
iDSRT: Integrated Dynamic Soft Real-Time

Architecture for Critical Infrastructure Data
Delivery over WLAN

Hoang Nguyen, Raoul Rivas, and Klara Nahrstedt

University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
{hnguyen5, trivas, klara}@illinois.edu

Abstract. The real-time control data delivery system of the Critical
Infrastructure (i.e. SCADA - Supervisory Control and Data Acquisi-
tion system) is important because appropriate decisions cannot be made
without having data delivered in a timely manner. Because these ap-
plications use multiple heterogeneous resources such as CPU, network
bandwidth and storage, they call for an integrated and coordinated real-
time scheduling across multiple resources to meet end-to-end deadlines.
We present a design and implementation of iDSRT - an integrated
dynamic soft real-time system to provide fine-grained end-to-end de-
lay guarantees over WLAN. iDSRT takes the deadline partitioning ap-
proach: end-to-end deadlines are partitioned into multiple sub-deadlines
for CPU scheduling and network scheduling. It integrates three impor-
tant schedulers: task scheduler, packet scheduler and node scheduler to
achieve global coordination. We validate iDSRT in Linux and evaluate
it in an experimental SCADA test-bed. The results are promising and
show that iDSRT can successfully achieve soft real-time guarantees in
SCADA system with very low packet loss rate compared to available
commodity best-effort systems.1

Keywords: Multi-resource scheduling, Quality-of-service, WLAN.

1 Introduction

Distributed real-time embedded (DRE) systems are key components of appli-
cations for critical infrastructures such as electric grid monitoring and con-
trol. These applications may use multiple heterogenous resources such as CPU,
network bandwidth and storage. For example, a Phasor Measurement Devices
(PMU) in a power substation samples voltage and current at the rate of 60Hz.
Sampled data is compressed and encrypted by an embedded processor and sent
over a wired/wireless LAN. End-to-end delay of PMU data has to be guaran-
teed for real-time monitoring purpose. Another example is surveillance cameras
1 This material is based upon work supported by the National Science Foundation

under Grant CNS-0524695 and Vietnam Education Foundation. Any opinions, find-
ings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of those agencies.

N. Bartolini et al. (Eds.): QShine/AAA-IDEA 2009, LNICST 22, pp. 185–202, 2009.
c© Institute for Computer Science, Social-Informatics and Telecommunications Engineering 2009

186 H. Nguyen, R. Rivas, and K. Nahrstedt

in a power substation (similar to [21]). A group of wireless cameras and sensors
are placed around the substation for surveillance purpose. Each camera/sensor
periodically captures a video frame compressed by an embedded processor and
transmitted over a wired/wireless LAN. As shown in these examples, the het-
erogeneity and interactions of multiple resources in these applications call for
an integrated and coordinated real-time scheduling across multiple resources
to meet end-to-end deadlines. Unfortunately, even though scheduling for any
single resource has been studied extensively, there has been little work done
for integrated and coordinated real-time scheduling to meet end-to-end timing
constraints (cf. see Section 6).

In this paper, we address the problem of integrated and coordinated schedul-
ing of CPU and WLAN to meet end-to-end delay requirement. We use SCADA
(Supervisory Control and Data Acquisition) systems for power substation mon-
itoring as our case study. The general model of SCADA data WLAN is shown
in Figure 1. This is a typical scenario specified in [1][2][3]. The scenario includes
both real-time monitoring/control and non real-time management applications.
Intelligent Electronic Devices (IEDs) periodically send sampling measurements
(such as voltage, current, temperature) or video frames (for surveillance pur-
pose) to a gateway. The gateway collects and processes sampling measurements
(e.g. decompress, decrypt), issues necessary control actions to IEDs and reports
necessary information to the control center. The delay requirement in this sce-
nario is in the order of milliseconds [4]. In addition to the real-time monitor and
control functionality, both the gateway and IEDs need to handle other manage-
ment tasks. For example, the gateway may upload a configuration file to IEDs
via a secure protocol (e.g. SSL).

We present a design and implementation of iDSRT - an integrated dynamic
soft real-time system to provide fine-grained end-to-end delay guarantees over
single-hop wireless networks. To guarantee end-to-end deadlines, iDSRT takes
deadline partitioning approach. Specifically, end-to-end deadlines are partitioned
into multiple sub-deadlines for CPU scheduling and network scheduling. The par-
titioning is done in such a way that the total system utilization is minimized for
a given task set. To enforce sub-deadline guarantees at each scheduler, it employs

Power Substation

Control Center

Gateway

IED
IED

IED

Fig. 1. SCADA data delivery de-
ployment over Wireless LAN in a
Power substation

Period Pij

Task Aij

Sub-Task Aij
CPU

Sub-Task AijNet

Cij Rij

Cij

Rij

happen-before

Fig. 2. Task Model

iDSRT: Integrated DSRT Architecture 187

EDF (Earliest Deadline First) scheduling algorithm for both the task scheduler,
called DSRT (Dynamic Soft real-time CPU scheduler), and the packet scheduler,
called iEDF (Implicit EDF). The coordination between these two schedulers is
executed by a novel Coordinator entity, called iCoord, sitting at the middle-
ware layer. iCoord is the key component to deal with the inherent problem of
scheduling for wireless network: the shared medium problem. Essentially, iCoord
is a distributed node coordination scheduler that ensures every scheduler at each
node coordinates with each other to meet end-to-end deadlines. Thus, iCoord
plays the role of node coordination scheduler. Therefore, iDSRT has a unique
approach: the integration of three important schedulers: task scheduler, packet
scheduler and node scheduler.

In summary, our contributions in this paper are 1) the design of an integrated
architecture with protocols and algorithms providing soft real-time end-to-end
delay guarantees built on top of commodity Linux operating system and 802.11
MAC layer, 2) implementation of iDSRT including an augmented DSRT, iEDF
and the Coordinator middleware and 3) performance study of iDSRT in an
SCADA testbed of wireless nodes.

The rest of the paper is organized as follows. Section 2 presents our system
model, notations and assumptions. In Section 3.1, we show the architecture of iD-
SRT and an overview of its components. Section 3.2, Section 3.3 and Section 3.4
give the details of iCoord, DSRT and iEDF. Section 4 presents necessary de-
tails of iDSRT implementation. In Section 5, we show our evaluation of iDSRT.
Section 6 gives the related work and finally, Section 7 concludes the paper.

2 Models and Definitions

2.1 Network Model

We consider a single-hop wireless network model where each node is within
one hop to the gateway as shown in Figure 1. There are n clients (i.e. IEDs)
N1, N2, .., Nn and a server S (i.e. gateway). Client Ni has mi (mi ≥ 0) real-time
(RT) applications/streams and may have best-effort (BE) applications/streams
running simultaneously. RT applications stream the data from the client to the
server. Each RT application/stream will conform to its QoS specification in terms
of end-to-end delay (EED) requirement.

EED is the sum of the delay at the sending side (i.e. at the client side), the
propagation delay and the delay at the receiving side (i.e at the server side).
Controlling any of these components will affect EED. Our system, however, only
controls the delay at the sending side. We assume the propagation delay is negligi-
ble compared to other two delay components. Furthermore, the receiving delay
incurred at the gateway, including computation delay and MAC transmission
delay, is small too. The reason is that we assume the gateway is a device with
powerful computation and communication capabilities compared to the clients.
Hence, controlling of this small delay component does not have much effect on
the EED and it is also not the focus of our study.

188 H. Nguyen, R. Rivas, and K. Nahrstedt

The sending delay consists of the computation delay incurred by the OS
scheduling and the communication delay incurred by the network scheduling.
This delay component can be controlled by assigning deadlines to the compu-
tation and communication sub-tasks at each client(see Section 2.2). As long as
these sub-tasks are finished on time by the OS scheduler and network scheduler,
the EED requirements can be met.

In our model, BE applications may stream data to the server. These applica-
tions, if not monitored and enforced properly, can affect the QoS performance of
other RT tasks because they are not aware of real-time constrains. Typical BE ap-
plications in a power substation are FTP application for downloading/uploading
devices’ configuration or data encryption for secure communication. These
network- and computation-intensive applications may exhaustively consume
network and CPU resources in the system if not constrained.

2.2 Task Model

We model the RT streaming applications as RT networked tasks, at the client
side, composed of the computation and communication sub-tasks. The end-to-
end delay requirement of streaming applications is now transformed into the
end-to-end deadlines of the RT networked tasks used for scheduling.

Formally, we denote Aij for the jth RT networked task/application on the
client Ni

2 where i = 1..n, j = 1..mi. We also denote AS as the networked task
running on the server S. Each task Aij has a period Pij . It has two sub-tasks
ACPU

ij and ANet
ij that needs to be processed in order (see Figure 2). That means,

within period Pij , the sub-task ACPU
ij needs Cij time unit for sampling and

processing data. After the data gets processed, the sub-task ANet
ij needs Rij

time units to send it to the server task AS on server S over the wireless network
G. The deadline Dij of task Aij is equal to the period Pij . Both Cij and Rij are
CPU and network resources consumed in time. Cij is calculated by the number of
consumed cycles over the CPU frequency. We assume the frequency of the CPU
is fixed. Similarly, Rij is the time of task Aij and its underlying OS/network
protocol stack to transmit a packet of size PSij bytes over the wireless MAC
with measured bandwidth Bij at node Ni, i.e. Rij = PSij/Bij to the server S.

3 iDSRT Framework

3.1 Overview Design of iDSRT

Our first goal is to design/establish a scheduling and coordination framework of
three important schedulers (i.e. the task scheduler, the packet scheduler and the
node scheduler) that deliver end-to-end soft real-time guarantees in the system.
The second goal is that the system should be able to run on a commodity
platform (e.g. commodity Linux-based operating system and 802.11 MAC layer).

Each node Ni will consider time-sensitive scheduling of a) RT tasks Aij , i =
1..n, j = 1..mi under competition of best-effort tasks, b) network packets of
2 The terms “RT application Aij” and “RT task Aij” are used exchangeably.

iDSRT: Integrated DSRT Architecture 189

connections belonging to the RT networked application Aij and BE tasks at the
node Ni and c) node Ni with respect to other nodes Nk, k = 1..n, k �= i due to
the shared access to wireless medium.

The scheduling and coordination framework resides in the middleware, net-
work and OS layers as shown in Figure 3 and it is called iDSRT . It allows RT
and BE applications to run together and share resources in controlled manner.
RT applications rely on iCoord (Integrated Coordination) - a distributed mid-
dleware component residing in the control plane of the protocol stack. It receives
QoS specification from RT applications, performs RT application profiling, and
does the QoS negotiation on behalf of the RT applications Aij . Its central role is
managing resource allocation within each node Ni and among nodes Ni, i = 1..n
and S in G to ensure end-to-end delay guarantees (see Section 3.2).

Any potential conflicts among RT tasks Aij , j = 1..mi and BE tasks on node
Ni are resolved by the Dynamic Soft-Real-time CPU Scheduler, called DSRT
[15]. DSRT guarantees CPU resources for RT applications by using an adap-
tive EDF scheduling algorithm. It is “soft” because it does not manage other
resources of the hardware and thus does not prevent the preemptions due to non-
CPU hardware interrupts. However, the soft guarantees are within the timing
bounds of SCADA tasks. Section 3.3 will give more details.

The last component in the iDSRT framework is the iEDF (Implicit Earlier
Deadline First) packet scheduler. Essentially, iEDF is a network packet scheduler
residing on-top of the MAC layer. It takes the implicit contention approach to
schedule transmission slots according to the EDF policy. It manages the packet
queue of each node and makes sure all nodes agree on the same packet to transmit
over the shared medium within a specific time slot (see Section 3.4).

3.2 Integrated Middleware Coordination (iCoord)

iCoord is a distributed middleware component which coordinates all system
scheduling components to ensure RT applications meet their deadlines. It op-
erates in the control plane of the node’s protocol stack to provide the node
registration service, task profiling and coordination services. Its services are a
set of middleware libraries whose computation overhead is charged to the call-
ing tasks’s computation. Figure 4 shows the middleware control architecture of
iCoord. iCoord consists of two modules: Local iCoord residing on each client Ni

and Global iCoord residing on the gateway S. Local iCoord is in charge of co-
ordinating system components at each node Ni and communicates with Global
iCoord to assist in inter-node scheduling with other nodes’ Local iCoord(s).
Global iCoord executes global services on server S, where Local iCoord executes
local services on each client Ni. Together, they ensure distributed utility services,
such as the coordination service, registration service and the profiling service.
Figure 7 summarizes the protocol within iCoord.

Registration Service is a service that takes care of the registration of real-
time applications. Essentially, every RT application has to register with iDSRT
because un-registered applications are treated as BE applications. First, the
registration is done via the Local iCoord Registrator. The registration request

190 H. Nguyen, R. Rivas, and K. Nahrstedt

iEDF

MAC

DSRT

Middleware

Network

MAC

Kernel

User

RTAppsApplication

iCoord

Data Plane Control Plane

BEApps

Fig. 3. End-to-End Integrated Dynamic
Soft Real-time Framework (iDSRT)

Local Registrator

CPU

Profiler
Network

Profiler

Local Coordinator

Local iCoord

Global Coordination

Global iCoord

Global Registrator

iEDFDSRT

GatewayIED

Network

Profiler

Fig. 4. Middleware control plane archi-
tecture iCoord

EDF

Ai1

Node Ni Node Nk

Ai2

EDF

Ai1

Setup a timer

...

Real-time Tasks

Ak1

Ak2
Ak2

Ak1

Ai1

Ai2
Shadow Tasks

Fig. 5. Illustration of implicit con-
tention scheduling

Real-time Task

Admission Control

Overrun

Protection

SRT Scheduler

Cycle Demand

Adaptor

Best-effort

Scheduler

Best-Effort Task

DSRT

Fig. 6. DSRT Architecture

Register Aij with Global iCoord

Send deadline assignments

Local

iCoord
Application Aij Global

iCoordRegister with the Local iCoord

Execute CPU & Net

Profiling

Return AppID

SYNC

Send to

DSRT &

iEDF

Ready to SYNC

System READY to

run

Execute

Deadline

Assignment

Algorithm

App. READY to run

SYNC

Fig. 7. iCoord protocol

iDSRT: Integrated DSRT Architecture 191

from an RT application Aij includes 1) a tuple of (pid, saddr, sport, daddr, dport)
where parameter pid, saddr, sport, daddr, dport are the process identifier, the
source address, the source port, the destination address, the destination port
respectively. These parameters are used to uniquely identify each real-time com-
munication application Aij , 2) Period Pij(µs) and 3) a requirements Cij(µs) on
CPU resource and network resource Rij(µs) measured by the profiling services.

The Local iCoord Registrator sends the registration information of this ap-
plication to the Global iCoord Registrator. After the Global iCoord Registrator
acknowledges the successful registration of the application Aij , the Local iCo-
ord Registrator returns a unique ID calculated from the tuple of registration
information to the application. Finally, the Local iCoord Registrator invokes the
CPU and network profiling services to approximate the CPU and network usage
of the application (i.e. Cij and Rij). Finally, it sends the profiles of this task
to the Global iCoord Registrator so that the node admission control, inter-node
scheduling and coordination can be performed.

Profiling Service consists of the CPU and network profiler on each client
Ni. These profilers are invoked after the registration phase. The CPU usage is
measured by having DSRT run several instances of RT task Aij . Similarly, the
network profiling is done by measuring the packet round-trip-time between the
networked application at the client Ni and the server S.

Coordination service is a distributed middleware component. Similar to the
Registration service, the Coordination service has a Global Coordinator at the
gateway S and a Local Coordinator at each node Ni. The Global Coordinator at
the gateway gathers profiles of all RT applications from the Global Registrator
and performs the deadline assignment algorithm (discussed in the next sub-
section). Then, it sends this information to all Local iCoord Coordinators. The
information includes deadline assignments for the inter-node (i.e. DNet

ij) and
intra-node (i.e. DCPU

ij) scheduling of all the tasks in the system G.
Upon receiving the deadline assignment of all tasks, the Local Coordinator

confirms with DSRT and iEDF about the acceptance of these local tasks. At
the end of this phase, each Local iCoord Coordinator notifies the Global iCoord
Coordinator that node Ni is ready, and all local components DSRT, iEDF and
Local iCoord wait for the SYNC message from the Global iCoord Coordinator.
In the last phase, the Global Coordinator waits for all acknowledgments from
Local Coordinators and broadcasts the SYNC message. The SYNC message start
the run-time of the whole system.

Deadline Assignment Problem: As mentioned in the previous section, we
employ the EDF algorithm for CPU scheduler (DSRT) and the network sched-
uler (iEDF). These two schedulers (DSRT and iEDF) must coordinate with each
other so that the end-to-end deadline of RT applications Aij can be met. The
approach we take is partitioning the end-to-end deadline into sub-deadlines for
the CPU scheduler and network scheduler. Thus, as long as the CPU scheduler
and the network scheduler can schedule the sub-tasks correctly, the end-to-end
deadlines will be guaranteed. The deadline assignment algorithm is executed by

192 H. Nguyen, R. Rivas, and K. Nahrstedt

the Global Coordinator whenever there is a newly arrival task. It is essentially
a convex optimization algorithm where the deadline is split such that the total
stress factor of the two sub-systems is minimized while still satisfying the ad-
mission control criteria of the CPU scheduler and the network scheduler. Please
refer to our technical report for more information.

3.3 DSRT (Dynamic Soft Real-Time Scheduler)

DSRT is responsible for CPU task scheduling according to their deadlines. Specif-
ically, on client Ni, it manages real-time CPU tasks ACPU

ij , j = 1..mi as modeled
in Section 2.2. To achieve this objective, DSRT is composed of three basic com-
ponents, the Admission Control, the Earliest-Deadline-First (EDF) Scheduler
and the Cycle Demand Adaptor.

On a node Ni, before using the realtime capabilities of the system, a new
RT task ACPU

ij must register itself with iCoord as a RT task in the DSRT.
Specifically, it must specify its period, its worst case execution time and its
relative deadline3. The admission control for DSRT on a node Ni is the EDF
schedulability test. It means, ∀L ∈ DLset, L ≥ ∑mi

j=1(�
L−DCP U

ij

Pij
� + 1)Cij where

DLset = {dkl|dkl = lPik + DCPU
ik , 1 ≤ k ≤ mi, l ≥ 0} is the set including

all tasks’ deadlines less then the hyper-period of all periods (i.e. least common
multiplier of Pi1, .., Pimi).

If the condition is met, the task ACPU
ij is added to the running queue of the

EDF Scheduler and is scheduled to run in the next period. If the task cannot
complete its job in the allotted time, due to demand cycle variations, the Overrun
Timer will preempt the task to best-effort mode. In this case, the task ACPU

ij

will only be allowed to run after all other real-time tasks have used their allotted
CPU time. The Overrun Timer removes the task from the running queue and
adds it to the overrun queue. Tasks in best-effort mode compete against each
other and use the standard OS non-realtime scheduler (Linux in the case of our
implementation). Therefore, they cannot get a guaranteed CPU allocation.

If the deadline DCPU
ij is not met, the Cycle Demand Adaptor will keep track

of this event. If it detects that the change in the cycle demand is persistent and
that assigned deadlines are not met, it will try to increase the allotted cycle
demand for this particular task ACPU

ij . In that case the Cycle Demand Adaptor
will query the DSRT admission control to verify whether there are enough CPU
resource to increase the allotted resource for the task ACPU

ij .

3.4 iEDF (Implicit Earliest Deadline First Packet Scheduler)

iEDF is a distributed network scheduler that takes an “implicit contention”
approach to perform the EDF packet scheduling algorithm [7][8]. Each client uses
iEDF as its network scheduler. Conceptually, this network scheduler is actually
an outgoing-packet scheduler working on top of the MAC layer. It manages
how packets are prioritized to ensure they will meet the deadlines. Technical
information will be given in Section 4.2.
3 The information Cij and DCPU

ij is provided by iCoord as explained in Section 3.2.

iDSRT: Integrated DSRT Architecture 193

iEDF is an implicit contention scheduling which uses EDF as the packet
scheduling algorithm. At any time slot, all clients agree on a RT task ANet

ij

to access the shared wireless medium according to the EDF policy. Specifically,
for a client Ni, RT tasks ANet

ij , j = 1..mi running on Ni are called local RT net-
work applications and other RT applications running on other clients are called
remote RT network applications. iEDF at each client Ni maintains the deadline
assignment and task information of remote RT network tasks in addition to its
local RT network tasks disseminated via iCoord (see Section 3.2).

Once iEDF has all network task deadline information, it creates a “shadow
network task” for each remote network task. The shadow network task has the
same period, deadline and transmission time as the network task being shadowed.
When the shadow network task ANet

kj , j = 1..mk “executes” on Ni, i �= k, it does
nothing but sets up a timer to wake up after the transmission of ANet

kj . On waking
up, the shadow network task again notifies iEDF that the remote network task
is supposed to finish. On this event, iEDF schedules another RT network task,
either local or remote (shadow) for the next transmission. In this way, iEDF
is doing the EDF scheduling algorithm in a distributed manner. Furthermore,
packet collisions will rarely happen because iEDF at each client aims to ensure
and comply to the global deadline assignment. Figure 5 shows an illustration of
this implicit contention.

Even though the principle of iEDF is simple, there are couple of issues that
we need to address. The first issue is the correct estimation of the transmission
time of the shadow network task. For any particular transmission, the remote
network task ANet

kj may finish earlier than expected due to worst case profiling
and estimation of Rkj . It may also finish later than expected due to the noisy
and unreliable channel. In the former case, iEDF ignores the early transmission
and accepts the waste of idle network resource. In the latter case, iEDF actually
has to avoid starting another transmission to minimize the packet collisions. To
resolve this issue, iEDF only needs to over-hear the wireless network to know
when the remote network task finishes. This is a simple solution yet enough to
resolve the scheduling issues. The second issue is that even though iEDF is a
network scheduler and consumes non-negligible CPU resource for scheduling. To
resolve this issue, we let the network task’s CPU consumption to be charged to
the computation time of the corresponding RT applications.

4 Implementation

4.1 DSRT Implementation

DSRT was originally implemented by Chu et al. [15] in Linux Kernel 2.4. Due to
incompatibilities with Linux Kernel 2.6, DSRT is implemented from scratch in
Linux Kernel 2.6. However, our implementation of DSRT is considerably different
and includes important contributions to the originalwork. The main contributions
are discussed below.

194 H. Nguyen, R. Rivas, and K. Nahrstedt

DSRT originally used the Liu and Layland scheduling model [17], in which the
deadlines are considered to be equal to the periods. The coordination algorithm in
iDSRT requires a more generalized model in which the real-time scheduler supports
deadlines less than or equal to the periods. Our implementation of DSRT uses this
model instead. Other important difference is that our implementations used new
mechanisms developed for precise task accounting, including the CPU timestamp
counter available in most modern processors and the new High-Resolution Timer
Interface available in the most recent versions of the Linux Kernel 2.6 [10]. The
use of this new mechanism allowed us to reduce the number of modifications to
the standard kernel. It also allowed us to provide better precision and scheduling
granularity than the previous implementation.

DSRT implements nine new system calls allowing RT tasks to communicate
with it. These system calls provide DSRT with information required to reserve
CPU resource and prioritize a task according to its QoS requirements. In these
system calls the task ACPU

ij specifies average cycle demands used to calculate Cij

(dividing by the CPU frequency), deadline DCPU
ij and period Pij . DSRT provides

information about the performance and the status of the RT task, including the
number of times a task tried to overrun and the statistical CPU utilization.

Our DSRT implementation needs only one kernel patch on the file sched.c to
provide CPU accounting for each task. Linux currently provides such mechanism
in the kernel but only with maximum resolution of 1 jiffy (number of iterations of
the kernel per second)4 while we need high precision task accounting to the mi-
crosecond resolution. Simply increasing the jiffy resolution will cause enormous
kernel overhead. In our implementation, we measure CPU usage of real-time
tasks in cycles instead of jiffy. This is achieved by adding a hook in schedule()
function. This hook is called every time that a context switch is about to occur.
It allows us to measure the elapsed cycles between the current and the previ-
ous context switch and therefore precisely account for the CPU time of each
task. Once done, the number of cycles is converted to time unit by dividing the
number of cycles by CPU frequency. The rest of the DSRT is implemented as a
kernel module. We use high-resolution timers provided in the kernel to ensure
that tasks wake up at precise time and to prevent overruns from greedy BE
and RT tasks. The context-switching is implemented as a two-halves operations
where interrupts from the timer signals a high-priority kernel thread to preempt
the running application.

DSRT has a new data structure to store the QoS parameters Cij , D
CPU
ij , Pij

of the task containing information about the state of the RT task used by both
the EDF scheduler and the Cycle Demand Adaptor. When a new RT task makes
a request for QoS guarantess to DSRT, DSRT creates a new instance of this data
structure (called srt task struct) containing information about the state of the
particular RT task. This task is also cross-referenced with the task struct struc-
ture defined by the Linux scheduler to ensure proper communication between
the Linux scheduler and DSRT. More precisely, the data structure contains a
pointer to the associated task struct structure, necessary information about the

4 Within Linux 2.6.10, a jiffy is by default 4ms.

iDSRT: Integrated DSRT Architecture 195

state of the RT task in the DSRT scheduler5, the period, the cycle demand re-
quested, the number of deadlines missed, the number of periods in which the
task tried to overrun and the statistical CPU usage in cycles.

Conceptually, DSRT implements 3 runqueues that allow the EDF scheduler
and the overrun timer to schedule the tasks. The first runqueue is for the RT
task process currently ready to run. The second one is for the RT task processes
that are running in best effort mode because they overrun. The last one is for
the RT task processes that are awaiting for the beginning of the next period.
We implement these runqueues as a single list of processes sorted by the EDF
policy. We use the information stored in the srt task struct about the state of
the task to differentiate among different runqueues. We avoid implementing more
runqueues due to unnecessary kernel overhead. The computational complexity
of the DSRT scheduler is O(log(n)), where n is the number of RT tasks.

To further minimize the number of changes required to the Linux scheduler,
the DSRT scheduler does not load or schedule the RT tasks directly, instead it
relies on the Linux scheduler. The DSRT simply rises the priority of the running
RT tasks to the highest RT priority available on the system, and requests a
reschedule to the Linux kernel. This triggers a context switch and forces the
Linux scheduler to pick the task that DSRT wants to be scheduled next. To
preempt a running RT task to best effort mode when the overrun timer expires,
it simply suffices to lower RT task’s priority in the Linux scheduler to normal and
rise the priority of another RT task. When all the RT tasks have completed the
running job, they yield the CPU by invoking the sched() function. Upon the call,
the Linux scheduler will take care of scheduling all the BE tasks including iDSRT
aware and non-iDSRT aware tasks. The DSRT scheduler remains idle until one
of the RT tasks begins a new period. This approach makes the implementation
simple and ensure maximal compatibility with non-iDSRT aware tasks.

4.2 iEDF Implementation

iEDF is a queuing discipline in Linux. It communicates with the Local Coordi-
nator via the /proc/ file system. This interface includes create/modify/delete a
local (shadow) task ANet

ij and a SYNC signal with the Local Coordinator. iEDF
maintains the information of the tasks ANet

ij by a double linked list data struc-
ture. Each shadow task in iEDF is implemented as a kernel timer that simulates
the same behavior as the corresponding task. Note that even though iEDF may
have many timers for shadow tasks, Linux Kernel 2.6 implements these timers
as a single high resolution kernel timer to reduce the overhead.

iEDF maintains a FIFO queue for packets of each application. Each entry in
a FIFO queue is a pointer to sk buff kernel data structure of a real packet. Thus,
iEDF works on pointers to packets to avoid any extra data copy overhead. In
addition, iEDF maintains a bitmap representing applications that have packets
in the FIFO queues (i.e. one bit per application). Whenever a packet of a RT

5 Note that a RT task ACPU
ij can also become BE task if it violates its assigned deadline

DCPU
ij (cf. Section 3.3).

196 H. Nguyen, R. Rivas, and K. Nahrstedt

application enters the queue, the corresponding bit is set to 1. This bit will
be set to 0 when the last packet leaves the corresponding queue. To look up
applications with non-empty FIFO queue, iEDF uses ffs() operator on the
bitmap to efficiently search for the 1-bit. Similar to DSRT, the complexity of
iEDF scheduling is O(log(n)), with n equal to the number of RT tasks.

5 Evaluation

5.1 Experiment Setup

We evaluate iDSRT in a SCADA test-bed of 7 nodes. Each node is a IBM T60
Dual Core 1.66Ghz laptop with 802.11a/b/g Atheros-based wireless card. We
disable one core to emphasize the impact of DSRT on CPU scheduling. All
laptops run Linux kernel version 2.6.16 with high-resolution timer patch.

We setup the laptops as shown in Figure 8. There is one laptop acting as a
gateway. The rest of the laptops are clients. These laptops are emulated IEDs
in a wireless SCADA testbed. Each client laptop connects to a real IED such as
a Digital Relay and a Phasor Measurement Unit via serial ports. The gateway
laptop connects to a SCADA server via Ethernet. To ensure that the gateway is
more powerful than the clients, we set the CPU frequency of the server to the
highest one (1.66 Ghz) and the CPU frequency of the clients to 1Ghz. All of
laptops operate on 802.11a mode and are placed such that they are within the
transmission range of each other. The network operates on the channel that has
least interference to minimize external effects.

5.2 Scenarios

The RT application in the experiment is a regular periodic task creating/reading
and sending a packet every 30ms. This is a typical RT task and time requirement
for IED devices measurements (e.g. Phasor Measurement Unit devices) as spec-
ified in [4]. Each packet encapsulating a PMU measurement with the RTP-like
header has the size of 128 bytes. The RTP-like header contains the sequence
number for calculating packet losses and time-stamp for clock synchronization
and delay calculation. Other parameters of RT applications such as computa-
tion time, network transmission time, sub-deadlines are measured and assigned
by iDSRT. To scale up the experiments, each client may have more than one
RT application. Specifically, we keep adding the RT applications in the system
until the admission control fails. Note that for any number of RT applications
in the system, these RT applications are distributed equally to clients. For ex-
ample, if there are 10 RT applications in the system, each client has �10/6� = 1
application and the remaining four are assigned to any four clients.

Our goal is to to make sure that the system can provide real-time guarantees
even there are competing BE applications. On each client we run a very CPU-
intensive BE application to compete for the CPU resource. Furthermore, we
setup three BE TCP flows from three clients to the server. These three TCP
flows will always try to send as much as they can when getting a chance.

iDSRT: Integrated DSRT Architecture 197

5.3 Evaluation Metrics

We compare our iDSRT system against three other systems. The first one, named
as “BestEffort” is the combination of commodity Linux and 802.11 MAC. The
second one, named as “DSRT only”, is the system with DSRT enabled and iEDF
disabled (i.e. DSRT and 802.11 MAC) and the last one, named as “iEDF only”
has iEDF enabled only and DSRT disabled (i.e. Linux CPU scheduler and iEDF)
. The metrics we use are 1) RT end-to-end delay from a client Ni to the gateway
S, and 2) the percentage of packet losses of RT applications Aij and 3) the
percentage of missing deadlines of RT applications Aij .

All measurements above are done at the gateway S. In every experiment,
each application sends 1000 samples, which takes 30ms × 1000 = 30s to finish.
The end-to-end delay is measured as the time difference from the packet sent
at the client to the time that packet received at the server6. The percentage
of packet losses are measured by counting the missing sequence numbers. Simi-
larly, the percentage of missing deadlines is measured as the number of packets
that are received later than the deadline at the gateway. Also, in each scenario,
experiments are repeated 5 times to get the average measurements.

5.4 Experiment Results

End-to-End Delay: Figure 9 shows the end-to-end delay of different systems.
The x-axis represents the total number of applications. The y-axis shows the av-
erage end-to-end delay in ms. In general, only iDSRT can guarantee the deadlines
while the other systems cannot. BE system cannot handle the RT applications
well because it does not prevent CPU-intensive application and TCP flows from
exhausting CPU and network resources. This makes sense because BE system is
designed for general purpose, not for real-time purpose.

DSRT-only system prioritizes RT processes and schedules them according to
their deadlines. The CPU resource for RT processes is “reserved”, i.e. BE pro-
cesses cannot compete for that reserved resource. That is the reason why DSRT-
only system performs better than the BE system. However, because DSRT-only
system can only provide RT guarantee on the CPU resource and it lacks of the
RT network scheduler, the end-to-end delay cannot be guaranteed.

iEDF-only system performs worst due to two reasons. The first one is the lack
of support from the RT CPU scheduler (i.e. DSRT). The BE CPU scheduler (i.e.
Linux scheduler) is done in a round-robin fashion and is not aware of application
deadlines. Consequently, packets arrive to iEDF in an aperiodic fashion, which
may be earlier or later than the slots iEDF reserves for network transmission. If
a packet of a RT task arrives to iEDF later than the slot reserved for its network
part, it can only be transmitted until the next reserved time slot releases. This
causes cascading missing deadlines of a RT task and can only be fixed with a
coordination from the CPU scheduler. This explains why it performs worse than
the BE system. The other reason is the shared nature of wireless medium among

6 The clocks of these clients are synchronized on every wireless transmission.

198 H. Nguyen, R. Rivas, and K. Nahrstedt

clients which makes consumed network resource grow quickly as the number of
RT applications increase. That is why iEDF does not scale as good as DSRT.

iDSRT with the integration of DSRT, iEDF and iCoord performs the best.
This result validates our design idea in which node scheduler, packet scheduler
and task scheduler have to coordinate very well. Missing any components will
not be sufficient to provide soft real-time guarantees.

It is also important to emphasize that iDSRT needs a good profiling and
an admission control. In our scenario, iDSRT cannot accept more than 13 RT
applications due to the admission control. We did run more than 13 applications
and the results basically show that, not admitted RT tasks perform much worse
than in BE system because most resources in iDSRT are reserved for admitted
RT tasks. This, again, underscores the importance of QoS guarantees: once RT
tasks are accepted, they will receive what promised by the system.

Missing deadlines: Figure 10 shows the percentage of missing deadlines of
the four systems under various total number of applications. The x-axis shows the
total number of applications. The y-axis is the percentage of missing deadlines.
Generally, BE system and DSRT-only system have similar percentages of missing
deadlines (30% to 40%). In these systems, the main cause for missing deadline is
the lack of network scheduling. iEDF-only performs worst as expected due to the
lack of support from CPU scheduling and higher resource-consuming rate of each
application. iDSRT performs best and has only around 15% missing deadlines.

This figure also shows the nature of “soft” RT guarantees. The reasons for
missing deadlines, even in the case of iDSRT, are preemptions due to hardware
interrupts, non-preemptive nature of network scheduling (i.e. iEDF cannot pre-
empt a packet being sent) and the unreliable nature of the wireless medium.
These are also the reasons for the small fluctuations in the graphs. However,
iDSRT with a low average end-to-end delay (around 15ms) and a reasonable
missing deadlines (around 15%) is still the best to achieve soft RT guarantees.

To further support the need for the coordination, we show the maximum
delay of each systems in Table 1. This table essentially shows the worst end-to-
end delay of each system in our experiments. It is clearly shown that iDSRT has
the smallest worst end-to-end delay with the deviation of 5ms. In other words,
iDSRT misses 15% of deadlines but the deviation is bounded in 5ms.

Packet Losses: Figure 11 shows the packet losses of four systems. All systems
have very low packet loss rate (less than 0.1%). iEDF in this case shows the

Table 1. Maximum EED (ms)

#Apps Best Effort DSRT-only iEDF-only iDSRT

6 90.06 90.54 51.58 34.17
7 93.75 88.40 69.90 35.38
8 96.88 92.34 82.82 35.59
9 482.05 101.30 102.43 33.78
10 508.31 109.15 138.21 33.59
11 505.76 97.77 154.13 34.17
12 516.69 128.25 164.42 34.63
13 558.37 136.11 169.35 35.25

iDSRT: Integrated DSRT Architecture 199

Gateway

Client 1

Client 2

Client 3
Client 4

Client 5

Client 6

802.11a

Fig. 8. Wireless SCADA testbed
setup

 0

 50

 100

 150

 200

 250

 6 7 8 9 10 11 12 13

E
nd

-t
o-

E
nd

 D
el

ay
 (

m
s)

#Apps

Best Effort
DSRT only
iEDF only

iDSRT
Apps’ period (30ms)

Fig. 9. End-to-End Delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 6 7 8 9 10 11 12 13

P
er

ce
nt

ag
e

of
 m

is
si

ng
 d

ea
dl

in
es

#Apps

Best Effort
DSRT only
iEDF only

iDSRT

Fig. 10. Missing deadlines

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 6 7 8 9 10 11 12 13

P
er

ce
nt

ag
e

of
 p

ac
ke

t l
os

s

#Apps

Best Effort
DSRT only
iEDF only

iDSRT

Fig. 11. Packet Loss

advantage of very low (almost no) packet losses due to the distributed scheduling
mechanism. iDSRT, again, inherits the advantage of both DSRT and iEDF to
achieve almost no packet loss.

6 Related Work

There has been large amount of research work that address individual, part of
the end-to-end RT problem and can be classified into three categories: real-time
operating system, real-time wireless network and end-to-end delay guarantee.
The first category addressing real-time operating system has been extensively
explored. Typical work in this category includes hard real-time solutions such
as RTLinux [6]; firm real-time solutions such as Rialto [16], SMART[19], KURT
[23] and soft real-time solutions such as DSRT [15], GraceOS [27]. RTLinux
[6] is a period scheduler but it does not have admission control, the scheduler
is a priority-based and non-preemptive. Thus, it does not support applications
having deadlines and does not fit in our framework. The Rialto OS [16] focuses on
the reservation of the resources. Its application model does not consider deadlines
or periods but rather utilization constraints that the system must meet. The
Resource Kernel is similar to our proposed work, they provide feedback to the
application and use the concept of deadlines and periods. Their approach is not to
coordinate the different reservations but to use a priority inheritance algorithm
with a bounded waiting time. SMART [19] uses an EDF scheduler and a weighted

200 H. Nguyen, R. Rivas, and K. Nahrstedt

fair queue scheduler. It uses the Liu and Layland model [17], however they do not
consider other resources or any coordination. KURT [23] uses a high-resolution
timing system and a tickless kernel. However, it does not provide any guarantees
and does not use admission control or reservation of resources. GraceOS [27] is
a power-aware soft real-time OS. Its goal is to minimize the power usage of the
system based on the QoS constrains specified by each application.

The second category addressing real-time wireless network has been also well
explored. A typical work is the 802.11e standard [5]. Although 802.11e becomes
the standard and commercially available, its prioritization mechanism does not
work well when there are multiple flows with the same priority. In fact, it even
increases more collisions due to its aggressive medium access parameters such as
smaller CWmin and CWmax. Besides 802.11e, there are plethora of work involv-
ing with MAC design such as dynamic contention adaptation [25][26], RI-EDF
[8] or Wireless Token Ring [9]. Even though these schemes can work well, they
require MAC modifications. iDSRT requires no modifications of the MAC layer
and thus has the advantage of deployability and compatibility. We believe that
with the wide-spread availability of 802.11-based hardware, it is much cheaper
and more applicable to have a solution working on top of and independent of
802.11 MAC. Several works sharing this view include Overlay MAC [20] and
middleware-based control [14] [13]. These systems, however, do not integrate
the CPU scheduling into the real-time system and cannot provide a complete
end-to-end delay guarantee. iDSRT does this by integrating all three important
schedulers: task scheduler, packet scheduler and node scheduler.

In the third category, essentially, previous work has shown the need for inte-
grating the task scheduler and the network scheduler referred to as multi-resource
coordination/reservation and scheduling problem [11][12][24][22][21]. In [22][18],
the approach is to allocate the resources such that the end-to-end delay can be
guaranteed while optimizing the general resource utilization. Xu et al. [24] tries
to provide best end-to-end QoS level for an application under the constraints of
resource availability in wired networks. In [11][12] end-to-end delay is achieved
by assigning deadlines for each resource such that the number of future applica-
tions admitted is maximized. However, these works do not address the need for
the coordination among the nodes because it considers the wired networks. In the
wireless scenario, nodes share the wireless medium and thus need to coordinate
with each other. The node scheduler is required and this motivates the need for
the Coordinator. iDSRT addresses both issues. Thus, it works in the wireless
scenario as shown in the paper and should work in the wireline scenario.

7 Conclusions

We have shown an integrated soft real-time scheduling framework, i.e. multi-
resource allocation and scheduling for periodic soft-real-time tasks in wireless
LAN environment. This is the first integrated system that considers both schedul-
ing and coordination of three important entities in WLAN: the RT tasks, the
RT packets and the nodes that share the wireless medium. The result of iDSRT

iDSRT: Integrated DSRT Architecture 201

clearly show that augmented Linux and 802.11 WLAN technologies are feasible
for critical infrastructures such as PowerGrid SCADA systems and can yield
delay and loss guarantees currently only achievable over the wired network with
modified general purpose kernels. We believe that iDSRT allows an easy deploy-
ment of general purpose hardware and software in PowerGrid substation, while
preserving a major requirement of the real-time guarantees.

References

1. General electric wireless SCADA/Telemetry networking,
http://www.microwavedata.com/applications/scada/

2. SEL-3022 wireless encrypting transceiver, http://www.selinc.com/sel-3022.htm
3. IEEE P1777/D1: Draft recommended practice for using wireless data communica-

tions in power system operations (February 2007)
4. IEEE Standard 1646: Communication delivery time performance requirements for

electric power substation automation (September 2004)
5. IEEE standard 802.11e (September 2004),

http://standards.ieee.org/getieee802/802.11.html

6. Ayers, Yodaiken, B.V.: Introducing real-time linux. Linux Journal 1997(34es), 5
(1997)

7. Caccamo, M., Zhang, L.Y., Sha, L., Buttazzo, G.: An implicit prioritized access
protocol for wireless sensor networks. In: Proceedings of the IEEE Real-Time Sys-
tems Symposium, RTSS (2002)

8. Crenshaw, T.L., Hoke, S., Tirumala, A., Caccamo, M.: Robust implicit EDF: A
wireless MAC protocol for collaborative real-time systems. Transaction on Embed-
ded Computing System (2007)

9. Ergen, M., Duke Lee, R.S., Varaiya, P.: WTRP: Wireless token ring protocol. IEEE
Transaction on Vehicular Technology (2004)

10. Gleixner, T., Molnar, I.: ktimers subsystem, http://lwn.net/articles/152363/
11. Gopalan, K., cker Chiueh, T.: Multi-resource allocation and scheduling for periodic

soft real-time applications. In: Proceedings of ACM/SPIE Multimedia Computing
and Networking (2002)

12. Gopalan, K., Kang, K.-D.: Coordinated allocation and scheduling of multiple re-
sources in real-time operating systems. In: Proceedings of Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, OSPERT (2007)

13. He, W., Nahrstedt, K.: Impact of upper layer adaptation on end-to-end delay
management in wireless ad hoc networks. In: 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS (2006)

14. He, W., Nguyen, H., Nahrstedt, K.: Experimental validation of middleware-based
QoS control in 802.11 wireless networks. In: 3rd International Conference on Broad-
band Communications, Netwoks, and Systems, BROADNETs (2006)

15. hua Chu, H.: CPU Service Classes: A Soft Real Time Framework for Multimedia
Applications. PhD thesis, UIUC (1999)

16. Jones, M., Alessandro, J., Paul, F., Leach, J., RoOu, D., RoOu, M.: An overview
of the rialto realtime architecture (1996)

17. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM 20(1), 46–61 (1973)

18. Nahrstedt, K., hua Chu, H., Narayan, S.: QoS-aware resource management for
distributed multimedia applications. Journal on High-Speed Networking, Special
Issue on Multimedia Networking (1998)

http://www.microwavedata.com/applications/scada/
http://www.selinc.com/sel-3022.htm
http://standards.ieee.org/getieee802/802.11.html
http://lwn.net/articles/152363/

202 H. Nguyen, R. Rivas, and K. Nahrstedt

19. Nieh, J., Lam, M.S.: The design of SMART: A scheduler for multimedia applica-
tions. Technical Report CSL-TR-96-697 (1996)

20. Rao, A., Stoica, I.: An overlay MAC layer for 802.11 networks. In: 3rd International
Conference on Mobile Systems, Applications, and Services (2005)

21. Shankaran, N., Koutsoukos, X.D., Schmidt, D.C., Xue, Y., Lu, C.: Hierarchical
control of multiple resources in distributed real-time and embedded systems. In:
Euromicro Conference on Real-time systems (2006)

22. Sourav Ghosh, J.H., Rajkumar, R., Lehoczky, J.: Integrated resource management
and scheduling with multi-resource constraints. In: Proceedings of the IEEE Real-
Time Systems Symposium, RTSS (2004)

23. Srinivasan, B., Pather, S., Hill, R., Ansari, F., Niehaus, D.: A firm real-time system
implementation using commercial off-the-shelf hardware and free software. In: Pro-
ceedings of the Fourth IEEE Real-Time Technology and Applications Symposium,
RTAS (1998)

24. Xu, D., Nahrstedt, K., Viswanathan, A., Wichadakul, D.: Qos and contention-
aware multi-resource reservation. In: IEEE International Symposium on High Per-
formance Distributed Computing, HDPC (2000)

25. Yang, Y., Kravets, R.: Achieving delay guarantees in ad hoc networks through
dynamic contention window adaptation. In: IEEE Conference on Computer Com-
munication, INFOCOM (2006)

26. Yang, Y., Wang, J., Kravets, R.: Distributed optimal contention window control for
elastic traffic in wireless LANs. In: IEEE Conference on Computer Communication,
INFOCOM (2005)

27. Yuan, W.: GRACE-OS: An Energy-Efficient Mobile Multimedia Operating System.
PhD thesis, UIUC (2004)

	iDSRT: Integrated Dynamic Soft Real-Time Architecture for Critical Infrastructure Data Delivery over WLAN
	Introduction
	Models and Definitions
	Network Model
	Task Model

	iDSRT Framework
	Overview Design of iDSRT
	Integrated Middleware Coordination (iCoord)
	DSRT (Dynamic Soft Real-Time Scheduler)
	iEDF (Implicit Earliest Deadline First Packet Scheduler)

	Implementation
	DSRT Implementation
	iEDF Implementation

	Evaluation
	Experiment Setup
	Scenarios
	Evaluation Metrics
	Experiment Results

	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

