
WISEBED: An Open Large-Scale Wireless

Sensor Network Testbed

Ioannis Chatzigiannakis1, Stefan Fischer2, Christos Koninis1,
Georgios Mylonas1, and Dennis Pfisterer2

1 Computer Technology Institute and University of Patras,
N. Kazantzaki, Rio, Patras, Greece
{ichatz,koninis,mylonasg}@cti.gr

2 University of Lübeck and Institute of Telematics,
Ratzeburger Allee 160, Lübeck, Germany

{fischer,pfisterer}@itm.uni-luebeck.de

Abstract. In this paper we present an overview of WISEBED, a large-
scale wireless sensor network testbed, which is currently being built for
research purposes. This project is led by a number of European Univer-
sities and Research Institutes, hoping to provide scientists, researchers
and companies with an environment to conduct experiments with, in
order to evaluate and validate their sensor network-related work. The
initial planning of the project includes a large, heterogeneous testbed,
consisting of at least 9 geographically disparate networks that include
both sensor and actuator nodes, and scaling in the order of thousands
(currently being in total 550 nodes). We present here the overall architec-
ture of WISEBED, focusing on certain aspects of the software ecosystem
surrounding the project, such as the Open Federation Alliance, which
will enable a view of the whole testbed, or parts of it, as single entities,
and the testbed’s tight integration with the Shawn network simulator.
We also present examples of the actual hardware used currently in the
testbed and outline the architecture of two of the testbed’s sites.

Keywords: WISEBED,testbed, sensornetwork, large-scale, experiment,
open, federated, portal, web services, heterogeneous, actuators, software
library, simulation.

1 Introduction – Motivation

In the last few years, we have begun to witness the effects of turning a vast
number of heterogeneous objects into one large and decentralized network, as a
result of a growing trend to interconnect the natural and the digital worlds. A
variety of methods and technologies is being used to realize the Internet-of-things
vision, where myriads of networked devices will allow the provision of ubiquitous
computing services and closer inspection of the physical domain. Still, the large-
scale effects of the interaction between hardware, software, algorithms and data
are just starting to show, and many of the resulting emerging phenomena often
come as a surprise, rather than by design.

N. Komninos (Ed.): SENSAPPEAL 2009, LNICST 29, pp. 68–87, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 69

Until very recently, scientific efforts for studying computing methodologies for
decentralized complex systems have been very limited. A particularly promising
and active research area, in this context, is wireless sensor networking (WSN),
which is attracting researchers from very different backgrounds, such as hard-
ware, software, algorithms, etc., as well as researchers from various application
areas. So far, the number and size of actual testbeds for sensor networks has
been rather limited. All of these efforts have been struggling with a number of
different issues:

– Hardware. Developing/acquiring small-scale devices for sensor networks is
a tedious/expensive task.

– Software. Dealing with the limitations of small-scale special-purpose com-
puting devices makes it very challenging to develop appropriate software.

– Algorithms. Dealing with the challenges of designing algorithms for well-
organized, large-scale distributed systems requires new algorithmic methods.

– Data. The large volume of collected sensing information, as well as the
communication overhead gives rise to huge amounts of data.

WISEBED [1] is a European research project that will try to overcome some
of these impediments by building a network of networks. More specifically, it
will expose a network of heterogeneous sensor network testbeds, together with
a unified and universal approach to software, algorithms, and data. Connecting
sensor networks to the Internet creates endless opportunities for applications and
services, new emerging models of operation. Users will be able to get real-time
data from the physical world for everything, everywhere and anytime. To make
such a vision a reality, be effective and produce applicable results, it is important
to encourage interaction and bridge the gap between fundamental (theoretical)
approaches and technological/practical solutions.

WISEBED, in general, involves the following long-term actions:

– Deploy large numbers of wireless sensor devices of different hardware tech-
nologies in different types of terrains to use for evaluating and testing solu-
tions at a large scale.

– Interconnect these wireless networks with the Internet and provide a virtual
unifying laboratory to enable testing and benchmarking, in a controlled way,
in different “real-life” situations. Researchers will be able to use the facili-
ties remotely, thus reducing the need for a local, private testbed and, more
importantly, reducing the cost for conducting all-rounded research.

– Operate the testbeds to collect traces of data from the physical environment
and derive models of real-life situations and scenarios. These scenarios will
be used to evaluate the performance of algorithms and systems and draw
conclusions on their operation and how it can be improved.

– Provide a repository of algorithms, mechanisms and protocols and develop
a library, called WISELIB, that can be directly used in experiments with
WISEBED.

70 I. Chatzigiannakis et al.

2 Previous Related Work

In this section we give a brief description of a number of existing wireless sensor
network testbeds and related software environments. We chose to include only
testbeds of significant scale or based on their unique characteristics (e.g., mobile
nodes, open to the public, etc.). The characteristics we chose to highlight include
total number of nodes, indoor or outdoor deployment, heterogeneity support,
overall architecture and topology, openness to the public, total operational time.

Existing testbeds. The Trio testbed [2] was one of the largest wireless sensor
testbeds, indoor and outdoor, built yet. The main target was to build and demon-
strate a large-scale outdoor sensor testbed to be used in a multi-target tracking
application. It consisted of 557 solar-powered motes, seven gateway nodes, and
one overall testbed server. It was not open to the public research community,
since it was targeted to a specific application. MoteLab [3] is an indoor sensor
network testbed on the campus of Harvard University and is open to the public.
It currently features 190 Tmote Sky sensor nodes. All sensor nodes are wired
to programming boards allowing for direct reprogramming and communication.
It was designed having in mind that the testbed should be both open and easy
to use for other researchers, i.e., users from other research teams should have
access for experimentation to real large-scale sensor networks. It provides a web-
based interface for programming, debugging, and accessing data from the sensor
network. The TWIST testbed [4] resides indoor in a building in the campus
of the Technical University of Berlin, spanning across several floors. The total
number of sensor nodes belonging to the testbed is 200, with heterogeneity sup-
ported to some extent. The TutorNet testbed [5] uses a 3-tier network topology
(similar to TWIST but without any abilities to work in other topology modes)
with testbed servers, gateway stations, and sensor nodes, which feature USB
connections to the gateway stations. Services provided include remote program-
ming of the nodes. Authorized-only users connect to the testbed servers and use
command-line tools to control the testbed nodes. The total number of sensor
nodes is approximately 100. Intel SensorNet [6] (now discontinued) is an indoor
sensor network testbed that featured 100 MicaZ sensor nodes in the Berkeley
Intel Research facilities. It allows resource allocation between multiple users sub-
mitting their jobs to be scheduled and executed in the sensor testbed. Kansei
[7] is another sensor testbed targeted towards large indoor sensor networks. It
currently features 210 sensor nodes, with 210 gateway stations attached to each
one of the sensor nodes. It features a web-based interface for researchers, which
allows for submitting jobs to the testbed, visualization of sensor readings, de-
bugging and health monitoring, along with other sophisticated features. Only
registered users can use this testbed. TrueMobile (Mobile Emulab wireless sen-
sor network testbed, [8]) is an extension to the popular EmuLab wireless ad
hoc networks testbed. The mobile testbed currently covers a total area of 60
m2, and is situated indoor, and includes six mobile robots and 25 fixed Mica2
motes. EmuLab is an open testbed to the public (registered users). CitySense [9]
is an urban (both indoor and outdoor) sensor network testbed, consisting of 100

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 71

wireless sensors deployed across a city, such as on light poles and buildings.
Each node consists of an embedded PC with wifi and various sensors for mon-
itoring weather conditions and air pollutants. CitySense is intended to be an
open testbed. SENSEI [10] is another EU Research Project, aiming among other
to provide a Pan-European test platform, enabling large scale experimental eval-
uation and execution of field trials - providing a tool for long term evaluation
of the integration of sensor and actuator networks into the Future Internet. We
should point out that, apart from TWIST and SENSEI, all the other testbeds
are situated in the United States.

Related Software. One of the most important problems in designing applica-
tions for WSNs is the heterogeneity in hardware and operating systems, espe-
cially when talking about a distributed testbed operated in different domains.
It makes sense to add an integration layer somewhere between hardware and
application, called middleware. Creating middleware for WSNs is a challenge,
mainly due to resource restrictions. We point the reader to a number of survey
papers on WSN middleware [11,12,13,14,15].

Simulation is also an invaluable tool for evaluating protocol designs for com-
plex systems such as WSNs, that are either comprised of a large number of inter-
acting entities, systems that exhibit highly dynamic behavior or systems where
directly performing an experiment is difficult due to cost or time constraints. A
number of simulators have been developed and/or extended to allow the model-
ing and simulation of WSNs. Most notable examples of such simulators are ns-2,
OMNeT++, OPNET Modeler, GTNetS and YANS. Some attempts to bridge the
gap between simulation and real-world performance and to make the transition
smoother have been proposed in international literature, such as TOSSIM [16],
which takes advantage of TinyOS’s structure to generate discrete-event simu-
lations directly from TinyOS component graphs. The level of detail provided
by these simulation tools is resource-demanding and limits simulations to small
scenarios with only a few thousand of nodes while future scenarios anticipate
networks with millions of nodes.

A very important aspect of developing an application for wireless sensor net-
works and deploying an operational sensor network is testbed debugging. Sim-
ulations and lab deployments in controlled environments cannot always reveal
weaknesses and errors in the design and implementation of such applications,
especially since the physical world can heavily influence the overall operation
of these systems. Debugging refers both to software parameters and network
parameters (mostly connectivity issues). There must also be an easy way to
detect and track down problems during the normal operation of the network,
i.e., after the end of the development cycle. The problems in the operation of
a wireless sensor network can be classified into four categories: node problems,
link problems, path problems, and global problems affecting large portions of
the network.

Some examples of debugging software for WSN are: the Sensor Network Man-
agement System (SNMS, [17]), designed for debugging TinyOS applications;
Sympathy [18], designed for sensor networks that follow a central gateway model;

72 I. Chatzigiannakis et al.

Memento [19], an environment that provides, apart from failure detection, symp-
tom alerts, i.e., reports on degrading performance and failures that may happen
in the future according to certain symptoms; Marionette [20], a software envi-
ronment that allows easy interaction with applications written in nesC, running
in TinyOS-based sensor networks; and Sensor Network Inspection Framework
(SNIF, [21]), which follows a more passive approach by using a separate back-
bone network that intercepts all data transmitted over the air inside the wireless
sensor network. A software environment for managing sensor testbeds associ-
ated with the SENSEI project is SIGNETLAB [22]. Other interesting examples
of software environments that focus on “replaying” activity inside the sensor
network are LiveNet [23] and [24].

Our contribution: Existing wireless sensor testbeds are mainly deployed in
indoor environments, only few have above 100 nodes, most are not publicly
open to other researchers to test their own ideas, and there is little support for
heterogeneity and mobility. In general, a tightly coupled network and software
architecture is followed, thus limiting the extendibility, customize-ability and
relocation ability of such testbeds. Our approach aims at overcoming several of
these limitations:

– We plan to develop and deploy several connected testbeds, each with several
hundred nodes.

– We plan to connect these testbeds into a much larger heterogeneous network
(with a few thousand nodes), creating the potentially largest sensor network
testbed in the world.

– This federation of testbeds is based on the concept of testbed virtualization
and virtual links between them.

– The system will provide a variety of interfaces for end-users and applications.
– We aim at providing a unified algorithmic and software environment, thus

overcoming the impediments of customization and allowing for convenient
usage of the testbed.

3 Overall Architecture and Considerations

This section introduces WISEBED’s general architecture (cf. Figure 1). We con-
sider the WISEBED distributed testbed as a global network where human users,
intelligent agents, and powerful computers interact with the wireless sensor
network testbeds. In particular, we distinguish the global network into three
sub-domains:

– The overlay network where peers are applications executing on powerful
computer devices that have the ability to communicate with other peers via
Internet or other global networks.

– The sensor devices that form wireless sensor network testbeds and commu-
nicate via the wireless medium.

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 73

– The portal servers that consist of nodes that control the wireless sensor
network testbeds and allow for interaction between the overlay peers and
the sensor devices.

Essentially, the architecture of the WISEBED system is based on a hierarchy of
layers where each layer is comprised of one or more peers (see Figure 1). Each
layer is assigned a particular role in the system. Each peer may be a traditional
networked processor or a wireless sensor device.

– The bottom layer contains the wireless sensor nodes that are running iSense,
Contiki, TinyOS, or legacy systems. These devices form wireless networks
that constitute the WSN testbeds.

– The testbeds of each partner are controlled by Portal Servers that provide
access and expose interfaces to manage and operate them. Users can connect
to a single testbed directly via the Internet accessing the interface provided
by the particular portal server. In order to do so, users must be aware of the
public IP address of the individual portal servers.

– The portal servers of each testbed partner site are interconnected via an
overlay network. Peers connecting to the overlay network may access one or
more portal servers in order to use multiple testbeds in a distributed manner.
In order to do so, users are not required to know the public IP address of
the portal servers.

ULANC

TUD
TUBS

FUB

UZL

UNIGE

UBERN

UPC

CTI

Overlay
Network

CTI

Testbed Portal Servers at
each WISEBED Partner Site

Each WISEBED Partner
maintains its own testbed
with different hardware
equipment and setup

Overlay Software running on
the Portal Server

Users connect to the federated testbed using
the Web Services defined by the OFA standard

via the Overlay Network

Users connect to a single
testbed directly using Web
Services defined by the OFA
standard

Fig. 1. Overall architecture of the WISEBED testbed federation

74 I. Chatzigiannakis et al.

The advantageous distributed characteristics of the system are achieved via a
series of functions and mechanisms (services) which are activated by the system
as a response to various kinds of events, processes, actions, applications that
take place on it. Rather than following a multi-tiered architecture, in which a
number of tiers are operating in a specific hierarchical way and specific inter-
faces are used for communication across each layer, we choose to follow a less
tightly coupled architecture in order to offer more flexibility to the system. In-
teraction among services is performed over all the levels of the system, in order
to exchange necessary information for the successful accomplishment of each of
them. Software agents (services) running on a peer are considered as indepen-
dent modules that may interact with other services on the same peer and/or
software agents executed by nearby peers.

This flexibility allows the overlay network to spontaneously federate multiple
portal servers into a Virtual Distributed Testbed and expose their services as a
single unifying virtual testbed. Thus, users connected to the overlay network can
access the unifying distributed testbed in the same way they access individual
testbeds via the portal servers. Due to the architecture of the overlay nodes
and portal servers, the interfaces exposed look identical and therefore there is
no need to re-write their code. In addition, the overlay network can partition
specific nodes (not necessarily from the same testbed) and expose their services
as a single unifying virtual testbed.

Furthermore, due to the heterogeneity of the devices but also to the very
nature of such a global system for testbed interconnection, each peer may operate
with a different set of software agents, i.e. provide a subset of the available
services, and may provide different versions of a particular service, i.e. provide
different quality and functionality. In this sense, we point out that:

– Each wireless device may operate a different set of software agents, i.e.,
provide a subset of services.

– Each wireless device may operate different versions of a particular service.
– Each portal server may operate under different implementation of a partic-

ular service that provides a subset of services.

The structure of the peers of our system follows a modular architecture of es-
sentially two layers: the inner layer that is comprised of minimum set core
functionalities and an outer layer that hosts a variety of services.

Portal Server. These peers are responsible for the control and management of
the WSN testbed of a single partner. The inner layer includes services responsi-
ble for accessing the sensor devices via gateways to the wireless networks. User
commands are translated to a binary packet format that is generic enough so that
it can be implemented by the different hardware/software technologies available
in WISEBED. Each portal server is connected to one or more local data stores
(e.g., XML files, RDBMS systems, embedded databases etc.) for storing data
retrieved from the database, debug traces, access lists etc. The outer layer im-
plements a series of services that are used by the users of the testbed. Users can
access the services of the outer layer via the public IP interfaces of the Portal
Servers.

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 75

Overlay Node. These peers are responsible for the interconnection of the WSN
testbeds of each partner. The inner layer contains client software of the services
of the Portal Servers. User commands are directed to the corresponding service
interface of the relevant Portal Server. Each overlay node is connected to one or
more local data store for storing data retrieved from the Portal Servers (debug
traces, access lists etc.) for future reference. The outer layer provides interfaces
that are similar to those offered by the Portal Servers. Essentially they are proxy
(or skeleton) interfaces that translate the incoming requests to one or more Portal
Server.

High-level description of Web Services. It is our intension to provide Open Stan-
dards for both high-level services and low-level network interfaces. We organize
these services in three groups:

– Authentication, Authorization, Accounting (AAA). Each portal server is part
of an AAA system spanning across all federated testbeds. We will deploy the
well-established, decentralized PKI-based authentication and authorization
infrastructure Shibboleth to protect and simplify the inter-organizational
access to the sensor network testbeds. Shibboleth is an open-source attribute-
based access control system basing on state of the art cryptography and
security protocols. By making the portal servers available and joining the fed-
eration, each testbed operator offers its testbed resources to all affiliated
WISEBED partners.

– Network Control, Debugging and Configuration (MGT). Fully integrated
portal server offer services for programming the nodes of the testbed (new
binary image) and for debugging the state of the nodes (energy, commu-
nication, memory, debug interfaces using out of band methods). They also
provide services for configuring the operation of the nodes (channel, trans-
mission power).

– Data Acquisition, Query Processing, Network Operation (OPT). Portal
servers (both fully integrated and semi integrated) provide a description
of the testbed offered to the community. This is a list of the devices of
the testbed and their capabilities. We will use and extend the SensorML
standard for describing the available hardware. This group of services also
allows the selection of low-level protocols or combination of protocols (from
WISELIB) and the programming of the nodes from existing, tested, known
binary images. It provides services for accessing the data retrieved from the
sensors and issuing queries for data.

4 Software Aspects of WISEBED

In the following we give some further details concerning a number two of the
important software aspects of WISEBED, specifically its integration with the
Shawn network simulator and the federation of discrete sensor testbeds.

76 I. Chatzigiannakis et al.

4.1 Integration with the Shawn Network Simulator

Shawn [25,26,27] is a simulation framework for WSNs with unique features for
the development of algorithms, protocols and applications, that will play a ma-
jor part in WISEBED. It does not compete with traditional simulators in the
area of network stack simulation; instead, it focuses on an abstract, repeatable
and expressive approach to WSN simulation. By replacing low-level effects with
abstract and exchangeable models, the simulation can be used for huge networks
in reasonable time while keeping the focus on the actual research problem. In
the case of a MAC layer, for example, Shawn models the effects of a MAC layer
for the application (e.g., packet loss, corruption and delay) instead of performing
simulations including radio propagation properties such as attenuation, collision,
fading and multi-path propagation. As a result, simulations are more predictable
and there is a performance gain since such a model can be implemented very
efficiently. Shawn requires orders of magnitudes less resources in terms of mem-
ory and CPU-time compared to traditional approaches and scales literally to
millions of nodes

Shawn allows to reduce the process of porting simulated code to actual sensor
nodes by using just a mere recompile. There is already implemented support
for the Pacemate [28] and the iSense [29] sensor nodes. This allows using the
same code for the sensor nodes and the simulation tool thus relieving developers
from reimplementing the software for different types of hardware. A direct conse-
quence of this architecture is that Shawn can be used as a virtual testbed, thus
simplifying the development of our WISEBED testbed software infrastructure.
For developers of testbed applications this simplifies the development before
software is actually deployed on real hardware since standard debugging tools
can be used.

4.2 Federation of Testbeds and Related APIs

In this section we will discuss further the testbeds’ federation concept, presented
in Section 3. As mentioned previously, WISEBED will provide abstractions so as
to be able to use resources from different testbeds in a transparent manner.
WISEBED aims to hide the inherent heterogeneity of the participating sensor
networks to the end-user, so that even nodes with different types of hardware
situated in discrete geographic areas will be able to communicate with each
other.

One way of dealing with the variety of possible scenarios in this case is the
use of virtual links between the discrete testbeds. Such links will essentially
create “tunnels” between testbeds and sensor nodes. An ambitious goal of the
project is to provide to end-users the ability not only to use nodes from different
sensor networks, but also to be able to define, to a certain extent, links between
nodes belonging to these discrete networks and essentially be able to define
network topologies. The introduction of virtual links naturally inserts additional
complexity in the operation of the system, as well generates additional issues
regarding the realism achieved by the experiments conducted within the scope
of the project, and will be further researched through the course of WISEBED.

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 77

WISEBED will investigate, among other, the efficiency of using such virtual
links in order to implement a distributed testbed over a variety of different
kinds of infrastructure, since there is a varying degree in the use of direct wired
connections to the testbed nodes in the currently deployed sensor networks. This
is due to the fact that these networks on the one hand have to a certain degree
different target applications, and on the other hand may be deployed indoors
or outdoors. Thus, the testbeds’ backbone may range from completely wired,
i.e., all nodes are directly connected to testbed gateways, to completely wireless,
i.e., all nodes are wirelessly linked between each other and to hybrid approaches.
Figure 2 depicts ways of using virtual links to interconnect sensor testbeds in
different infrastructure architecture scenarios.

We will now briefly discuss the entities related with the Data Acquisition and
Network Operation(OPT) API of WISEBED as a whole and each portal server in
particular (see section 3). In short, this API allows programmers and applications
to interface with the testbed in order to have access to data describing the setup
of the testbed, with regard to the resources used and the underlying networks’
operation, acting as a testbed directory. The design goal for these services are:

– To take advantage of the already defined and used open standards such as
SensorML, in order to extend the application scope of the project overall.

– To supply a flexible interface that will accommodate the varying needs of
several different types of users(protocol designers, application programmers)
who choose to use the WISEBED infrastructure.

– Enable the interaction with groups and research projects such as OGC,
SANY FP6 project, CONET.

First of all, we need to define a method to describe and uniquely identify all the
different entities of the testbed - we use the following entities as a basis:

– Sensor nodes - We define sensor nodes as the unique nodes comprising each
of the partner testbeds in WISEBED. Each sensor node belongs to only one
sensor network. So, each sensor node belonging to WISEBED is described
using the unique ID of the partner site, a sensor network ID which is unique
in the partner site namespace, and the sensor node ID which is unique in
the specific sensor network scope it belongs to.

– Node capabilities - With the term node capability we refer to the sensing and
acting possibilities offered by each specific node. Node capabilities include
sensor types, supported interfaces and other hardware information.

– Edge attributes - Edge attributes describe characteristics such as the quality
of the link between two sensor nodes of the testbed.

– Node attributes - Sensor nodes of each WISEBED sensor network are repre-
sented as nodes of the aforementioned graph. We describe such nodes with
attributes as whether is a gateway/base station.

– Testbed portal servers - Each partner in WISEBED maintains a portal server,
offering a defined set of services. For the description of such services refer to
the respective deliverables.

78 I. Chatzigiannakis et al.

Fig. 2. Different types of testbed infrastructure (wired, wireless, hybrid) and virtual
links between them

– Points of interest - Points of interest in WISEBED refer to specific areas,
covered by the sensor networks belonging to WISEBED.

To give some examples of the API that will be used in WISEBED, Portal Servers,
among others, will provide the following interfaces:

string getRecords(): Returns a GraphML document containing the complete
list of nodes and the network topology1. GraphML is an XML dialect used to
“draw” a graph, by defining a set of nodes and the edges connecting these nodes,
together with sets of attributes describing the nodes and the edges of the graph.
Each such graph represents a discrete sensor network, that is controlled through
the use of one (or maybe more) gateway nodes.

string getCapabilities(string urn): Returns all the urn key values, for the
specified sensor node, or sensor network.

string describeCapability(string urn): For the specified capability, it re-
turns a full description in SensorML. SensorML is an XML dialect used to de-
scribe “Sensor Webs”, i.e., entities (sensor nodes or networks of sensor nodes)
connected to the Internet. It provides a very descriptive schema of sensors, nodes,
and a large number of related attributes.

string getKml(): Returns a KML document containing a description of the
networks contained in a Portal Server or the whole WISEBED infrastructure.
KML is the language used by Google Earth in order to describe all data related

1 When referring to “complete list” we imply the “authenticated list of nodes”.

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 79

to that specific application, including geographic information, visual represen-
tation, time-related state, etc. It can be seen as an alternative description of
GraphML and SensorML data provided by previously mentioned functions. It
is a widely used data format, which is also beginning to be used in other GIS-
related applications.

string getRecordsInArea(double x1, double y1, double z1, double x2,
double y2, double z2): Returns a GraphML document containing the list of
nodes and the respective network topology, that are within a specified area. This
area is essentially defined as a cube, by providing longitude, latitude and altitude
of two discrete points on Earth’s surface.

5 Hardware Aspects of WISEBED – Current Deployment

Existing sensor network testbeds, in terms of hardware, are mainly character-
ized by small scale, homogeneity and tight integration between hardware and
software, i.e., the selection of a certain hardware platform implies the adop-
tion of a specific complementary software platform and vice versa. The so far
lacking adoption of software and hardware standards by the sensor network re-
search community, poses further restraints in the interoperability of the existing
testbeds. Such limitations have of course a big impact on the applications that
can be eventually implemented and tested by researchers and developers.

WISEBED aims to lift such restrictions by:

– federating testbeds of considerable size (in the order of hundreds of nodes)
into “virtual” unified testbeds of large scale (in the order of thousands). The
initial planning is for approximately 2000 nodes at the end of the project,
with the number currently (March 2009) being approximately 550.

– offering heterogeneity, by adopting a number of hardware platforms. Hetero-
geneity is expressed in the form of using hardware with different computa-
tional resources, sensing resources, or the associated software resources.

– using various network topologies, mirroring the various application needs.
Such topologies can be flat, hierarchical, having wired or wireless backbone,
etc.

– placing the testbed nodes in various “realistic” settings, in order to simulate
the conditions for certain applications such as building monitoring or natural
disasters (e.g., river floods), indoor/outdoor, etc.

– using mobility to a certain degree, in order to encompass the development of
mobility-related applications. A number of mobile robots, such as Roomba,
will be used to enable such applications.

– using standardized radio interfaces. The multiplicity of different hardware
platforms prevents a collaboration of devices from different vendors. The
IEEE 802.15.4 standard is a step towards homogeneous and interoperable
WSN hardware platforms. A number of the project partners use compatible
802.15.4 radio interfaces.

80 I. Chatzigiannakis et al.

The processors used in the testbed’s nodes are ranging from quite powerful,
such as Intel PXA2xx series processors used in iMotes and GumStix, to much
less powerful, e.g. MSP430F1612 used in MSB430. The minimum flash memory
is 48KB (Tmote Sky nodes) and the minimum RAM is 2KB (EBS nodes), while
the maximum flash and RAM resources is 32MB each (iMote). The wireless
interfaces include IEEE 802.11b/g, IEEE 802.15.4 operating at 2.4GHz and other
900MHz radios. There is a variety of other interfaces present, such as Bluetooth,
USB, JTAG, etc. A complete range of sensors is available ranging from the
most commonly used ones, such as temperature, light, humidity, to other less
common sensors like magnetometers and accelerometers. A variety of operating
systems enable the users to experiment on the platforms they prefer. An analytic
description of the current state of the overall testbed is included in [30]. We will
now describe in more detail two specific WISEBED sites.

5.1 Lübeck Testbed Description

Univerzität zü Lübeck (UZL) currently operates two testbeds. Because of their
different radio interfaces, the two different testbed nodes can only communicate
via the gateway nodes. A gateway node is a normal node with an additional
interface to communicate with a PC. The testbed PCs are connected among
each other via a TCP/IP network to interact with the other testbed and over
the Internet with the users participating in WISEBED.

The first testbed uses the Pacemate nodes (developed as part of the Marathon-
Net project, see [31]). These nodes are wearable and are developed to realize ser-
vices for athletes during a marathon. The testbed consist of approx. 50 sensor
nodes (extensible to 500) and mobile gateways. These nodes are equipped with
Philips LPC2136 processors and a Xemnics RF module running at 868 MHz. The
Pacemates offer an ergonomic waterproof housing, are very light-weight and are
easily attached to the back of the hand. They have a display and offer three
buttons. Additionally, they are equipped with the following interfaces:

– A serial extension interface for additional sensors.
– A short range wireless heart rate receiver.
– A long range wireless interface.

The second testbed consists of up to 50 iSense nodes by coalesenses GmbH [29].
The gateway nodes as well as all other nodes have a Gateway Module with a
permanent USB connection to a PC. This enables to power all nodes through the
USB and guarantee a twenty-four-seven operating mode. The iSense Software
is used to implement applications for the Pacemate as well as the iSense nodes.
At the moment there is an iSense implementation for the iSense and Pacemate
hardware and the Shawn simulation framework. Out of this reason it is possible
to write an application with iSense, test it with the Shawn simulation framework
and compile the same source code just using a different cross-compiler for the
iSense or Pacemate architecture.

In addition to the iSense platform, Coalesenses GmbH provides a software tool
called iShell to communicate with the network and receive debug information

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 81

Table 1. Overview of the pacemate and iSense Hardware

pacemate iSense

RAM 64kB 96kB

Serial Flash 256kB 128kB

Current draw operation 47mA 39mA

Current draw sleep mode 60µ A 10µ A

Frequency 868 MHz 2,4GHz

Bandwith 115kbit/s 250 kbit/s

Transmission power 15dB 3dB

Transmission range 100m 600m

from the nodes. iShell is running on a PC, which is connected to one or more
gateway nodes via a USB connection. Through the PC and iShell, users can
get data output (e.g., sensor readings), network status information and debug
messages. Furthermore, the user can directly program the connected gateway
nodes and indirectly program the other nodes in the network via over-the-air
programming. The testbed PCs are connected amongst each other using cables
or WiFi connections via the internet.

UZL is currently planning to enhance its testbed with mobility support. An
autonomous mobile sensor network, i.e., a network where the mobility of nodes
does not rely on humans, will be introduced. UZL will purchase a small number of
mobile robots, which will be able to carry iSense sensor nodes and are controlled
by these sensor nodes. Apart from forming their own testbed, these robots can
also be used as mobile gateways between fixed sensor nodes, in order to extend
their reach and the size of the overall network.

5.2 RACTI Testbed Description

The testbed in Research Academic Computer Technology Institute (RACTI) in
Patras currently spans over two locations at the University of Patras’ campus.
These two locations include the main premises of RACTI and another building
used to house several offices of RACTI’s Research Unit 1. Currently, these sen-
sor networks are mainly used to monitor condition inside these two buildings,
including parameters such as temperature, light, humidity, acceleration, levels of
magnetic fields, barometric pressure. In the near future we will also add sensing
features such as movement/presence and vehicle detection.

The hardware architecture used for the purposes of our testbed has three
hierarchical levels:

– the first level includes the nodes at the sensor network level,
– the second level includes the (stationary or mobile) gateways used to inter-

face the sensor network to the rest of the world,
– the third level includes the servers used to store information and administer

the testbed.

The deployment of the devices follows the structure of RACTI’s building; each
floor of the building is divided in two or three sectors, with each sector separated

82 I. Chatzigiannakis et al.

with the others communication-wise, due to thick walls and metallic doors. A
gateway device is used to interface the devices located in each part of the build-
ing, with the selection of the gateway based on the type of sensor nodes used. We
chose to use wall plug mounts to power almost all of the sensor nodes inside the
testbed, due to the difficulties arising from changing batteries in a large testbed
and also to its demand for continuous availability. Currently, the testbed spans
across 4 floors, covering almost one third of RACTI’s main building.

In general, currently, we use devices provided by Crossbow and Sun on the
sensor network level. At a glance, RACTI’s testbed consists of the following
devices:

– 20 Crossbow Mica2 devices, along with a number of additional sensor boards.
– 20 Crossbow TelosB devices, with embedded temperature, light, and humid-

ity sensors.
– 45 Sun SPOT devices, with embedded light, temperature and acceleration

sensors.
– 60 iSense sensor nodes, with a variety of sensor boards (50 environmental

sensor boards with temperature and light sensors, 9 security sensor boards
carrying a PIR camera and a 3-axial accelerometer and 1 vehicle detection
sensor board carrying a magnetometer)

– 2 Crossbow Stargate Netbridge devices, used as stationary gateways.
– 2 Crossbow MIB600 network programmers.
– 5 Alix devices, used as stationary gateways.
– 3 netbook-class laptop computers used as mobile gateways.

The operating system used in the testbed, for the Mica2 and TelosB devices is
TinyOS. We have recently started using Octopus (and customized it as well) for
the tasking of these two types of devices inside our testbed, so the relevant code
is written in NesC using TinyOS 2.x libraries. A few nodes have the Crossbow
XMesh firmware installed on them. Sun SPOTs run a customized Java virtual
machine, called SquawkVM, that is fully J2ME-capable and also serves as the
operating system as well, so all code regarding the Sun SPOT devices is written
in Java.

As for the software running on the testbed gateways, we are using Xubuntu
on the Alix and the Netbook gateways; a customized Debian distribution is used
on the Stargate Netbridge gateways, provided by Crossbow. This customized
distribution also has the MoteWorks software (by Crossbow) installed, that is
used to collect readings from the nodes using the XMesh firmware.

For the management of RACTI’s testbed we mainly use WebDust. WebDust
is a software platform for monitoring and controlling a multitude of disparate
wireless sensor networks, using a peer-to-peer infrastructure for the communica-
tion between the different networks comprising the system, in order to achieve
great scalability. The system’s overall goals, apart from scalability, are to greatly
simplify sensor network deployment, maintenance, and application development
by offering a set of implemented services to the user and an extensible architec-
ture to the developer, and also to offer heterogeneity by supporting a number of

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 83

Fig. 3. Testbed at RACTI through Google Earth using Webdust

hardware platforms. We currently support Mica2, MicaZ, TelosB, Sun SPOT,
and iSense in the near future.

It offers a user interface related to the concepts described above, by using
software like Google Earth and Google Maps. Furthermore, we are working on
integrating control functionality extensions to our system, thus making actor
networks a part of the system as well. In Figure 3 the layout of the deployment
of RACTI’s testbed through Google Earth can be seen.

6 Use-Case Scenarios – Research Challenges

6.1 Scenarios

We now give two use-case scenarios for WISEBED users, in order to give insight
regarding the potential uses of this testbed.

Scenario 1. Suppose that Mr. Doe wants to test whether his new promising
routing protocol for sensor networks in mesh topologies has actually a good
performance. First, he develops the code for the Shawn network simulator with
the aid of WISELIB library for other functionality the algorithm needs, and tests
it using simulation experiments. After the initial implementation, Mr. Doe turns
to WISEBED and using the user interface reserves a total of 150 nodes for his
experiments. Simulated nodes in Shawn can interact with real nodes since they
run the same code. Using Shawn the experiments were run with a total number
of 20000 nodes; now the total number of nodes has reached 20150. The difference
is that these additional 150 nodes add a new realistic dimension to the whole

84 I. Chatzigiannakis et al.

experiment, by offering the ability to check whether the algorithm works right
in real nodes and also scales well to thousands of nodes.

Scenario 2. Suppose that Mrs. Smith, working on an office and building automa-
tion application, wishes to test whether her software is functioning properly in
practice. She would like input on events like turning on/off lights, motion sensors
detecting movement in specific offices, etc. She first connects to the WISEBED
infrastructure using the authorization/authentication services of the project, and
reserves some testbed resources (e.g., 5 office rooms and the sensors associated
with these offices). She then uses the provided services in order to retrieve (live)
data about the occurrence of events in the network and its operation. We make
the assumption that the testbed nodes are running some “default” software that
enables such actions.

6.2 Research Challenges

We outline here some characteristic examples of the research challenges related
with the project.

Federation of testbeds - transparency. As described previously, the project
revolves around a federation of testbeds that will provide a unified environment.
This approach poses many challenges due to the heterogeneity of software and
hardware in all of the different parts of the testbed. The notion of reserving
resources from parts of disparate project sites (e.g., 50 nodes from site A and
another 40 from site B), even in the case of using the exactly same type of nodes
and software, injects additional complexity to the project.

Interconnection with the testbed. Existing testbeds do not provide much
in the ways of interfacing to the rest of the world, i.e., they usually provide
a GUI to reserve some resources, upload your binary code and view results
after the execution of the experiment; some environments offer the capability
of monitoring the actual situation inside the network (network topology, radio
activity, etc.), but all of these is often not provided in a systematic way. WISEBED
aims to provide all of these capabilities in such a way, by using web services
definitions and standards like SensorML, thus simplifying the whole process of
interfacing with the system from an application’s or developer’s view.

Software and hardware platform independence - Transparency. From
a practical point of view, conducting research that combines both theory and
practice must deal with considerable difficulties. To name a few, wireless sensor
network application developers should acquire skills regarding embedded soft-
ware engineering, dealing with low-level hardware devices and understanding
the peculiarities of the wireless channel (hidden terminal problem, power ver-
sus distance model) etc. Still, even if all these skills are acquired, the cost of
setting up and maintaining an experimental facility of significant size can be
very high. Furthermore, deploying the experimental network into a realistic en-
vironment requires iteratively reprogramming dozens of nodes, positioning them

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 85

throughout an area large enough to produce an interesting radio topology, and
instrumenting them to extract debugging and performance data. WISEBED aims
to provide a library of sensor network-related functionality in order to simplify
the whole process of developing code for these networks and abstracting many
of the details from the users and the applications.

Efficiency. The sheer volume of the nodes expected to be included in the
testbed, along with many of the factors mentioned previously, naturally poses
efficiency challenges. From the one side, we have the software running on the
sensor network level, both as the main application and as a “backbone” service.
On the first case efficiency is a necessity, on the second case the software must
interfere with the rest of the system as little as possible or find ways to “hide”
such activity from the user. In the other side we have the software interfacing
the system with the outside world, that has to provide efficient ways to represent
the information related to the operation of the testbed (e.g., a system-wide di-
rectory) or graphical end-user interfaces (current related implementations leave
a lot to be desired).

7 Conclusions – Future Work

As of today, mainly isolated sensor network testbeds exist across Europe and
the rest of the world. Their homogeneity, small scale and narrow application
scope limit their use, up to a large degree, as a means to answer most of the
research challenges related to wireless sensor networks. We have presented in
this paper an overview of the WISEBED project, that tries to answer these
challenges by the establishment of a large-scale sensor network by a number
of federated testbed sites and the provision of a software platform to the public,
in order to easily utilize all these resources. WISEBED is currently being devel-
oped, already having a number of testbed sites established. Future work on the
project involves the expansion of the existing testbed sites, both in scale and
heterogeneity, and the implementation of the software ecosystem surrounding
the project. There is a large body of work related to the interconnection of the
testbed sites, the development of an algorithmic library providing implemented
solutions compatible with the existing testbed to application developers, and
also the tighter integration between the testbed and virtual (simulated) sensor
networks.

Acknowledgments

This work has been supported by the ICT Programme of the European Union
under contract number ICT-2008-224460 (WISEBED). We would also like to
thank S. Fekete and A. Kröller for providing one of the insightful use-case sce-
narios mentioned in section 6.

86 I. Chatzigiannakis et al.

References

1. WISEBED project website, http://www.wisebed.eu/

2. Dutta, P., et al.: Trio: enabling sustainable and scalable outdoor wireless sensor
network deployments. In: 5th International conference on Information processing
in sensor networks (IPSN), pp. 407–415. ACM Press, New York (2006)

3. Werner-Allen, G., Swieskowski, P., Welsh, M.: Motelab: A wireless sensor network
testbed. In: Fourth International Conference on Information Processing in Sensor
Networks (IPSN). IEEE, Piscataway (2005); special Track on Platform Tools and
Design Methods for Network Embedded Sensors (SPOTS)

4. Handziski, V., Kopke, A., Willig, A., Wolisz, A.: Twist: A scalable and reconfig-
urable wireless sensor network testbed for indoor deployments. Tech. Rep. TKN-
05-008 (November 2005)

5. Tutornet: A tiered wireless sensor network testbed,
http://enl.usc.edu/projects/tutornet/

6. Chun, B.N., et al.: Mirage: A microeconomic resource allocation system for sen-
sornet testbeds. In: 2nd IEEE Workshop on Embedded Networked Sensors (2005)

7. Ertin, E., et al.: Kansei: A testbed for sensing at scale. In: 5th International con-
ference on Information processing in sensor networks, IPSN (2006)

8. Johnson, D., et al.: Mobile emulab: A robotic wireless and sensor network. In: 25th
IEEE Conference on Computer Communications, INFOCOM (2006)

9. Murty, R., Mainland, G., Rose, I., Chowdhury, A., Gosain, A., Bers, J., Welsh,
M.: Citysense: An urban-scale wireless sensor network and testbed. In: 2008 IEEE
Conference on Technologies for Homeland Security, May 2008, pp. 583–588 (2008)

10. SENSEI project website, http://ict-sensei.org/

11. Henricksen, K., Robinson, R.: A survey of middleware for sensor networks: State-
of-the-art and future directions. In: Proc. of MidSens 2006 (2006)

12. Hadim, S., Mohamed, N.: Middleware challenges and approaches for wireless sensor
networks. IEEE Distributed Systems Online 7(3) (2006)

13. Romer, K., Kasten, O., Mattern, F.: Middleware challenges for wireless sensor
networks. ACM Mobile Computing and Communications Review 6, 59–61 (2002)

14. Kuorilehto, M., Hannikainen, M., Hamalainen, T.: A survey of Application Distri-
bution in Wireless Sensor Networks. EURASIP Journal on Wireless Communica-
tion and Networking 5, 774–788 (2005)

15. R. Project, Survey of middleware for networked embedded systems, deliverable 5.1
(2005)

16. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: SenSys 2003: Proceedings of the 1st international
conference on Embedded networked sensor systems, pp. 126–137. ACM Press, New
York (2003)

17. Tolle, G., Culler, D.: Design of an application-cooperative management system for
wireless sensor networks. In: European Cinference on Wireless Sensor Networks,
EWSN 2005 (2005)

18. Ramanathan, R., et al.: Sympathy for the sensor network debugger. In: 3rd Interna-
tional Conference on Embedded Networked Sensor Systems (SenSys), pp. 255–267
(2005)

19. Rost, S., Balakrishnan, H.: Memento: A health monitoring system for wireless
sensor networks. In: SECON 2006 (2006)

http://www.wisebed.eu/
http://enl.usc.edu/projects/tutornet/
http://ict-sensei.org/

WISEBED: An Open Large-Scale Wireless Sensor Network Testbed 87

20. Whitehouse, K., et al.: Marionette: using rpc for interactive development and de-
bugging of wireless embedded networks. In: 5th International conference on Infor-
mation processing in sensor networks (IPSN), pp. 416–423. ACM Press, New York
(2006)

21. Ringwald, M., Römer, K., Vitaletti, A.: Passive inspection of sensor networks.
In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS,
vol. 4549, pp. 205–222. Springer, Heidelberg (2007)

22. Crepaldi, R., Friso, S., Harris, A., Mastrogiovanni, M., Petrioli, C., Rossi, M.,
Zanella, A., Zorzi, M.: The design, deployment, and analysis of signetlab: A sensor
network testbed and interactive management tool, May 2007, pp. 1–10 (2007)

23. Chen, B.-R., Peterson, G., Mainland, G., Welsh, M.: Livenet: Using passive mon-
itoring to reconstruct sensor network dynamics. In: Nikoletseas, S.E., Chlebus,
B.S., Johnson, D.B., Krishnamachari, B. (eds.) DCOSS 2008. LNCS, vol. 5067,
pp. 79–98. Springer, Heidelberg (2008)

24. Österlind, F., Dunkels, A., Voigt, T., Tsiftes, N., Eriksson, J., Finne, N.: Sensor-
net checkpointing: Enabling repeatability in testbeds and realism in simulations.
In: Roedig, U., Sreenan, C.J. (eds.) EWSN 2009. LNCS, vol. 5432, pp. 343–357.
Springer, Heidelberg (2009),
http://dblp.uni-trier.de/db/conf/ewsn/ewsn2009.html#OsterlindDVTEF09

25. Shawn, http://shawn.sf.net
26. Kröller, A., Pfisterer, D., Buschmann, C., Fekete, S.P., Fischer, S.: Shawn: A new

approach to simulating wireless sensor networks. In: Design, Analysis, and Simu-
lation of Distributed Systems (DASD 2005), pp. 117–124 (2005)

27. Fekete, S.P., Kröller, A., Fischer, S., Pfisterer, D.: Shawn: The fast, highly cus-
tomizable sensor network simulator. In: Proceedings of the Fourth International
Conference on Networked Sensing Systems (INSS 2007) (June 2007)

28. Lipphardt, M., Hellbrück, H., Pfisterer, D., Ransom, S., Fischer, S.: Practical ex-
periences on mobile inter-body-area-networking. In: Proceedings of the Second In-
ternational Conference on Body Area Networks, BodyNets 2007 (2007),
http://www.bodynets.org/

29. Coalesenses iSense - A modular hardware and software platform for wireless sensor
networks,
http://www.coalesenses.com/isense

30. Design of the Hardware Infrastructure, Architecture of the Software Infrastructure,
and Design of Library of Algorithms,
http://www.wisebed.eu/index.php/deliverables

31. Pfisterer, D., Lipphardt, M., Buschmann, C., Hellbrueck, H., Fischer, S., Sauselin,
J.H.: MarathonNet: Adding value to large scale sport events - a connectivity anal-
ysis. In: Press, A. (ed.) Proceedings of the International Conference on Integrated
Internet Ad hoc and Sensor Networks (InterSense 2006), May 2006, p. 12 (2006),
http://doi.acm.org/10.1145/1142680.1142696

http://dblp.uni-trier.de/db/conf/ewsn/ewsn2009.html#OsterlindDVTEF09
http://shawn.sf.net
http://www.bodynets.org/
http://www.coalesenses.com/isense
http://www.wisebed.eu/index.php/deliverables
http://doi.acm.org/10.1145/1142680.1142696

	WISEBED: an Open Large-Scale Wireless Sensor Network Testbed
	Introduction – Motivation
	Previous Related Work
	Overall Architecture and Considerations
	Software Aspects of WISEBED
	Integration with the Shawn Network Simulator
	Federation of Testbeds and Related APIs

	Hardware Aspects of WISEBED – Current Deployment
	Lübeck Testbed Description
	RACTI Testbed Description

	Use-Case Scenarios – Research Challenges
	Scenarios
	Research Challenges

	Conclusions – Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

