
Service Supervision Patterns: Reusable
Adaption of Composite Services

Masahiro Tanaka", Toru Ishida 1,2 , Yohei Murakami 1, and Donghui Lin!

1 Language Grid Project ,
National Institute of Information and Communications Technology (NICT)

3-5 Hikaridai, Seika-cho, Kyoto, Japan
{mtnk,yohei,lindh}~nict.go .jp

2 Department of Social Informatics, Kyoto University
Yoshida-Honmachi , Sakyo-ku , Kyoto , 606-8501 , Japan

ishida~i.kyoto-u.ac.jp

Abstract. A composite Web service provided as a "cloud" service should
make its constituent Web services transparent to users. However, existing
frameworks for composite Web services cannot realize such transparency
because they lack capability of adapting changes of behaviors of con­
stituents Web services and business rules of service providers . Service
Supervision, proposed in the previous work, allows us to flexibly adapt a
composite Web service by combining control execution functions which
control behavior of running instances ofcomposit e Web services. How­
ever, much flexibility of the execution control functions sometimes makes
it difficult to design adaptation processes due to absence of accumulated
know-how such as guidelines. Moreover, it often costs a lot to port adap­
tation processes to the model of composite Web service to be adapted.
To solve the problems , we first organized various adaptation processes
based on some previous works. Then we proposed Service Supervision
patterns, which consist of typical requirements for adaptation and WS­
BPEL processes satisfying the requirements by using execution control
functions . The patterns are easy for designers of composite Web services
to understand and make it possible to reduce cost to port them to the
model of a composite service.

1 Introduction

In Cloud Computing, servers which provide Web services are transparent to
users and users do not need to care numbers or locations of the servers. As for a
composite Web service, which combines multiple Web services, the constituent
Web services of the composite Web service should also be transparent to users
when it is provided as a "cloud service" . However, it is often difficult to realize the
transparency because the constituent Web services can be provided by various
service providers and the behaviors of the services can unexpectedly change.
Therefore a composite Web service has to be capable of adapting to the changes.

For example , there are still many services deployed outside cloud and through­
put of the services may decline in an environment where too many requests can

D.R. Avresky et al. (Eds .) : Cloudcomp 2009 , LNICST 34 , pp . 147-163, 2010 .
© Institute for Computer Scien ces , Social-Informatics and Telecommunications Engineering 2010



148 M. Tanakaet al.

be given during a certain period . In that case, a composite Web service which
combines such services needs to replace the constituent Web service with an al­
ternative one in order to keep overall performance of the composite Web service.
Another example is changes of business rules of service providers. If a service
provider which provides one of the constituent Web services changes their busi­
ness rules and becomes to require some preprocesses before execution of its
service, the business logic of the composite Web service must be changed.

However, WS-BPEL[I], a standard language for a composite Web service, is
not flexible enough to realize adaptation to frequent changes of the environment
or business rules. In the existing framework for WS-BPEL, a model of a compos­
ite Web service (a definition of a WS-BPEL process) deployed on the execution
engine cannot be modified. Therefore we need to modify the model first and then
deploy it on the execution engine in order to adapt a composite Web service to
an environment or business rules. This has often prevented flexible and rapid
adaptation.

To make up the lack of flexibility, in [2], we proposed Service Supervision,
which changes the behavior of a composite Web service without modifying its
model using execution control functions such as step execution or changing an
execution point. By providing the execution control functions as Web services,
we make it possible to define a composite Web service which controls other
composite Web service for adaptation. One of the major advantages of Service
Supervision is reusability of the composite Web service which implements adap­
tation. Moreover, the execution control functions realizes more flexible control
than that by some previous works on runtime adaptation([3,4,5,6]).

In the environment which frequently changes, however, we still have the fol­
lowing problems even if we introduce Service Supervision .

- Difficulty in designing adaptation
Much flexibility of execution control functions sometimes makes it difficult
to design adaptation processes due to the absence of accumulated know-how
such as guidelines.

- Cost of updating model
When permanent demand of an adaptation becomes apparent , it is better to
update the model of the composite service. But it often costs a lot to port
an adaptation process using execution control functions to the model of the
composite Web service to be adapted.

Therefore we proposed Service Supervision Patterns, which guide designing
adaptation processes for composite Web services. Software patterns including de­
sign patterns[7] have achieved a great success in design and analysis of software.
Also in the area of workflows, workflow patterns[8] have been widely accepted .

In this paper, weorganized various adaptations of composite Web services and
extracted typical execution controls as Service Supervision patterns. The Service
Supervision patterns consist of requirements for adaptation and WS-BPEL pro­
cesses which implement the adaptation using execution control functions. There­
fore it is easy for designers of composite Web services to reuse the patterns. The



Service Supervision Patterns: Reusable Adaption of Composite Services 149

patterns also show how to port the WS-BPEL processes for adaptation to the
model of Web service to be adapted.

The rest of this paper is organized as follows. In Section 2, first we describe
Service Supervision used to realize adaptation of a composite Web service and
explain the prototype we implemented. Next we organize typical adaptation
processes of composite Web services and show how to realize the adaptation
process using execution control functions in Section 3. Then we propose Service
Supervision patterns by extracting processes frequently appear in the previous
section. After introducing some related works in Section 5, we conclude this
paper in Section 6.

2 Service Supervision

In [2], the authors proposed Service Supervision, which changes the behavior of
a running instance of a composite Web service without changing the model of
the composite Web service. We show the overview of Service Supervision and
explain the prototype that we developed in this section.

Several researches have tried to change behaviors of a composite Web service
without modifying the model of a composite Web service. For example, Language
Grid [9] provides dynamic binding, which allows a user to specify endpoints (ad­
dresses for accessing Web services) when invoking the composite Web service. In
this work, a composite Web service is designed based on only the interfaces of
the constituent Web services. A04BPEL[6] and Dynamo[5] allow a user to add
processes at certain points in a composite Web service based on the concept of
AOP (aspect-oriented programming). However, some functions for adaptation,
such as changing an execution point , cannot be achieved by adding a process by
AOP.

On the other hand, Service Supervision monitors and changes the state of
running instances and controls execution of the instances. This makes it possi­
ble not only to add a process to an existing composite Web service, but also to
control execution state, including changing an execution point. Using Service Su­
pervision , we can adapt a composite Web service to changes of the environment
and business rules without modifying the model and deploying it .

2.1 Execution Control Functions

We implemented execution control functions shown in Table 1 to realize Service
Supervision. The functions get/set the state of a running instance of composite
Web service or control execution of a composite Web service itself.

The functions are provided as Web services. Therefore we can define a com­
posite Web service which controls the behavior of an instance of other composite
Web service by combining the execution control functions.

Although the execution control functions do not change the model of the
composite Web service, they realize various processes required for adaptation.

Take an example to clarify the necessity of the execution control functions.
In an environment where many Web services are published by various providers,



150 M. Tanaka et al.

Table 1. Execution control functions

API
step
suspend, resume

Effect
Execute the next activity in a compositeWeb service.
Suspend/Resume execution of a composite Web ser­
vice.

getVariable, setVariable Get/Set variable defined in a composite Web service.
getState, setState Get/Set states of activities, such as ready, running,

finished and suspended.
setAddress

setEP
setBP

Set an endpoint address of an invocationin a compos­
ite Web service.
Set the activities which is executed next.
Set a breakpoint at an activity in a composite Web
service and a callback Web service invoked when the
the execution stops at the breakpoint.

such as the Language Grid[9], a Web service can be shared by some composite
Web services in an unexpected way. For example, execution of the composite Web
service in Fig. l(a) may fail in such an environment. This composite Web service
translates a long document. It first splits the given document into sentences
(split) and then translates the sentences by the machine translation service
(translate) in the loop. Next , it merges the results of translation (merge) .

Assume that the provider of the machine translation service newly introduced
a limit on number of invocations of its service because too many requests were
given during a certain period. In such case, execution by a user may unexpect­
edly cause a failure of exectuion by another user. Thus, when the number of
invocations approaches the limit, we need to switch the service to different one
by other provider . To implement this solution, we need to modify the document
translation service as shown in Fig. l(b). Before invoking the machine transla­
tion service, the composite Web service invokes the external service to increment
the recorded number of invocations (count) .

However, the change of the model is not efficient when many service providers
are involved and policies of the service providers frequently change.

Our solution based on Service Supervision is to introduce a composite Web
service shown in the upper part of Fig. 2. This composite Web service counts

(a) Document translation service (b) Adaptation to limit of invocation

Fig. 1. Modification of a compositeWeb service for adaptation



Service Supervision Patterns: Reusable Adaption of Composite Services 151

the number of invocations of the machine t ranslat ion service and changes the
endpoint address to that of another machine t ranslation service when needed.

The composite Web service first sets a breakpoint (s et BP) before the invoca­
tion of the machine translat ion service translate in the document t ranslation
service. It also sets invocation of count as the callback Web service for the break­
point . When count is invoked, it increments the recorded number of invocation s
of the machine t ranslat ion service (i ncr ement) . If the number of invocations of
the machine translation service exceeds the limit , the endpoint address of the
machine t ranslat ion service is changed (s et Addr es s).

O+~-,
Execl/litJl/ :

control :
function .------.

•I
I

Invocationof ' Execution
cullbuck Web .--' control
-'en 'ice : function

Fig. 2. Composite Web service which controls oth er composite Web service

One of the major advantages of our solut ion is reusability of the composite
Web service for the adaptation. The composite service in the upper part of
Fig. 2 can be applied to various composite Web services in which the number of
invocat ion of a const ituent Web service is limited just by setting the breakpoint .

2.2 Prototype

We developed a proto type of Service Supervision by extending an existing WS­
BPEL engine, ActiveBPEU as shown in Fig. 3.

The architecture consists of two parts: Composite Web service execut ion en­
gine and interaction control engine. On the Composite Web service execution
engine, both a composite Web service to be controlled and a composite Web
service which controls it using execution control functions are executed.

The interaction control engine is responsible for coordinat ion among more
th an one instances of composite Web services based on a given choreography
because some adaptation processes require the instances to be synchronized. As­
sume that two instances of the document translat ion service t ry to invoke count
(invoke) in Fig. 2 at almost the same t ime. The composite Web service in the
upper part of Fig. 2 receives the request for count (receive) that arrives first
and starts to increment the number of invocations. If the composite Web service

1 http ://wvv .activevos .com/community-open-source.php



152 NI. Tanaka et al.

,--------1 choreograPhvJ
I-J Supervision l (WS-CD~
1 -1 coordinato r T' :
1 I

: Interact ion Control Engine :

Request

-----+

'--. 1--'
1 Interaction Control 1

Composite Composite Web Service
Web service to be f+-- using execution contro l

contro lled functions

Monitor/Control

Composite web Serv ice Execut ion Engine

Fig. 3. The implemented prototype

----->
Exec ution
control

-----+
Websen';ce
;III'IIcat;OI/

Fig. 4. Choreography for definition of control protocol

receives the request from another instance of the document translation service
while incrementing the number of invocations, count (invoke) fails because it
is not waiting for the request at count (receive) .

To solve this problem, we introduce choreography, which defines the protocol
of interactions between a composite Web service which controls other composite
services and the composite Web service being controlled. We adopt WS-CDL
(Web Service Choreography Description Language) [10], a standard language for
choreography of Web services. We show an example of choreography in Fig. 4,
which defines protocol of interactions between the two composite Web services
shown in Fig. 2.

In Figure 4, a rectancle which has a word inside represents an interaction be­
tween the two composite Web services. This protocol ensures that the execution
of count (receive) in the composite Web service which controls the document
translation composite Web service and count (invoke) in the document trans­
lation composite Web service are processed in this order .

3 Adaptation of Composite Service Using Execution
Control

In this section, we organize various adaptation of composite Web service ex­
plained in some previous works[1l,12,13,14]. The aim is to extract reusable pro­
cesses for various adaptation like the composite Web service shown in the upper
part of Fig. 2.



Service Supervision Patterns: Reusable Adaptionof Composite Services 153

Some adaptation processes described in this section can be realized by the ex­
isting framework, such as WS-BPEL . But it is not flexible enough to adapt WS­
BPEL process to frequent change of environment or business rule by changing
the model of a composite Web service. Therefore we assume that an adaptation
process is temporarily realized by Service Supervision, and that it is ported to
the model when the adaptation process is permanently required.

3.1 Exception Handling

WS-BPEL provides exception handling mechanism. In a dynamic or open envi­
ronment , however, the exception handling of WS-BPEL is not flexible enough.

Using execution control functions , we can realize more flexible adaptations as
follows:

- Recovery
Exceptions which are unexpected at the design time can be recovered by
dynamically adding processes for montoring and recovering.

- Alert
Continuous check of consistency of data enables us to detect symptoms of
exceptions and to show an alert .

- Avoid exception
We can often avoid exceptions by adding a preprocess of an input to a service
or replacing a task which may cause an exception with a human task,

- Enforcement by humans
In case that execution of a composite Web service cannot recover from an
exception by an existing recovering process, humans often need to set states
of tasks manually.

3.2 Dynamic Change

We show major adaptation processes which cover the change of requirements of
users or state of services below.

- Dynamic binding
In dynamic environment, we often need to select services at runtime . This
is achieved by getting a list of available services and setting an endpoint
address .

- On-the-fly composition
According to the operator's request, the system is often required to generate
a new process and temporarily add it into the composite Web service.

3.3 Human Involvement

BPEL4People[15] is an extension of WS-BPEL and realizes combination of hu­
man tasks and Web services. Using the extension , we can define an invocation
of a human task in the manner similar to that of a Web service. When a human



154 M. Tanaka et al.

task is invoked, the task is sent to a person who is responsible for the task. The
human task is finished when the person inputs the result of the task.

However, human tasks often cause an unexpected problem due to the much
flexibility of human behavior. We show adaptation processes required to handle
the problems with human tasks below.

- Negotiation
When the result of a human task is not good enough, the task needs to be
executed again. This process often includes negotiation between the person
who performs the task and the evaluator because the evaluation can be sub­
jective and the evaluator must give a concrete instruction for re-execution ,

- Flexibility control
When the granularity of a human task is coarse, a person who is respon­
sible for the task can efficiently perform his task. But deviation from the
requirements of the task is prone to occur due to the flexibility. On the other
hand, we can reduce deviation by defining fine tasks . In that case, the effi­
ciency often declines. Therefore we need to control flexibility by configuring
granularity of tasks.

- Guideline
When the detail of the procedure of a task is not defined, showing guidelines
can be a help for reducing deviation from the implicit requirements.

- Clarify responsibility
More than one person or organization often involve in a task. If the task
sometimes causes an exception, it is required to decompose the task in order
to clarify the responsibility of people or organizations involved.

- Reassignment Based on the performance record of a person who is respon­
sible for a task or changes of business rules, we often need to change the
assignment of people to tasks. Therefore the operator needs to dynamically
configure the assingment or invoke a composite Web service which decides
the assignment .

3.4 Monitoring

An operator often needs to obtain and aggregate information of instances of
a composite Web service. However, the existing standard framework, such as
WS-BPEL, does not provide enough functions for monitoring. Therefore Service
Supervision can help the operator monitor execution states from the following
aspects :

- Aggregate state information
By aggregating information of states of tasks (e.g. assigned, running , sus­
pended, etc.) over multiple running instances, operators can know load on
each Web service or a person who is responsible for the tasks.

- Macro An operator often needs to perform a complex procedure which
collects and aggregate information of running instances . Therefore we need
allow the operator to define his/her own procedure .



Service Supervision Patterns: Reusable Adaption of Composite Services 155

3.5 Mi grat ion

Migrating to a new SOA system often confuses users because procedures and
operations for the users sometimes complete ly change. The load on the users
can be reduced by incremental migration as shown below:

- Plug-in
When a user interface for humans which is used before the migration, plug­
ging it into a composite Web service which are newly introduced allows
people work in a practiced man ner.
P artial reuse
People who work following a business process can be confused if the whole
business process is update at once. Therefore, we somet imes need to begin
with replacing a part of the current business process with that of new one.

- Transfer
When the model of a composite Web service is updated, a running instance
which is created from the old model is somet imes required to migrate to the
new model. Therefore we have to be able to create a new instance from the
new model and migrate the execution state of the instance of the old model
to new one keeping consistency.

4 Service Supervision Patterns

The adaptation processes descr ibed in the previous section can be realized by
combining executio n control funct ions shown in Section 2. However, the much
flexibility of the execution control functions sometimes makes it difficult to im­
plement the adaptation processes because a designer usually does not have expe­
rience on design using execution control functions. Therefore we propose Service
Supervision patterns, which consists of typical requirements and WS-BPEL pro­
cesses using execution control function s as solut ions.

Software patterns, including design patterns, have achieved a great success in
design and ana lysis of software . Also in the area of workflow, workflow patterns

Table 2. Comparison among software patterns, workflow patterns , and Service
Sueprvision patterns

Software patterns Workflow patt erns Service Supervision pat-
terns

Problem Requirements for analy- Requirements for Requirements for adapta-
sis, development and op- construction of tion
timization of software business flow

Solution Direction of design and Activity diagram Composite service using
development execution control func-

tions
Focus Abstraction of system ar- Analysisof business Operation and lifecycle of

chitecture and design composite services



156 M. Tanaka et al.

have been proposed and they show the design of workflows which satisfy various
requirements [8]. On the other hand, Service Supervision patterns give require­
ments for adaptation process as problems and composite Web services which
satisfy the requirements by combining execution control functions as solutions.
For example, the composite Web service which is shown in Fig. 2 and controls
the document translation service can be seen as a pattern which monitors the
execution and adds some processes by generalizing "count" and "setAddress".

Table 2 shows the comparison among software patterns, workflow patterns,
and Service Sueprvision patterns we propose in this paper.

Service Supervision patterns are easy for designers of composite Web services
to understand because the solutions are described in WS-BPEL processes. More­
over, we need little change to port them to the model of a composite Web service
to be adapted.

A composite Web service defined in a Service Supervision pattern consists of
the following elements:

- Control constructs and activities of WS-BPEL
- Execution control functions
- Template task

A composite Web service provided as a solution of Service Supervision pat­
terns runs on the same execution engine as composite Web services to be adapted.
The execution control functions are ones that introduced in Section 2. A tem­
plate task is defined according to the required adaptation processes.

We describe each Service Supervision pattern below. Tasks labeled as T repre­
sent template tasks. We omit activities which define dataflow for the simplicity.

4.1 Trigger Patterns

Runtime adaptations of a composite Web service are triggered when some changes
or events which require adaptation are detected. Such detection is performed (a)
at a certain point in a composite Web service, (b) continuously, (c) on operator's
request , or (d) when time-out of a task happens. The following patterns realize
the triggers for adaptations.

Pattern 1: Synchronous Watch

- Description. The task set to the template task is executed at a certain
point of the composite Web service to be adapted.

- Implementation. Set a breakpoint at the point to which some processes
should be added and set the composite Web service of this pattern as a
callback Web service.

- Example. Adding a process for validation of the result of a constituent
service and an exception handling process.

- Porting to model. Insert tasks set to the template task into the point
where the breakpoint is set .



Service Supervision Patterns: Reusable Adaption of Composite Services 157

Pattern 2: Continuous Watch
- Description. The tas k set to the template tas k is continuously executed

during the execution of composite Web service to be adapted.
- Implementation. Execute all tasks of composite Web service to be adapted

by step execution and execute the template task after each step.
- Example. Checking consistency of data handled by the composite Web

services.
- Porting to model. To add a monitor ing process to many points in a com­

posite Web service seriously declines the performance. There fore this pattern
should be used to find the point where some monitor ing is required before
the model is changed.

Pattern 3: Asynchronous Watch
- Description. The task set to the template task is executed on request .
- Implementation. Start execut ion of the template task after receiving a

request .
- Example. Reporting execution state of a composite Web service on the

request by operator's request.
- Porting to model. Add an asynchronous Receive, the task set to the tem­

plate task and Reply.

Pattern 4: Timeout

- Description. The task set to the temp late task is executed when a tas k
does not finish in a certain period of time .

- Implementation. Execute the target task by step and finish the instance
of this pattern by terminate, which is a WS-BPEL act ivity. If the specified
period of t ime elapses before the target tas k finishes, suspend execut ion of
the composite Web service and recover the ta rget task by the task set to the
template task.

- Example. When a service is temporari ly available or a human task is taking
too long, this pattern makes it possible to dynamica lly change services or
assignment of people.

- Porting to model. Replace step with the target tas k as asynchronous
invocation and put the composite Web service of this pattern instead of the
target task.

4.2 Evaluation and Retry Patterns

When the result of a tas k is invalid or the quality of the result is not good enough,
we need to retry the tas k until an appropriate result is obtained. We show the two
following patterns for the validat ion/evaluatio n of the result and retry.

Pattern 5: Automatic Retry

- Description. This pattern assumes that validation and retry are automat i­
cally performed. After validat ing the result of a task, this pattern retri es the
tas k if needed. The composite Web service which changes the conditions of
execution of the task is set to temp late task .



158 M. Tanakaet al.

Pattern 1: Synchronous watch

Pattern2: Continuous watch Pattern 3: Asynchronous watch

Pattern4: Timeout

Fig. 5. Trigger patterns

- Implementation. Set execution point by setEP, retry the task by step, and
change of the condition of execution at the template task in loop. To restore
the execution state before retry, we introduced getState and setState.

- Example. This pattern enables us to switch a service to an alternative when
execution of the service fails. This pattern also realizes the cycle of evaluation
and change of parameters, which is shown as Program Supervision [16] .

- Porting to model. Put the task to be retried and template task in loop
and add activities which set states before retry.

Pattern 6: Human Evaluation

- Description. This pattern retries a task when the quality of the result of
the task is not good enough. This pattern assumes that both the target task
and the evaluation are performed by humans. Therefore this pattern allows
people who are responsible for the tasks to communicate with each other by
introducing a task for evaluation as a template task.

- Implementation. Instead of the task for changing conditions of execution
in Automatic Retry pattern, put the task for evaluation and communication
after step of the target task.

- Example. This pattern allows an evaluator to show the guideline for the
task to a person who is responsible for the task even if the guideline was not
defined when the model of composite Web service is designed.

- Porting to model. Put the task to be retried and the task set to template
task in loop.

4.3 Patch Patterns

The following patterns are used to make up small defect keeping the most of
initial behaviors.



Service Supervision Patterns: Reusable Adaption of Composite Services 159

0---+/ getState1 ,e"tater<>r
Pattern5: Automatic Retry

Pattern6: Human Evaluation

Fig. 6. Evaluation and retry patterns

Pattern 7: Add Alternative

- Description. This pattern adds a task which is an alte rnative of a task in
a composite Web service when a given condition is sat isfied.

- Implementation. Put the template tas k and the target task in conditional
branches.

- Example. When a Web service often causes an exception under a certain
condition, this pattern can be applied to temporarily delegate the tas k to
humans.

- Porting to model. Replace the target task with the conditional branches
defined in this pattern.

Pattern 8: Partial Execution

- Description. This pattern executes a part of an existing composite Web
service.

- Implementation. step the tasks to be executed and skip other tasks.
- Example. This pattern realizes an incremental migration to a new compos-

ite Web service.
- Porting to model. Remove the tas ks which are skipped by this pattern

from the model of composite Web service.

Pattern7: AddAlternative

~
kiP

~~
step

o
Pattern8: Partial Execution

Fig . 7. Patch patt erns

4.4 Granularity Control Patterns

The following patterns compose or decompose tasks to control flexibility of hu­
man tasks.



160 M. Tanaka et al.

Pattern 9: Compose

- Description. This pattern replaces consecutive tasks with one task which
is equivalent to the consecut ive tasks.

- Implementation . skip tasks defined in the model of a composite Web ser­
vice and execute the task set to the template task.
Example. This pattern is applied if the efficiency for a human task declines
due to lack of flexibility.
Porting to model. Replace consecut ive tasks with the task set to the
template task.

Pat tern 10: Decompose

- Description. This pattern decomposes a tas k into some subtasks.
- Implementation. Execute the predefined subtas ks and skip the tas k to be

decomposed.
- Example. When a task is virt ually executed by some people, this pattern

is applied to clarify the responsibility of each person.
- Porting to model. Replace the target task with the subt asks set to the

template tas ks.

Pattern 9: Compose

o+~ ... --+o

Pattern 10: Decompose

Fig. 8. Granul arity control patterns

Table 3. Possible adap tations by Service Supervision pat terns

~
Synchronous Cootln Asynchr Time Auto Human Add Part ial camp dec
watch uous onous out retry evaluat alterna eJlecuti os. amp

Adanlallon watch watch Ion live on ose

.§ ~
Reeoverv • • • •
Alert • • • •~ ~ Avoid • • • • •~ 2
Enforcement • • •

.!:: C1.I Dvnamicbinding • • •E ..
On-the-fly

~~ eomoosition • • •
Negotiation • • •l:
Control flexibilltv • • • • •c: "

'" E Guideline • • •§~
:r ~ Cia rlfuresoonsibilitv • • • •of

Reassignment • •]'" tIQ Aggregatestate infu • • •~ 'E Maero • • •c: Plug-in • • • • •0
'OJ

Reuse • • •e
'" Transfer • •~



Service Supervision Patterns: Reusable Adaption of Composite Services 161

Table 3 shows adaptat ions described in Sect ion 3 and Service Supervision
patterns which can be used for each adaptat ion.

All adaptations are t riggered by one of Trigger patterns. Using Trigger pat­
te rns, the operator can easily start or stop the adaptation processes. However,
the adaptation processes have to be defined before they are applied. This is the
reason the patterns do not work well for adaptat ions which require us to define
an extreamly wide range of processes, such as on-the-fly composition and trans­
fer , although the patterns can be frequently reused for rather simple adaptations
such as except ion handling.

5 Related Works

Software patterns, which describe typical problems and solutions in software
development , have been expanded against the background of complexity of re­
cent software development . The most well-known software patterns are design
patterns]"] and they show means for system design based on object-oriented pro­
gramming. On the other hand , van der Aalst et al. proposed workflow patterns[8],
which show requirements for const ructing business flows and activity diagrams
as the solutions. The workflow patterns focus on analysis of business, excluding
perspective of system implementation.

Similarly, Service Supervision pat terns proposed in this paper also aims at
reusing know-howabout design. But Service Supervision patterns focus on adap­
tation processes which can be realized by execut ion contro l functions and there
is no previous work on reuse related to composite Web service for adaptation as
far as we know.

Several previous works have t ried to change behaviors of a composite Web ser­
vice without modifying the composite Web service. Most of them have adopted
the concept of AOP (Aspect-oriented Programming).

Some works monitor the messages exchanged between services and modify
them[3,4,5]. However, the works depend on their own descriptions. This leads to
the cost of design when adaptation is ported to the model of the composite Web
service.

A04BPEL[6] enables us to insert processes described in BPEL into before or
after an activity in an existing composite Web service as a pointcut. Therefore
the processes defined for adaptation using A04BPEL can easily be insert ed into
the model of a composite Web service. But some adaptation processes cannot be
realized by the method because it does not provide execut ion control functions
such as setting execution point . The authors also introduced some applicat ions,
but they are not comprehensively organized.

6 ConcIusion

Service Supervision, which controls the behavior of runn ing instances of compos­
ite Web services using execution control functions, allows us to flexibly adapt
composite Web service to changes of the environment or business rules. This



162 M. Tanaka et al.

makes const ituent Web services of a composite Web services t ransparent to users
and allows us to provide the composite Web services as a "cloud" service. How­
ever, th e much flexibility of Service Supervision sometimes makes it difficult
for the designer of composite Web services to design adaptation processes due
to the absence of accumulated know-how. Moreover, it often costs to port the
adaptation processes to the model of composite Web service to be adapted.

Therefore we proposed Service Supervision patterns, which provide typical
requirements for adaptation and reusable WS-BPEL processes which implements
the adaptat ion. The cont ributions of this work are as follows:

- We organ ized various adaptation processes based on some previous works
and explained how they can be implemented using control execut ion func­
tions.

- We extracted typical execut ion controls for adaptation processes and showed
how to port them to the model of a composite Web service.

The Service Supervision patterns can reduce the load on the designer who
implements adaptation processes or ports them to the model.

In futur e work, it is required to investigate the effect on the performance of
each pattern. We expect that the temporary adaptation is achieved by Service
Supervision, and then it is ported to the model when the permanent demand
of the adaptation becomes apparent. Ther efore the invest igation on the perfor­
mance helps the operator decide when and how the adaptation should be ported
to the model.

Acknowledgment

This work was supported by Strategic Information and Communications R&D
Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Com­
munications of Japan.

References

1. Business process execution langu age for web services (BPEL), version 1.1 (2003),
http ://www .ibm.co m/developerworks/library/ws-bpel/

2. Tanaka, 1'1., Ishida, T ., :\1urakami, Y., Morimoto , S.: Service supervision: Coor­
dinating web services in open environment . In : IEEE International Conference on
Web Services, ICWS 2009 (2009)

3. Moser, 0 ., Rosenberg, F ., Dustdar , S.: Non-intrusive monit oring and service adap­
tation for ws-bpel. In: 17th Internat ional World Wide Web Conference (WWW
2008), pp. 815-824 (2008)

4. Mosincat , A., Binder , W. : Transparent runtime adaptability for BPEL processes .
In: Bouguettaya , A., Kru eger, 1., Margaria , T. (eds.) ICSOC 2008. L:\TCS, vol. 5364,
pp . 241-255. Sprin ger, Heidelberg (2008)

5. Baresi, L., Guinea, S., Plebani , P.: Policies and aspects for the supervision of BPEL
processes. In: Krogsti e, J ., Opd ahl , A.L., Sindr e, G. (OOs.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp . 340-354. Springer, Heidelberg (2007)



Service Supervision Patterns: Reusable Adaption of Composite Services 163

6. Charfi, A., Mezini, M.: A04BPEL: An aspect-oriented extension to BPEL. World
Wide Web 10(3), 309-344 (2007)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J .: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

8. van der Aalst , W.M.P., Hofstede, A.t ., Kiepuszewski, B., Barros, A.: Workflow
patterns. Distribut ed and Par allel Dat abases 14(3), 5-51 (2003)

9. Ishida, T .: Language Grid: An infrastructure for intercultural collaboration. In:
IEEEjIPSJ Symposium on Applications and the Internet (SAINT 2006), pp. 96­
100 (2006)

10. Web services choreography descripti on language version 1.0 (2005),
http ://www.w3.org/TR/ws-cdl-l0/

11. Kammer , P.J ., Bolcer, G.A., Taylor, R.N., Hitomi, A.S., Bergman , M.: Techniques
for supporting dynamic and adaptive workflow. Computer Supported Cooperat ive
Work (CSCW) 9(3), 269- 292 (2000)

12. Miiller, R., Greiner , D., Rahm , E.: Agentwork: a workflow system support ing
rule-based workflow adapta tion. Data and Knowledge Engineering 51(2), 223- 256
(2004)

13. van der Aalst , W.M.P., Basten, T ., Verbeek, H.:N1.W., Verkoulen, P.A.C., Voorho­
eve, M.: Adaptive workflow. on the interplay between flexibility and support . In:
Pro ceedings of the first International Conference on Ent erprise Information Sys­
tems, pp. 353-360 (1999)

14. Han , Y , Sheth , A., Bussler, C.: A taxonomy of adaptive workflow management . In:
ACM Conference on Computer Supported Cooperative Work, CSCW 1998 (1998)

15. WS-BPEL extension for people (bpel4people), version 1.0 (2007),
http ://www.ibm .com/developerworks/webservices/library/specification/
ws-bpe14people/

16. Thonnat , M., Clement , V., Elst , J .v.d.: Supervision of perception tasks for au­
tonomous systems: The OCAPI approach. In: 3rd Annual Conference of AI, Sim­
ulation , and Planning in High Autonomy Systems, pp. 210-217 (1992)


	Service Supervision Patterns: Reusable Adaption of Composite Services
	1 Introduction
	2 Service Supervision
	2.1 Execution Control Functions
	2.2 Prototype

	3 Adaptation of Composite Service Using Execution Control
	3.1 Exception Handling
	3.2 Dynamic Change
	3.3 Human Involvement
	3.4 Monitoring
	3.5 Migration

	4 Service Supervision Patterns
	4.1 Trigger Patterns
	4.2 Evaluation and Retry Patterns
	4.3 Patch Patterns
	4.4 Granularity Control Patterns

	5 Related Works
	6 ConcIusion
	References




