improved overall performance by allowing for parallel
execution of multiple processes or threads concurrently.

Such systems are effectively identical to what was considered computer farms a
few years back, where multiple computers are hosted within the same environment
and can communicate with each other in order to coordinate and distribute processes .
The Grid and P2P computing emerged from such environments , in order to maximize
usage of otherwise unused resources (machines), e.g. during lunch-break or when no
applications are running on the respective machines. Whilst the Grid has moved to
wards a different scope of distributed computing , one can still clearly see the relation
ship to Grid, SOA and in particular clouds: managing applications in a distributed
environment so as to ensure reliability and higher performance . In particular in the
P2P environment , one particular task consisted in replicating the same application
with different configuration settings so as to produce a set of "integratable" results in
the end: this only worked for "embarrassingly parallel" tasks, but still allowed for a
definite increase in overall execution performance .



Self-managed Microkemels: FromClouds towards Resource Fabrics 169

The tasks of such systems are similar to what modern operating systems (OS) have
to face in multi-core environments: distribution of processes, according to individual
schedules, as well as integration of results and management of cross-machine calls .
As opposed to P2P systems with typically little to no requirements towards synchro
nization of the tasks, Grid systems investigated into coordinated execution of
processes in distributed environments, whilst finally clouds are little concerned with
distributed execution, but with distribution and scheduling of individual processes.

An efficient multi-core operating system should obviously not be restricted to pa
rallel execution of standalone processes (thus reducing the scheduling problem), but
should particularly support parallelized and highly scalable (multi-thread) processes.
Accordingly, such a system needs to draw from all of the paradigms and concepts
above in order to provide the necessary scalability, reliability and manageability of
distributed processes in distributed environments.

2.1 Classical Approaches

In order to identify the specific capabilities to be fulfilled by future systems, it is re
commendable to examine the classical concepts towards managing distributed envi
ronments in more detail so as to make best use of the multi-core capabilities:

Grid Systems. The modern grid integrates different resource types on a service level,
i.e. principally follows the concepts of Virtual Organisations [1, 2], where the
combination of individual services leads to enhanced capabilities. However, the Grid
does provide means for common interfaces that allow the coordinated integration of
heterogeneous resources for higher, abstract processes and applications.

Distributed Applications. Some computational algorithms can execute logical parts
in parallel, so as to improve the overall process through multiple instantiation of the
same functional block. One may distinguish between optimal parallel code (no data
exchange between the blocks) and distributed applications that share some kind of
data. Of particular interest thereby is the capability to control communication and to
deal with the scheduling issues involved in multiple resource exploitation.

Cloud Environments. In a world of high connectivity , not only scalability of
individual (distributed) applications is relevant, but also scalability in the sense of
accessibility to a specific service I resource, i.e. replication of individual processes
according to demand. This requires enhanced control over the resources and
maintenance of multiple, potentially coupled instances of processes and data.

2.2 Scoping Future Multi-core Systems

As described above, the current cloud approach is insufficient to address the require
ments of future multi-core systems, respectively might become obsolete with the
capacities of such systems. However, in order to exploit the capabilities of multi-core
systems, and in order to address the respective requirements towards future applica
tions, clouds and related approaches provide a strong conceptual basis to realize such
future support.

In light of the development of middleware and hardware, multi-core systems
should be able to support the following capabilities :



170 L. Schubert et aI.

Concurrency. The most obvious capability (to be) fulfilled by multi-core systems
consists in the "real" concurrent execution of processes and applications, i.e. running
(at least) one process per core so that they can be executed in real parallel instead of
constant switching - however, each core may host multiple processes which are
executed in a multitasking manner. The scheduling mechanism will thereby decide
how to distribute processes across cores so that e.g. higher priority jobs compete with
fewer processes on the same core, or get more time assigned than other jobs .

This feature is a simple extension to classical multitasking operating systems
that assign jobs with different time slots in the overall execution schedule according
to their respective priority. All current main stream operating systems choose this
approach to exploit the multi-core feature for performance improvement, yet this
approach only improves the net performance of the whole system, not of single
processes.

Parallelism. More importantly than distributing individual processes to single cores,
an application or job may be separated into parallel threads which can be executed
concurrently at the same time. As opposed to concurrent individual processes, parallel
processes share communication and information directly with each other - depending
on the actual use cases either at nominated integration points, "offline" (i.e. via a
common stack) or at even based, at random, unpredicted points in time. This poses
additional constraints on timing and distribution of job instances / threads in the
environment in order to ensure communication, respectively to reduce latency.
Individual infrastructures thereby have a direct impact on this issue.

Typically, it is up to the developer to respect all this aspects when coding distri
buted applications. However, the requirements put forward to the developer will in
crease in future systems due to multiple reasons: heterogeneous resources will require
dedicated code; concurrent processes will put additional strain on communication
management (see above); processes and applications will compete with each other
over resources; latencies will differ between setup and may thus lead to different
communication strategies to be employed.

As the computing system grows and the complexity increases, the developer needs
a simpler way to exploit the infrastructure with his / her code. Implicitly the infra
structure needs to provide stronger means and support the parallelization work.

Scalability. Parallel processes require that part of the code / a thread will be executed
multiple times concurrently - in some cases the number is directly defined by the
infrastructure (number of computing cores available) and not (only) by the
application. In addition to this, in particular in the server domain, the same process
may have to be instantiated and executed multiple times concurrently, e.g. when
multiple invocations are executed at the same time.

Multi-core processors allow real parallel execution of one instance per core. Ob
viously, the system is restricted by the number of cores and the processing speed, with
any number of instances higher than the number of cores impacting more and more on
the reaction. With additionally concurrent jobs competing for the computational re
sources, managing scalability becomes a complicated aspect of both cloud and server
provisioning, but also for specific common user cases, in particular where the
processes have high computational requirements.



Self-managed Microkernels: From Clouds towards Resource Fabrics 171

This aspect also strongly relates to data management issues involved in parallelism
(cf. above), as some instances will have to share data between them, whilst others will
host their own data environment (often also referred to as "stateless" vs. "stateful").

Reliability. Server architectures often use mechanisms of data and process replication
in order to increase the respective reliability . Additional approaches include dedicated
checkpointing and rollback. Whilst in classical "common" usage scenarios the cost
for reliability was too high for the benefit gained from it, in particular cloud, server
and HPC environments strongly require reliability features.

Depending on the relevance of the application and data, multi-core platforms
should hence be able to support reliability.

Dynamicity. With multiple processes competing over the same resources (instead of,
as in most cloud, server and HPC use cases typically only hosting one dedicated job),
different resources will become available and unavailable over time, to which the
distribution of processes must adapt. This ranges from simple (re)distribution of
processes across the infrastructure to up- and downscaling of specific instances (see
parallelism and scalability) .

Notably, the degree of necessity per requirement and the degree of support by the
system itself depends on the actual usage scenario . Nonetheless, in order in particular
to ensure portability of applications across platforms and systems, i.e. in order to
allow developers to provide their code equally as service, process or web application,
it is mandatory that the essential basis of the system is identical.

3 TheMonolithic Mistake

The current approach to dealing with multiple computational resources in a tightly
coupled system consists in one central instance controlling all processes across these
resources, i.e. all scheduling and communication is essentially centralised . It is nota
ble that loosely coupled systems typically host communication support and essential
system control features per node (as opposed to core), whilst only overall scheduling
is centralised in the cluster. This decision is basing primarily on communication la
tency which will seriously impact on the performance of HPC systems and even
though latency is much diminished in tightly coupled systems, the central instance
will act as a bottleneck that potentially can lead to clashes, unnecessarily stalling the
individual processes :

Monolithic kernels are often said to scale well with the amount of processes on
many processors (see e.g. [16]). It should be noted though that this is not identical to
scaling well with the amount of processors . Most tests are executed on a limited num
ber of cores where the increment in the number of processes effectively shows similar
behaviour in single-core machines, i.e. scalability is primarily restricted by memory
and processor-speed, not by the operating system itself, as the degree of concurrency
and hence the additional strain on process management is comparatively low.

The main reason for this consists in the fact that the as primarily deals with sys
tem requests, context switches and device access, not with the process itself. In other
words, as long as the processes do not require something from the as and whilst the
scheduler does not demand a context switch between processes, the as' tasks are not



172 L. Schubert et aI.

affected by the amount of processes . Obviously with an increase in the number of
jobs, the amount of requests increase - notably, in a single core system the average
amount of context switches does not increase as they are defined by the scheduling
algorithm and only indirectly by the amount of processes (depending on the schedul
ing strategy).

Corell

1 Processl.l

"0"

P2.1

e.g.conte,rswitch

Processl .2

response/context

P1.3

queuedrequesf

P2.2

Time

Fig. 1. System requests of concurrent cores mayclash if they occur within the sametimeframe
(time-relationships exaggerated)

With the increasing amount of cores the operating system in particular has to deal
with more system requests - however , this alone would not impact drastically on the
performance, as system requests are comparatively few and quick as opposed to proc
ess execution. Hence, scalability would only be affected if more system requests need
to be handled than a single core can execute . More drastic , however, is the impact of
system request clashes which arises from the concurrent nature of process execution:
as depicted in Fig. I, a second core may request an operation from the operating sys
tem whilst the latter is still dealing with a request from the first core.

Under normal conditions these clashes hardly affect the overall performance, as
they occur rarely and as the delay caused by it is comparatively short. However, with
the number of cores rising to a few thousands, clashes become more regular , thus
leading to a significant overall delay in process ing and hence decreasing the effective
performance per core.

Fig. 2 depicts this issue in an exaggerated fashion for the sake of visibility': most
monolithic kernels (and in particular most developers) assume that processes are exe
cuted in a fashion similar to Fig. 2 above , i.e. with short gaps between processes
caused by context switches , respectively by other system requests. In reality, how
ever, these requests overlap and causing the OS to queue the messages and execute
them in sequential fashion , thus delaying process execution even further. Fig. 2 below
indicates how these overlaps summarise during a given timeframe, whereas dark
blocks depict the delay caused in addition to the (expected) system request execution
time and the arrows reflect the accumulated delay per core within the timeframe . Note
that we assume in both cases that a full core ("0") is dedicated to OS execution for the
sake of simplicity .

3 Actual figures will be published in a separate paper - please contact the authors for more
information.



Self-managed Microkemels: FromClouds towards Resource Fabrics 173

Fig. 2. Multiple processes executed in real parallel lead to significant process delays due to
overlaps in systemrequests - the dark blocks denote additionaldelays, the arrows reflect the
full delayin the timeframe. This figure assumes that one core ("0") is designated completely to
the operating system.

Obviously, this impact depends directly on the amount of cores and the number of
processes running per core. With an expected number of thousands of cores in the
near future, the monolithic kernel will become a bottleneck for concurrent processes.

In order to overcome this effect , each core must hence maintain enough informa
tion to allow execution of main and repeating system requests. This puts additional
constraints on the scheduling and the memory management system - in particular
since the actual memory per core is still comparatively small in common multicore
systems. With the current communication structure in multicore processors, it is also
impossible for individual cores to access the memory extension (L2 cache) without
going via the main controller, and thus automatically blocking access for other proc
esses, so that the same clash situation arises again (see e.g. [3]). Even though parallel
memory access is being researched, a good strategy for exploiting the level I cache is
still required in order to maintain a low latency .

Of course, there are further issues that impact on the performance of monolithic
systems - particularly worth mentioning are distributed scheduling in centralised
systems and the tight hardware binding : in heterogeneous, large-scale systems, addi
tional overhead has to be put on the main instance, in order to maintain processes and
resources . In [7] we discuss the concepts of application execution across distributed
resource fabrics (similar to clouds), with a particular focus on aspects related to
scheduling and dynamic infrastructures (as opposed to the kernel structure) .

4 Moving on to Micro-kernels

It has often been claimed that the messaging overhead caused by the component
based segmentation of the micro-kernel approach impacts stronger on performance
than the centralistic approach pursued by monolithic systems [4]. This is generally
true, if one takes an essential centralistic approach with the microkernel architecture
too. In essence, such an approach is identical to a monolithic system with all commu
nication having to be routed via a central instance - with the additional overhead of



174 L. Schubert et al.

complicated messaging protocols. However, this is essentially a specific use case of
the microkernel architecture where the monolithic kernel is basically structured ac
cording to the Object-Oriented Programming (OOP) and Service Oriented Architec
tures (SOA) paradigm. It does not take the full consequences from the microkernel
approach though:

4.1 SOA and Segmentation

Though SOA and OOP are related, one of the core differences consists in the commu
nication connection between components: in general, OOP assumes that all compo
nents are hosted locally on the same machine, whilst SOA is not restricted to specific
communication models - in fact, there is a certain tendency to assume that compo
nents are deployed on different resource. With respect to microkernel architectures ,
this implies in particular that functionalities can be separated not only "methodologi
cally" but also with respect to their distribution across resources. Or more specifi
cally: each core can host part of the operating system.

Typically , in modern processor architectures , one must distinguish between hierar
chical internal memory (Ll & L2 cache) and external memory. Even though external
memory is fast, its latency is too high for efficient computation (the processor being
faster than the memory) and it brings in yet another bottleneck factor, as the cores
cannot directly access the memory individually , but have to be routed via a processor
central controller (cf. Fig. 3). Future systems will allow for more flexibility with this
respect, i.e. by granting parallel access to the external memory [5] - however, the
main issue, latency, will still apply.

To reduce latency and thus improve performance of the system, the full execution
environment should be available in level 1 cache, so that calls and jumps can be proc
essed locally without requiring access to external memory. This is the ideal approach
for single core systems, where changes in the memory structure do not affect other
processes (on other cores) . However , the main problem is not posed by the synchroni
sation between individual memory views, but in particular by the restriction in size
per Ll cache - in particular with the growing amount of cores , cache memory impacts
heavily on the price of the processor. In order to host the full execution context, how
ever, the cache would have to cater for a) the full process code, b) the application data
and c) the operating system or at least all exposed functions and methods. Together,
this exceeds the limits of the cache size in almost all cases.

This is a well-known problem in High Performance Computing, where a particular
challenge consists in identifying the best way(s) to distribute and access application
specific data. As the cache in supercomputing nodes is way larger than the one in
common multi-core systems, the thread or code part is typically fully hosted in the
cache, without having to think about further split-ups. As opposed to this, however,
system calls will all be routed to the main node, as this is the classical monolithic OS
approach (cf. above).

The main idea of Service Oriented Architectures , similar to OOP, consists in split
ting up the main process into individual methods, functionalities and sub-processes
that can principally be hosted in different locations. The main challenge thereby con
sists in finding a sensible block size that is not too small so as to create messaging
overhead and not too big so as to impact on flexibility again - typically a logical



Self-managedMicrokemels: FromClouds towards Resource Fabrics 175

Fig. 3. The architecture of a multi-core & -processor system (adapted from [3])

segmentation provides the best results in this context. The same principle can be ap
plied to data segmentation and is principally applied in distributed data management,
though typically the segmentation criterion is comparativel y arbitrary and not related
to data analysis.

By applying SOA parad igms to both code and data, the core cache can be filled
with smaller parts rather than with the full execution environment, which would ex
ceed the available space. Obviously, this is not a general solution though, as it imme
diately poses the following problem s:

I. Dynamicit y: during normal execution , the process will jump between methods of
which only parts are loaded in memory, so that constant loading and unloading has
to take place.

2. Dependencies: code and data stand in a direct relationship, i.e. data access has to be
considered when separating code and data blocks.

3. Integrity : with multiple code segments accessing the same data blocks and poten
tial replications of the same data, updates need to be communicated in order to en
sure integrity of the process' behaviour

4. Distribution : segmented code is not necessarily executed and loaded in a strict
sequential fashion anymore - accordingly, multiple cores may host parts of the
code, replicate data etc. In order to ensure integrity , dependencies and so as to ac
tually improve performance, this distribution needs to respect the process' restric
tions, requirements and capabilitie s.

4.2 SOA and Operating Systems

As noted, micro-kernel operating systems principally follow an object (or service)
oriented approach where functionalities are segmented into libraries with flexible



176 L. Schubert et aI.

communication interfaces. This allows on-demand loading of libraries according to
need, as well as distribution across multiple cores for more efficient execution. In
other words, each core's cache may host part of the OS' functionality according to the
respective processes' needs. This effectively distributes the load of the operating
systems on cache and core across the system and, at the same time, increases the
availability of system functionalities for the executed processes, thus improving per
formance and reducing the risk of clashes caused by procedure calls (cf. section 3).

Since segments can be replicated, essential, recurring functionalities (such as vir
tual memory management) can be hosted on each core at the same time so that no
bottleneck issue arises directly. However, any access to remote resources and in this
case including "external" memory (cf. section 4.1), will be subject to the same mes
sage queuing problems (and thus bottlenecks) as calls to a centralized operating sys
tem. Regarding actual physical devices (such as printers, hard drive, network etc.), the
according latency is typically so high that delays are expected anyway. As for re
sources with "lower" latencies (such as external memory in this case), replication and
background updating strategies reduce the risk of bottlenecks and improve access. By
estimating future data access, data can be loaded in the background thus further re
ducing the delay caused by loading and unloading memory.

Fig. 4 illustrates the assignment of logical process blocks and data segments to the
cache of individual computing units of a multi-core processor (cf. Fig. 3). Note that a
full distribution is not necessarily the most efficient way to handle a single, non
parallel process: as all code blocks are executed in a sequential fashion, cores would
either idle whilst they wait for the respective block to get invoked, or switch between
different assigned and scheduled process blocks of the respective core.

DalobIDck 1
Process 1

Microkemel

MemoryManager

Process Manager

Segment 3

Fig. 4. Distributing Operat ing System, process and data block across cores



Self-managed Microkernels: FromClouds towards Resource Fabrics 177

Hence, it is most crucial to find the best distribution of a) a single process' code
and data blocks with respect to their interaction with one another, their invocation
frequency and their respective resource requirements (see below), b) operating system
unit with respect to their relationship to the code blocks, i.e. which functionalities are
required by the respective process partes) and finally c) overall processes and operat
ing system capabilit ies to make the most of common requirement s (e.g. towards capa
bilities) and adhere to the overall scheduling and prioritization criteria .

5 Principles of the Service-Oriented Operating System

Though we focus particularly on the multi-core, i.e. tightly coupled use case here in
this paper, the principle communication modes between the distributed components
actually depends on the setup, where obviously higher latency communication im
pacts on the distribution of blocks across the infrastructure (in order to meet the inter
action requirements).

In this section, we will discuss the principle behaviour of SOA based micro
kernels, with a specific focus on the segmentation of code and data according to rela
tionship information, requirements and restrictions .

5.1 Microkemel Base Structure

As noted, the microkernel structure is component-based , i.e. segmented into logical
functional units where each "component" fulfils essential capabilities for specific
tasks. For example , virtual memory management, device management, execution
management etc. all build units of their own, that may even be further sub-segmented,
respectively that can be adapted according to specific parameters - likewise, e.g. a
local virtual memory manager instance only needs to maintain information relevant
for hosted process parts and the device manager only needs to provide interfaces to
devices actually required by the local processes etc.

At process load time. the requirements of the respective process are retrieved re
spectively analysis is initiated (cf. below) and the according operative components
will be shifted to the core along with initial data and assigned code block. Note that if
microkernel components are already assigned to the respective core, that adaptations
may be needed to reflect the new requirements. In principle, each context switch
could rearrange the local microkernel component arrangement - obviously, this would
cause unnecessary load and the main task in identifying potential segmentations con
sists in reducing such overhead.

The space in this document is insufficient to represent the full architecture of a
SOA based microkernel operating system (short S(o)OS: Service-oriented Operating
System) - for more details please refer to [7, 9]. Instead, we will focus on one of the
core components only, namely the virtual memory manager:

The virtual memory manager is hosted on almost all cores - it is responsible for
virtualising the infrastructure per process (execution environment) and for analyzing
the code behavior. In essence, it is a dynamic routing mechanism which forwards
requests to and from the code to the respective location in the external memory.



178 L. Schubert et aI.

Distributed process manager maintains a high level overview over the processes
and control distributed execution (i.e. passing the execution points between cores
whilst maintaining the execution context).

Micro schedulers replace the centralized scheduler and are responsible for schedul
ing the processes per resource, rather than for the full system. Micro schedulers are
aligned to the overall priority and scheduling assignment.

Virtual device controller provides a virtual interface to resources of any kinds to
allow the process to access resources without having to implement the protocol details
- this is similar to e.g. the Hardware Abstraction Layer of Microsoft systems, but acts
on top of the va manager to allow remote integration independent of the underlying
communication protocol.

110 manager, like in any other operating system, provides the communication inter
face between resources. It incorporates different communication layers, thus integrat
ing tightly e.g. into the distributed virtual memory (see above).

5.2 Relationship Analysis and Distribution

The main important feature to enable service oriented microkernels as described
above consists in the capability to split code and data into meaningful blocks that can
be hosted by individual cores, respectively fit into their cache. As this segmentation
must be dynamic, to meet the (changing) requirements and constraints of the execu
tion system, the according distribution depends only secondarily on the information
provided by the developer, even though programming models such as MPI [6] foresee
that individual methods can be distributed and that specific communication modes
exist with and between these segments. In order to increase performance and capabili
ty of such distributed models, new programming paradigms will be needed - as this is
of secondary relevance for this paper, the according findings will be published in a
separate document (see also [7]). We therefore assume in the following that no addi
tional information has been provided by the developer, even though the model de
scribed below principally allows for extended programming annotations.

Code and data segmentation follows the principle of graph partitioning whereas
nodes represent code / data blocks and edges their relationship with one another. As
the code has already been compiled, i.e. since the source code is not available for
structural analysis, segmentation must base on "behavioral" blocks rather than me
thods and class structure. At the same time, this provides better relationship informa
tion than pure code analysis, as frequency of invocation is often determined by envi
ronmental conditions, events, parameters etc. In order to analyze and obtain this kind
of information, all code is enacted within a virtual memory environment, where
access to data and other code areas is routed via extended paging information. This is
principally identical to the way any modern operating system treats memory.

By applying a divide and conquer approach, the virtual memory is divided into log
ical blocks that represent the code's "typical" execution path and its relationship to
data, system calls and other processes (cf. Figure 5, left). Such information is gained
by following the calls and read / write access via the virtual memory. This relation
ship information can be represented as a directed graph (cf. Figure 5, right), whereas
an edge between code nodes implies invocations, respectively jumps, whilst an edge



Self-managed Microkemels: From Clouds towards Resource Fabrics 179

to a data node represents a write action, respectively an edge from such a node
represents read access. By analyzing access, invocation and access frequency, the
graph can furthermore be annotated with a weight (w) representing the likelihood of
one node calling / accessing another, as well as a frequency if) that designates how
often the respective code is accessed during a given timeframe at all (note that this
information can principally be derived from a full invocation graph and the according
weights of the nodes).

Virtual Mem ory

Address Add.lnf. Type
acc~from:

&,000006OO
&XOOOOOCOO
&xOOOOOFOO

calls:

&XOOOOOOOO &x0002A800
&,OOIDIFOO

readsfrom;
&xOOOlIFOO
&.ooo8Af30 Process 1

W!"lt~to:

&.ooo8Af30

&. 00000100 accessedfrom:

&.00000200 &,000008OO

&.00000300
jumps:o :

&)(000006OO ..

&.00000400
&.00000500
&.00000600
&.00000700
&.00000800
&.00000900 Process 2
&xOOOOOAoo

...

...

Data

System etc.

Pl.B1

Pl.B2

1:0.

} P2.B1

~ o.ai
D.B2

>svsi

Fig. S. Annotated memory and relationship analysis. f stands for the "frequency" of execution
in a given timeframe and w for the likelihood that the caller invokes the respective node.

Implicitly, the information exactness increases over the amount of executions and
during the time actually using the respective processes or applications. It is therefore
recommended to expect a minimal number of invocations or wait until a certain sta
bility of the graph is reached before actually applying the segmentation and distribu
tion - even if this means that the infrastructure cannot be optimally exploited in the
beginning. Otherwise, there is a high risk that additional code movements will pro
duce more overhead than gain.

Principally, such annotation data could be provided by the developer (cf. com
ments above), but this would exceed the scope of this paper.

5.3 Code and Data Segmentation

As stated, code and data needs to be segmented in a fashion that meets multiple re
quirements and constraints, such as cache size, relationship with data and other code



180 L. Schubertet al.

(including system calls) etc. so that the unnecessary overhead on the core is reduced.
Such overhead is caused in particular by loading and unloading context information ,
processing message queues due to centralisation and so on. Ideally, all processes, all
their contexts and all according system data fit into the cache of the respective core 
this, however, is most unlikely. Therefore , the segmentation must find a distribution ,
where common requirements of concurrent processes are exploited and where rela
tionships between codes and data are maintained to a maximum.

Figure 5, right side designates such a potential segmentation given the relationship
as stated in the table (Figure 5., left) and the temporal information represented by f
(frequency of execution in a given timeframe) and w (likelihood that one code calls
another code block, respectively accesses a specific data area). The figure already
indicates some of the major concerns to be respected in this context, such as shared
data segments, concurrent invocations, cross-segment communication etc.

As it is almost impossible for the core cache to hold all the code blocks, all related
data (including global variables) and the according system processes at the same time,
the micro kernel has hence to account for the following potential issues:

• Dynamic (un)loading of process blocks is normal behavior for all operating sys
tems executing more processes than fit into memory. It involves all the issues
of context switching plus overhead for load / memory management.

• Replication and hence consistency management of shared data across different
caches. Background and / or dedicated synchronization needs to be executed in
order to keep consistency. Timing vs. potential inconsistency is important in
this context and the relationship analysis information can be employed to iden
tify the least amount of synchronization points. Data consistency is covered
substantially in literature though and will not be elaborated here (e.g. [14]
[15]).

• Concurrent usage of access limited resources (e.g. hard-drive) pose issues on
consistency and cause delays in the executing process. In order to reduce de
lay, the process is often handled by separate threads - in the case of multi-core
processors, these threads can be handled like separate processes with the addi
tional relationship information in the respective process graph.

• Queuing and scheduling is in principle no different to other OS [8] - however
self-adapting microkernels have the additional advantage that they can rear
range themselves to process queues faster, given that they do not compete for
restricted / limited resources .

• Cross-segment communication, as opposed to the single-core approach, requires
dedicated communication points, channeling of messages, as well as their
queuing etc. Similar to limited resources, data consistency etc. communication
between segments may cause delays due to dependencies .

The main issue in executing segmented code and that also causes problems in manual
development of distributed programs consists in the delays caused by communication
between threads - partially due to latency, but also due to the fact that processes do not
send / require information exchange at exactly the same point, so that delays in re
sponse, respectively in reception. MPI (Message-passing Interface) [10] is one of the
few programming models dedicated to handling the communication model between
blocks and similar principles must be applied in the case of automated segmentation.



Self-managedMicrokemels: FromClouds towards ResourceFabrics lSI

Efficiency may be slightly increased by executing other processes whilst the re
spective thread(s) are put into a waiting state - accordingl y, the amount of communi
cation has to be kept at a minimum. In segmented (as opposed to parallelised) code,
the main communication within a single process consists in passing the execution
environment between blocks, and system calls. As opposed to this, cross-process
communication is comparatively seldom.

5.4 Self-adaptive Microkernels

As noted, the main issue to be addressed by the OS (respectively the kernel), consists
in reducing the communic ation and the context switching overhead, respectively
keeping it at a minimum. Since the two main causes for this overhead consists in
passing the execution point between code segments and making system calls - and
thus implicitl y accessing resources, including the virtual memory - the most strongly
related code parts should be made locally available, whereas lower-level cache is
preferable over higher-level one, as latency increases over distance (level).

The segmentation must therefore find the best distribution of code blocks accord
ing to size of cache and their latency - in other words, frequent invocations and strong
relationships should be located closer than loosely coupled blocks. This does not only
apply to process specific code and data, but implicitl y also to system calls - in par
ticular since essential capabilities (virtual memory, messaging etc.) are required by
almost all processes to execute smoothly in a potentiall y dynamic environment where
locations (in particular in memory) are subject to change.

In the classical OS approach, as noted, the main kernel instance (located on any
one core) is responsible for handling such requests, leading to additional messaging
overhead, conflicts and extensive delays. With the more advanced dynamic approach
as suggested here, the kernel can provide partial functionalities to the individual
core ' s environment, where it sees fit. This segmentation is basing on the relationship
information as described above - however, since the kernel is more sensitive to exe
cution faults and since it also requires that specific functionalit y is available and can
not be routed to another code location, such as the capability to route in the first
instance, some segments need to be made available together . Furthermore, since the
virtual memory is enacted by the kernel itself, relationship information is generally
not maintained about the kernel in order to reduce overhead .

Instead, the kernel is structured in a fashion that adheres to the main principles of
SOA: atomic, logical functionality groups; minimal size; common interfaces and
protocol-independent communication. By identifying the direct entry points of the
process into the system kernel (i.e. system procedure calls), the segmentation method
can identify the system capabilities that need to be provided in addition to base capa
bilities, such as virtual memory and communication handling. Depending on the sys
tem calls needed by the process, additional segment s can be identified that need /
should be provided with the sub-kernel in the respective core ' s cache - the primary
restriction consisting in the size of the cache.

Sub-kernels will only maintain memory information related to the specific proc
esses, in order to reduce the memory size required . Similarly, only essential,
frequently required functionalities will be hosted in the same cache. The according
selection of kernel methods bases primarily on predefined architectural relationship



182 L. Schubertet aI.

similar to the one depicted in Figure 5 - the fully detailed kernel architecture relation
graph will be published in a separate document, as it exceeds the scope of the current
paper.

Context switches are particularly critical with OS methods, as no higher-level
management system (i.e. the kernel) can supervise the process at this level. As
switches on this level add to the delays caused by context switches per core, the
amount of changes in the sub-kernel infrastructure per core should be kept to a mini
mum. Implicitly, the distribution of processes across cores does not only depend on
relationships between segments and the size restrictions of the according cache, but
more importantly on the functional distribution of sub-kernel segments. In other
words, the relationship to system procedure calls and the according distribution across
cores plays an essential role in the segmentation process, whereby the amount of
switches between sub-kernel routines should be kept to a minimum.

Each system procedure call can therefore lead to one of the following three types
of invocation:

1. Local processing using the cache of the respective core - this is the most efficient
and fastest call, but leads to the same consistency issues as segmented processes do

2. Local processing with context switching - in this case the call is executed by
the same core that processes the invoking procedure, but must load the system pro
cedure from central memory (or another location). This reduces the consistency
problem, as the context switches can update the memory, but it leads to increased
delays in the execution of the invoking procedure

3. Call forwarding to the main kernel's core - system procedure calls can also be
forwarded to the main kernel instance, just like in monolithic instances. Obviously
this loses the advantage coming from a distributed kernel, namely obstructing mes
sage queues and concurrent call handling. By reducing the average number of
"centralised" system calls, however, the risk of conflicts decreases accordingly (cf.
Section 3). Since such call handling comes at the cost of higher latency, it is gener
ally recommended to reserve this for background calls (that can be executed in
parallel and may be identified in the dependency graph). In all cases, the OS must
be able to precedence "active" processes over "waiting" ones, e.g. through an
event-based system - a detailed discussion of these mechanisms will be published
separately.

6 Local Private Clouds (or Micro-Clouds)

As has been mentioned in the initial chapters, current approaches towards cloud sys
tems all take a high-level approach towards resource management, i.e. they assume
that the operating system handles simple multi-core platforms and that main cloud
features act over multiple instances (PCs, Servers) rather than over multiple cores as
such. Implicitly, most cloud systems only address horizontal elasticity - process / data
replication on multiple systems - and only little vertical elasticity - extending the
amount of resources vested into a single instance, though notably the according scale
will have to be applied to all horizontal replications too.

The biggest business motivation for outsourcing to clouds at the moment being that
equipment and maintenance of a local resource infrastructure (private cloud) is too



Self-managed Microkernels: FromClouds towardsResourceFabrics 183

costly. However, such assessments forget about the current development in current
Microsystems leading to unprecedented resource availability even in desktop pes.
This poses three issues : I) outsourcing to public clouds will only be of interest for
large scale applications, 2) applications and services must foresee their own (vertical)
scalability already at development time, whereas only little "common" programming
models are available to this end , and 3) scalable execution on local infrastructures
requires new OS models.

This paper presented an approach to exploit the specific features of multi-core
systems in a way that enables cloud-specific capabilities on a single (multi-core)
machine :

6.1 Elasticity in Self-managed Microkernels

The core feature of selfmanaged microkernels as presented in this paper consists in its
capability to adjust the distribution of code and data segments according to resource
requirements and availability. By updating the relationship graph frequently and relat
ing individual graphs (per process) with one another, the system can adjust the vertic
al scale to reflect the current requirement of the process in alignment with other
processes and resource availability. Since the principle of service oriented operating
systems also enables enhanced programming models, vertical scalability can both be
exploited for more efficient data throughput, as well as for multiple instantiation of
individual threads with shared, as well as distributed memory. Such threads can be
dynamically instantiated and destroyed by the system, but the proce ss itself must still
be capable to deal with a dynamic number of concurrent threads. Optimally
parallelizable code , i.e. algorithms that execute calculations on separate data instances
and which results' are integrated only after execution, are ideal for such usage 
typical examples for such applications are 3d renderers, protein folding etc. [II]
[12] [13].

Horizontal scalability in a multi-core environment is only limited by the number of
cores - similar to the limitation of yesterday's web servers that merged multiple mo
therboards ("blades") into a single interface. As discussed, multiple instantiation au
tomatically leads to the problem of consistency maintenance, which has to be com
pensated by complex data management mechanisms which lead to additional laten
cies, as they act on a higher level than the processes themselves. Even though service
oriented operating systems cannot handle complex differentiation and merging strate
gies, they can nonetheless support data consistency management through background
synchronization thus ensuring that multiple instances have access to principally the
same data body.

6.2 Open Issues

Service-oriented operating systems and self-managed microkernels are still research
issues and as such, many challenges remain incompletely solved, such as security
aspects and reliability:



184 L. Schubert et al,

Security: since service oriented operating systems act below the level of virtual
machines (but on top of virtual resources), they implicitly do not support segregation
into secure, individual execution environments. All top layer security can be provided
in the same fashion as in classical, non-SOA operating systems, though kernel-near
security (message encryption etc.) may need further investigation, considering the
dynamic distribution of processes and sub-kernel modules across cores.

Reliability: self-managed microkernels can principally increase reliability through
improved data and code management which allows even dynamic (re)distribution of
code, thus dealing with potential issues. However, main reliability issues arise from
hardware faults which cannot be foreseen, therefore typically being addressed by
means of replication mechanisms. Though service oriented OS support replication
mechanisms, it is typically the whole system that goes down and not just a single
core, so that cross-system mechanisms need to be employed. In [9] we discuss the
principles of a distributed virtual memory to enable distributed execution and indicate
how replication across systems may be realized - however, such mechanisms are still
subject to research.

6.3 Summary

The self-managed microkernel approach as presented in this paper is taking cloud
concepts to a core level in future tightly coupled systems, thus providing elasticity for
large scale systems, as well as means to deal with dynamic and heterogeneous infra
structures. This will not only allow common users and providers to make use of cloud
features in simple, smaller sized infrastructures, but also enable new means to write
and execute distributed applications in dynamic environments.

Multicore systems for common usage are comparatively new on the market and
distributed computing platforms so far have mostly been an issue for high perfor
mance computing developers. With the trend of integrating more and more cores into
a single system, the average developer is now faced with similar issues than HPC
programmers were before and who have realized their own specific programming
models to realize these issues. The self-managed microkernel approach simplifies this
problem by providing new means to develop distributed applications that allow for a
certain degree of self-management, namely cloud capabilities .

At the same time, many issueshave not yet been fully researched in this area and
since furthermore most approaches only consist of conceptual models so far, actual
benchmarks still have to validate the approach and, what is more, define the fine
grained parameters to identify cut-off points in code / data segmentation, as well as
the according dynamicity.

Business benefits for such a system are obvious, yet not all of the according re
quirements have been addressed so far, since many of them require that a stable base
system exists first. It is e.g. not sensible to elaborate authorization mechanisms yet,
when not all implications from code segmentation have been fully elaborated - as
such, security could be tightly coupled with the main kernel instance, or be dynami
cally distributed like other sub-kernel modules.



Self-managed Microkernels: From Clouds towardsResourceFabrics 185

References

I. Saabeel, W., Verduijn, T., Hagdorn, L., Kumar, K.: A Model for Virtual Organisation: A
structure and Process Perspective. Electronic Journal of Organizational Virtualness, 1-16
(2002)

2. Schubert, L., Wesner, S., Dimitrakos, T.: Secure and Dynamic Virtual Organizations for
Business. In: Cunningham, P., Cunningham, M. (eds.) Innovation and the Knowledge
Economy - Issues, Applications, Case Studies, pp. 1201-1208. lOS Press, Amsterdam
(2005)

3. Intel, IntelWhite Paper. An Introduction to the Intel® QuickPathInterconnect(2009),
http ://www.intel.com/technology/quickpath/introduction .pdf

4. Lameter, C: Extreme High PerformanceComputing or Why Microkernels Suck. In: Pro
ceedingsof the Linux Symposium(2007)

5. Wray,c.:RamtronAnnounces 8-MegabitParallel Nonvolatile F-RAMMemory(2009),
http :/ /wwwl0.edacafe.com/nbc /articles /
view_article .php?section=ICNews&articleid=714760

6. Gropp, W.: Using MPI: Portable Parallel Programming with the Message-passing Inter
face. MIT Press, Cambridge(2000)

7. Schubert,L., Kipp, A., Wesner,S.: Abovethe Clouds: FromGrids to ResourceFabrics. In:
Tselentis, G., Domingue,1., Galis, A., Gavras,A., Hausheer,D., Krco, S., et al. (eds.) To
wards the Future Internet - A European Research Perspective, pp. 238-249. lOS Press,
Amsterdam (2009)

8. Tanenbaum, A.S.: Modem Operating Systems. Prentice Hall PTR, Upper Saddle River
(2001 )

9. Schubert,L., Kipp, A.: Principlesof Service Oriented Operating Systems. In: Vicat-Blanc
Primet, P., Kudoh, T., Mambretti, J. (eds.) Networks for Grid Applications, Second Inter
nationalConference,GridNets 2008. LectureNotes of the Institute for ComputerSciences,
Social Informaticsand Telecommunications Engineering, vol. 2, pp. 56-69. Springer, Hei
delberg (2009)

10. Gropp, W.: Using MPI: Portable Parallel Programming with the Message-passing Inter
face. MIT Press, Cambridge (2000)

II. Anderson. D.: Public Computing: Reconnecting People to Science. In: Conference on
Shared Knowledge and the Web. Residenciade Estudiantes, Madrid, Spain (2003)

12. Menzel, K.: Parallel Rendering Techniques for Multiprocessor Systems. In: Computer
Graphics,International Conference, pp. 91-103. ComeniusUniversityPress (1994)

13. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software. Addison-Wesley, Reading (1995)

14. Tanenbaum, A.: Modem OperatingSystems. Prentice-Hall, Englewood Cliffs (1992)
15. Deitel, H.: An Introduction to OperatingSystems. Addison-Wesley, Reading (1990)
16. Lameter, c.: Extreme High PerformanceComputing or Why Microkernels Suck. In: Pro

ceedingsof the Linux Symposium(2007)


	Self-managed Microkernels: From Clouds towards Resource Fabrics
	1 Misconceiving the Cloud?
	2 From Historical to Future Systems
	2.1 Classical Approaches
	2.2 Scoping Future Multi-core Systems

	3 The Monolithic Mistake
	4 Moving on to Micro-kernels
	4.1 SOA and Segmentation
	4.2 SOA and Operating Systems

	5 Principles of the Service-Oriented Operating System
	5.1 Microkemel Base Structure
	5.2 Relationship Analysis and Distribution
	5.3 Code and Data Segmentation
	5.4 Self-adaptive Microkernels

	6 Local Private Clouds (or Micro-Clouds)
	6.1 Elasticity in Self-managed Microkernels
	6.2 Open Issues
	6.3 Summary

	References




