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Abstract. A security engine should detect network traffic attacks at line-speed.
When an attack is detected, a good security engine should screen away the offend-
ing packets and continue to forward all other traffic. Anomaly detection engines
must protect the network from new and unknown threats before the vulnerability
is discovered and an attack is launched. Thus, the engine should integrate in-
telligent “learning” capabilities. The principal way for achieving this goal is to
model anticipated network traffic behavior, and to use this model for identifying
anomalies.

The scope of this research focuses primarily on denial of service (DoS) attacks
and distributed DoS (DDoS). Our goal is detection and prevention of attacks. The
main challenges include minimizing the false-positive rate and the memory con-
sumption. In this paper, we present the MULAN-filter. The MULAN (MUlti-Level
Adaptive Network) filter is an accurate engine that uses multi-level adaptive struc-
ture for specifically detecting suspicious traffic using a relatively small memory
size.

1 Introduction

A bandwidth attack is an attempt to disrupt an online service by flooding it with large
volumes of bogus packets in order to overwhelm the servers. The aim is to consume
network bandwidth in the targeted network to such an extent that it starts dropping
packets. As the packets that get dropped include also legitimate traffic, the result is
denial of service (DoS) to valid users.

Normally, a large number of machines is required to generate volume of traffic large
enough for flooding a network. This is called a distributed denial of service (DDoS), as
the coordinated attack is carried out by multiple machines. Furthermore, to diffuse the
source of the attack, such machines are typically located in different networks, so that
a single network address cannot be identified as the source of the attack and be blocked
away.

Detection of such attacks is usually done by monitoring IP addresses, ports, TCP
state information and other attributes to identify the anomalous network sessions. The
weakness of directly applying such a methodology is the large volume of memory re-
quired for a successful monitoring. Protocols that accumulate state information that
grows linearly with the number of flows are not scalable.

In designing a fully accurate and scalable engine, one need to address the following
challenges.

1. Prevention of Threats: The engine should prevent threats from entering the network.
Threat prevention (and not just detection) adds difficulties to the engine, most of
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which stem from the need to work at line-speed. This potentially makes the engine
a bottleneck – increasing latency and reducing throughput.

2. Accuracy: The engine must be accurate. Accuracy is measured by false-negative
and false-positive rates. A false-negative occurs when the engine does not detect a
threat and a false-positive when the engine drops normal traffic.

3. Modeling the anticipated traffic behavior: A typical engine uses thresholds to de-
termine whether a packet/flow is part of an attack or not. These thresholds are a
function of the anticipated traffic behavior, which should reflect, as best as possi-
ble, actual “clean” traffic. Creating such a profile requires a continuous tracking of
network flows.

4. Scalability: One of the major problems in supplying an accurate engine is the mem-
ory explosion. There is a clear trade-off between accuracy and memory consump-
tion. It is a challenge to design a scalable engine using a relatively small memory
that does not compromise the engine accuracy.

This paper presents the MULAN-filter. The MULAN-filter detects and prevents DoS/DDoS
attacks from entering the network. The MULAN-filter maintains a hierarchical data struc-
ture to measure traffic statistics. It uses a dynamic tree to maintain the information used
in identifying offending traffic. Each level of the tree represents a different aggregation
level. The main goal of the tree is to save statistics only for potentially threatening traffic.
Leaf nodes are used to maintain the most detailed statistics. Each inner-node of the tree
represents an aggregation of the statistics of all its descendants.

Periodically, the algorithm clusters the nodes at the first level of the tree, it identifies
the clusters that might hold information of suspicious traffic, for each node in such
clusters, the algorithm retrieves its children and apply the clustering algorithm on the
node’s children. The algorithm repeats this process until it gets to the lower level of the
tree. This way, the algorithm identifies the specific traffic of the attack and thus, this
traffic can be blocked.

The MULAN-filter removes from the tree nodes that are not being updated frequently.
This way, it maintains detailed information for active incoming flows that may poten-
tially become suspicious, without exhausting the memory of the device on which it is
installed.

The MULAN-filter uses samples. At the end of each sample it analyzes the tree and
identifies suspicious traffic. When the MULAN-filter identifies a suspicious path in the
tree, it examines this path to determine whether or not the path represents an attack, this
may take a few more samples. As a result, there might be very short attacks, that start
and end within few samples that the MULAN-filter will not detect. In [1], the authors
conclude that the bulk of the attacks last from three to twenty minutes. By determining
the duration of a sample to few seconds, our MULAN-filter detect almost all such attacks.

The MULAN-filter was implemented in software and was demonstrated both on traces
from the MIT DARPA project [2] and on 10 days of incoming traffic of the Computer
Science school in our university. Our results show that the MULAN-filter works at wire
speed with great accuracy. The MULAN-filter preferably be installed a on a router, so the
attacks are detected before they harm the network, but its design allows it to be installed
anywhere.
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2 Related Work

Detection of network anomalies is currently performed by monitoring IP addresses,
ports, TCP state information and other attributes to identify network sessions, or by
identifying TCP connections that differ from a profile trained on attacks-free traffic.

PHAD [3] is a packet header anomaly detector that models protocols rather than
user behavior using a time-based model, which assumes that the network statistics can
change rapidly, in a short period of time. According to PHAD, the probability, P, of
an event occurring is inversely proportional to the length of time since it last occurred.
P(NovelEvent) = r/n, where r is the number of observed values and n is the number of
observations. PHAD assigns an anomaly score for novel values of 1/P(NovelEvent) =
tn/r, where t is the time since the last detected anomaly. PHAD detects ∼ 35% of the
attacks at a rate of ten false alarms per day after training on seven days on attack-free
network traffic.

MULTOPS [4] is a denial of service bandwidth detection system. In this system, each
network device maintains a data structure that monitors certain traffic characteristics.
The data structure is a tree of nodes that contains packet rate statistics for subnet prefixes
at different aggregation levels. The detection is performed by comparing the inbound
and outbound packet rates. MULTOPS fails to detect attacks that deploy a large number
of proportional flows to cripple the victim, thus, it will not detect many of the DDoS
attacks.

ALPI [5] is a DDoS defense system for high speed networks. It uses a leaky-bucket
scheme to calculate an attribute-value-variation score for analyzing the deviations of
the values of the current traffic attributes. It applies the classical proportion integration
scheme in control theory to determine the discarding threshold dynamically. ALPI does
not provide attribute value analysis semantics; i.e., it does not take into consideration
that some TCP control packets, like SYN or ACK, are being more disruptive.

Many DoS defense systems, like Brownlee et al. [6], instrument routers to add flow
meters at either all, or at selected, input links. The main problem with the flow mea-
surement approach is its lack of scalability. For example, in [6], if memory usage rises
above a high-water mark they increase the granularity of flow collection and decrease
the rate at which new flows are created. Updating per-packet counters in DRAM is im-
possible with today’s line speed. Cisco NetFlow [7] solves this problem by sampling,
which affects measurement accuracy. Estan and Varghese presented in [8] algorithms
that use an amount of memory that is a constant factor larger than the number of large
flows. For each packet arrival, a flow id lookup is generated. The main problem with
this approach is in identifying large flows. The first solution they presented is to sample
each packet with a certain probability, if there is no entry for the flow id, a new entry
is created. From this point, each packet of that flow is sampled. The problem with that
is its accuracy. The second solution uses hash stages that operate in parallel. When a
packet arrives, a hash of its flow id is computed and the corresponding counter is up-
dated. A large flow is a flow whose counter exceeds some threshold. Since the number
of counters is lower than the number of flows, packets of different flows can result in up-
dating the same counter, yielding a wrong result. In order to reduce the false-positives,
several hash tables are used in parallel.
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Schuehler et al. present in [9] an FPGA implementation of a modular circuit design
of a content processing system. The implementation contains a large per-flow state store
that supports 8 million bidirectional TCP flows concurrently. The memory consumption
grows linearly with the number of flows. The processing rate of the device is limited to
2.9 million 64-byte packets per second.

Another solution, presented in [10], uses aggregation to scalably detect attacks. Due
to behavioral aliasing the solution doesn’t produce good accuracy. Behavioral alias-
ing can cause false-positives when a set of well behaved connections aggregate, thus
mimicking bad behavior. Aliasing can also result in false negatives when the aggregate
behavior of several badly behaved connections mimics good behavior. Another draw-
back of this solution is its vulnerability against spoofing. The authors identify flows
with a high imbalance between two types of control packets that are usually balanced.
For example, the comparison of SYNs and FINs can be exploited by the attacker to send
spurious FINs to confuse the detection mechanism.

3 DoS Attacks

Denial of service (DoS) attacks cause service disruptions when too many resources
are consumed by the attack instead of serving legitimate users. A distributed denial of
service (DDoS) attack launches a coordinated DoS attack toward the victim from ge-
ographically diverse Internet nodes. The attacking machines are usually compromised
zombie machines controlled by remote masters. Typical attacked resources include link
bandwidth, server memory and CPU time. DDoS attacks are more potent because of
the aggregated effect of the traffic converging from many sources to a single one. With
knowledge of the network topology the attackers may overwhelm specific links in the
attacked network.

The best known TCP DoS attack is the SYN flooding [11]. Cisco Systems Inc. imple-
mented a TCP Intercept feature on its routers [12]. The router acts as a transparent TCP
proxy between the real server and the client. When a connection request is made from
the client, the router completes the handshake for the server, and opens the real con-
nection only after the handshake is completed. If the amount of half-open connections
exceeds a threshold, the timeout period interval is lowered, thus dropping the half-open
connections faster. The real servers are shielded while the routers aggressively handle
the attacks. Another solution is SYN cookies [13], which eliminates the need to store
information per half open connection. This solution requires design modification, in
order to change the system responses.

Another known DoS attack is the SMURF [14]. SMURF uses spoofed broadcast ping
messages to flood a target system. In such an attack, a perpetrator sends a large amount of
ICMP echo (ping) traffic to IP broadcast addresses, with a spoofed source address of the
intended victim. The hosts on that IP network take the ICMP echo request and reply with
an echo reply, multiplying the traffic by the number of hosts responding. An optional
solution is to never reply to ICMP packets that are sent on a broadcast address [15].

Back [16] is an attack against the Apache web server in which an attacker submits re-
quests with URL containing many front-slashes. Processing these requests slows down
the server performance, until it is incapable of processing other requests. Sometimes this
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attack is not categorized as high rate DoS attacks, but we mention it since the MULAN-
filter discovers it. In order to avoid detection, the attacker sends the front-slashes in
separate HTTP packets, resulting in many ACK packets from the victim server to the
attacker. An existing solution suggests counting the front-slashes in the URL. A request
with 100 front-slashes in the URL would be highly irregular on most systems. This
threshold could be varied to find the desired balance between detection rate and false
alarm rate.

In all the above examples, the solutions presented are specific to the target attack and
can be implemented just after the vulnerabilities are exploited. The MULAN-filter iden-
tifies new and unknown threats, including all the above attacks, before the vulnerability
is discovered and the exploit is created and launched, as detailed later.

4 Notations and Definitions

– A metric is defined as the chosen rate at which the measurements by the algorithm
are executed, for example, bit per second, packets per second etc.

– An Ln is the number of levels in the tree data structured used by the algorithm.
– Sample value is defined as the aggregated value that is collected from the captured

packets in one sample interval.
– Window interval is defined as m× sample interval, where m > 0 and the sample

interval is the length of each sampling.
– Clustering Algorithm is defined as the process of organizing sample values into

groups whose members have “similar” values. A cluster is therefore a collection of
sample values that are “similar” and are “dissimilar” to the sample values belonging
to other clusters (as detailed later).

– Cluster Info is the number of samples in the cluster, the cluster mean and the cluster
standard deviation, denoted by C.Size, C.Mean and C.Std respectively.

– Anticipated Behavior Profile (ABP) is a set of k Clusters Info, where k is the number
of clusters.

– Clusters Weighted Mean (WMean) is the weighted mean of all clusters, alterna-
tively, the mean of all samples.

– Clusters Weighted Standard Deviation (WStd) is the weighted standard deviation
of all clusters, alternatively, the standard deviation of all samples.

– High General Threshold (HGThreshold) is WMean+ t1×WStd and Low General
Threshold (LGThreshold) is WMean + t2×WStd, where t1 > t2.

– Marked Cluster is a cluster with mean greater than LGT hreshold.

5 The MULAN-Filter Design

The MULAN-filter uses inbound rate anomalies in order to detect malicious traffic.
The statistics are maintained in a tree-shaped data-structure. Each level in the tree
represents an aggregation level of the traffic. For instance, the highest level may de-
scribe inbound packets rate per-destination, the second level may represent per-protocol
rate for a specific destination and the third level hold per-destination port rate for a spe-
cific destination and protocol. Each node maintains the aggregated statistics of all its
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descendants. A new node is created only for packets with a potentially suspicious par-
ent node. This way, for example, there is a need to maintain a detailed statistics only
for potentially suspicious destinations, protocols or ports. Another advantage of using
the tree is the ability to find specific anomalies for specific nodes. For example, one rate
can be considered normal for one destination, but is anomalous for the normal traffic of
another destination.

The MULAN-filter can be used in two modes, training mode and verification mode.
The output of the training mode is the ABP and the thresholds. For each cluster C in
the ABP, if C.Mean > LGT hreshold, the cluster is denoted as a marked cluster. This
information is used to compare the online rates in the verification mode process.

In order to calculate this information, the anticipated traffic behavior profile must
be measured. There are two ways to measure such a profile: Either training a profile on
identification of attack-free traffic, or by trying to filter the traffic from prominent bursts,
which might indicate attacks and then creating the profile from the filtered traffic.

5.1 Anticipated Traffic Behavior Profile

In order to create the ABP, it is better to use an attack-free traffic. Alternative solutions
strongly assume attack-free traffic, an assumption that may be impractical for several
reasons. First, unknown attacks may be included in that traffic, so the baseline traffic is
not attack-free. Furthermore, traffic profiles vary from one device to another, and unique
attack-free training profiles need to be obtained for each specific device on which the
system is deployed. Moreover, traffic profiles on any given device may vary over time.
Thus, a profile may be relevant only at a given time, and may change a few hours later.

We propose a methodology in which anomalies are first identified, and then refined.
The cleaner the initial traffic the more precise the initial state is, but our methodology
works well with non-clean traffic. To achieve both goals, the algorithm aggregates per-
sample interval statistics, creating a sample value for each such interval. At the end of
each window interval, the algorithm employs a clustering algorithm in order to obtain
a set of clustered sample values. If there are one or more clusters with significantly
high mean values (3 standard deviations from WMean), the algorithm discovers the
samples that are key contributors to the resulting mean values. The algorithm refines
those samples by setting their value to the cluster mean value and then recalculates the
clusters’ means values. The “refinement” rule states that lower levels always override
refinement of higher levels. This means that if the algorithm detects a high burst at one
of the destinations and then detects a high burst at a specific protocol for that destination,
it refines the node value associated with the protocol, which also impacts the value
associated with the destination. The refinement process is performed at every window
interval for maintaining a dynamic profile.

5.2 Data Structure

The MULAN-filter uses a tree-shaped data structure. The tree enables maintaining dis-
tinct statistics of all the relevant traffic. Traffic is considered relevant if there is a high
probability that it contains an attack.

In our implementation example, there are three levels in the tree. The nodes at the
first level hold statistics per-destination IP address, the nodes at the second level hold
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statistics per-protocol and the nodes at the third level hold statistics per-destination port
(see Fig. 1). During the verification mode, when a sample value is calculated, the algo-
rithm saves the aggregation for the first level. In our implementation, assume that the
sample value is equal to SV and there are Ns packets that arrived during the sample
interval with n different IP addresses. We define Metric(Packet j) to be the contribution
of Packet j to SV , and SVi to be the part of SV that is calculated from packets with IPi

in their header. Formally, SVi = ∑ j,IPi∈Packet j
Metric(Packet j), thus, SV = ∑i SVi, where

1 ≤ j ≤ Ns and 1 ≤ i ≤ n. The tree structure is flexible to hold special levels for specific
protocols, see Section 5.3.

In the verification mode, the tree is updated following two possible events. One is
a completion of each sample interval. In this case, the algorithm compares SV to the
clusters’ means from the ABP. If the closest mean belongs to a marked cluster, a node
for each IPi is added to the first level in the tree. The second event at which the tree is
updated may occur at packet’s arrival. If the destination IP address in the packet header
has a node in the first level, a node for the packet protocol is created at the second level,
and so on. In any case, the metric’s values along the path from the leaf to the root are
updated. This way, each node in the tree holds the aggregated sum of the metric’s values
of its descendants.

A node that is not updated for long enough is removed from the tree. A node can not
be removed unless it is a leaf, and it can become a leaf if all of its descendants have been
removed. Thus, we focus only on nodes (or on traffic) that are suspected of comprising
an attack; thus, saving on memory consumption.

5.3 Special Levels for Specific Protocols

Some protocols have special information in their header that can help the algorithm
in blocking more specific data. Since our tree is very flexible in the data it can hold,
we can add special levels for specific protocols. In our experiments we added a level
for the TCP protocol that distinguishes between the TCP flags. This addition results in
dropping only the SYN packets when the algorithm detects a SYN attack. The same
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can be done for the ICMP types in order to recognize the ECHO packets in the SMURF

attack.

6 The Algorithm

Prior to implementing the algorithm, the following should be defined: depth of the
tree, characteristics of the data aggregated at each level, sample interval, window in-
terval, metrics to be measured, and t1 and t2 used for calculating LGT hreshold and
HGThreshold.

The MULAN-filter has been implemented in software. The input to our engine is taken
both from the MIT DARPA project [2] and from the Computer Science school in our
university. The input from MIT contains two stretches of five-days traffic (fourth and
fifth week) with documented attacks and the input from the university contains 10 days
of incoming traffic, this containing both real and simulated attacks that we injected.

The algorithm operates in two modes, the training mode and the verification mode.
The training mode is generated at the end of a window interval. The input for this mode
is a set of N samples and the output is ABP with indication of the marked clusters.

6.1 Training Mode

In order to create the ABP, the algorithm generates the K-means [17] clustering algo-
rithm every window interval to cluster the N sample values into k clusters. For each
cluster, the algorithm holds its size, mean and standard deviation, after which the algo-
rithm can calculate the weighted mean, WMean, and the weighted standard deviation,
WStd, and determine the value of LGT hreshold. Since the samples may contain at-
tacks, LGT hreshold might be higher than it should. Therefore, for each cluster C, if
C.Mean > LGT hreshold, the algorithm retrieves C’s sample values. In our implemen-
tation, each sample value in the cluster holds metric values of IP addresses that were
seen in that sample interval. For each sample, the algorithm gets the aggregation per
IP address and generates new set of samples. The algorithm then generates K-means
again, where the input is the newly created set. Running K-means on this set produces a
set of clusters, a cluster with a high mean value holds the destinations with the highest
metric value. The algorithm continues recursively for each level of the tree.

At each iteration in the recursion, the algorithm detects the high bursts and refines
the samples in the cluster to decrease the bursts influence on the thresholds, see Sec-
tion 5.1. As mentioned, the “refinement” rule states that lower levels always override
refinement of higher levels. This means that if the algorithm detects a high burst at one
of the destinations and then a high burst at a specific protocol for that destination, it
refines the node value associated with the protocol, impacting on the value associated
with the destination. When the refinement process is completed, the refined samples
are clustered again to produce the updated ABP information and the LGT hreshold. A
cluster C is indicated a marked cluster if C.Mean > LGT hreshold.

There can be cases in which the bursts that the algorithm refines represent normal
behavior. In such cases LGT hreshold may be lower than expected. Since the algorithm
uses the training mode in order to decide whether to save information when running in
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verification mode, the only adverse impact of this refinement is in memory utilization,
as more information is saved than actually needed. This is preferable to overlooking an
attack because of a mistakenly calculated high threshold. The training mode algorithm
is presented in Algorithm 1.

At each sample completion, the algorithm gets the sample value and finds the most
suitable cluster from the ABP. In order for the profile to stay updated and for the clus-
tering algorithm to be generated only at the end of each window interval, the cluster
mean and standard deviation are updated by the new sample value.

6.2 Verification Mode

The verification mode starts after one iteration of the training mode (after one window
interval). The verification mode is executed either on a packet arrival or following a
sample completion.

To simplify the discussion, as a working example in this section we assume that the
tree has three levels and the aggregation levels are IP address, protocol and port number
in the first, second and third level, respectively.

On each packet arrival, the algorithm checks whether there is a node in the first
level of the tree for the destination IP address of the packet. If there is no such node,
nothing is done. If the packet has a representative node in the first level, the algorithm
updates the node’s metric value. From the second level down, if a child node exists for
the packet, the algorithm updates the node’s metric value, otherwise, it creates a new
child.

At each sample completion, the algorithm gets the sample value and finds the most
suitable cluster from the ABP. If the suitable cluster is a marked cluster, the algorithm
adds nodes for that sample in the first level of the tree. In our example, the algorithm
adds per-destination aggregated information from the sample to the tree. I.e. for each
destination IP address that appears in the sample, if there is no child node for that IP
address, the algorithm creates a child node with the aggregated metric value for that
address (see Section 5.2).

The algorithm runs K-means on the nodes at the first level of the tree. Each sample
value is per-destination aggregated information (SVi with the notations from
Section 5.2). As in the training mode, the clustering algorithm produces the set of
clusters info, but in this case the algorithm calculates the threshold HGT hreshold. If
a cluster’s mean is above the HGThreshold, a deeper analysis is performed. For each
sample in the cluster (or alternatively, for each node at the first level), the algorithm
retrieves the node’s children and generates K-means again. The algorithm continues
recursively for each level in the tree. At each iteration, the algorithm also checks the
sample values in the cluster nodes. If a sample value is greater than HGThreshold, it
marks the node as suspicious.

The last step is to walk through the tree and to identify the attacks. The analysis is
done in a DFS manner. A leaf that has not been updated long enough is removed from
the tree. Each leaf that is suspected too long is added to the black list, thus preventing
suspicious traffic until its rate is lowered to a normal rate. For each node on the black-list,
if its high rate is caused as a results of only a few sources, the algorithm raises an alert
but does not block the traffic; If there are many sources, the traffic that is represented
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Algorithm 1. Training Mode Algorithm
1: packet ⇐ ReceivePacket();
2: U pdateMetricValue(sample, packet);
3: if End o f Sample Interval then
4: samples.AddSample(sample);
5: end if;
6: if End o f Window Interval then
7: U pdateTrainPro f ile(samples);
8: end if.

UpdateTrainProfile(samples)
1: clusters ⇐ KMeans(samples);
2: samples ⇐ Re f ine(clusters,samples);
3: ABP ⇐ BuildPro f ile(clusters);
4: LGT hreshold ⇐ calcT hreshold(ABP);
5: for all clusterIn f o ∈ ABP do
6: if clusterIn f o.Mean > LGThreshold then
7: setMarked(cluster);
8: end if;
9: end for.

by the specific path is blocked until the rate becomes normal. The verification mode
algorithm is presented in Algorithm 2.

In addition of the above, to prevent attacks that do not use a single IP destination,
like attacks that scan the network looking for a specific port on one of the IP addresses,
the algorithm identifies sudden increase in the size of the tree. When such increase
is detected, the algorithm builds a hash-table indexed by the source IP address. The
value of each entry in the hash-table is the number of packets that were sent by the
specific source. This way, the algorithm can detect the attacker and block its traffic
(see Section 8). The algorithm maintains a constant number of entries and replaces
entries with low values. The hash-table size is negligible and does not affect the memory
consumption of the algorithm.

Since the algorithm detects anomalies at each level of the tree, it can easily recognize
exceptions in the anomalies it generates. For example, if one IP address appears in many
samples as an anomaly, the algorithm learns this IP address and its anticipated rate and
adds it to an exceptions list. From this moment on, the algorithm compares this IP
address to a specific threshold.

6.3 The Algorithm Parameters

In our simulation, the algorithm builds three levels in the tree. The first level holds
aggregated data for the destination IP addresses, the second level holds aggregated data
for the protocol for a specific IP address, and the third level holds aggregated data for
a destination port for specific IP and port. Since we look for DoS/DDoS attacks, these
levels are sufficient to isolate the attack’s traffic.

At the end of each window interval the algorithm updates the ABP and, since the
network can be very dynamic, we chose the window interval to be five minutes. The bulk
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Algorithm 2. Verification Mode Algorithm
1: packet ⇐ ReceivePacket();
2: U pdateMetricValue(sample, packet);
3: PlacePctInTree(packet,root,0);
4: if End o f Sample Interval then
5: SetFirstLevel(sample,root);
6: Veri f y(root.children);
7: AnalyzeTree(root);
8: end if.

PlacePctInTree(packet, node, level)
1: if level == lastLevel then
2: return;
3: end if;
4: if node.HasChild(packet) then
5: child ⇐ node.GetChild(packet);
6: child.AddToSampleValue(packet);
7: PlacePctInTree(packet,child,++ level);
8: else
9: if level > 0 then

10: child ⇐CreateNode(packet);
11: node.AddChild(child);
12: end if;
13: end if.

SetFirstLevel(sample, root)
1: cluster ⇐ GetClosestClusterFromABP(sample);
2: cluster.U pdateMeanAndStd(sample);
3: if MarkedCluster(cluster) then
4: AddFirstLevelIn f o(sample);
5: end if.

Verify(nodes)
1: clustersIn f o ⇐ KMeans(nodes);
2: CalcT hresholds(clustersIn f o);
3: for all cluster ∈ clustersIn f o do
4: if cluster.Mean > LGT hreshold then
5: for all node ∈ cluster do
6: if node.sampleValue > HGT hreshold then
7: MarkSuspect(node);
8: end if;
9: Veri f y(node.children);

10: end for;
11: end if;
12: end for.

AnalyzeTree(node)
1: for all child ∈ node.children do
2: if child.NoChildren() then
3: if child.UnSuspectTime > cleanDuration then
4: RemoveFromTree(child);
5: end if;
6: if child.SuspectTime > suspectDuration then
7: AddToBlackList(child);
8: end if;
9: else

10: AnalyzeTree(child);
11: end if;
12: end for.
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of DoS/DDoS attacks lasts from three to twenty minutes, we have therefore chosen the
sample interval to be five seconds. This way the algorithm might miss few very short
attacks. An alternative solution for short attacks is presented in Section 6.5. A node
is considered as indicating an attack if it stays suspicious for suspect duration; In our
implementation the suspect duration is 18 samples. A node is removed from the tree if it
is not updated for clean duration; In our implementation the clean duration is 1 sample.
DoS/DDoS attacks can be generated by many short packets, like in the SYN attack
example, thus, a bit-per-second metric may miss those attacks. In our implementation
we use a packet-per-second metric.

The last parameters to be determined are t1 and t2 that are used for calculating
LGT hreshold and HGThreshold. These parameters are chosen using Chebyshev in-
equality. The Chebyshev inequality states that in any data sample or probability dis-
tribution, nearly all the values are close to the mean value, in particular, no more than
1/t2 of the values are more than t standard deviations away from the mean. Formally,
if α = tσ, the probability of an attribute length, can be calculated using the inequality:

p(|x−µ|> α) <
σ2

α2 .

The Chebyshev bound is weak, meaning the bound is tolerant to deviations in the sam-
ples. This weakness is usually a drawback. In our case, since DoS/DDoS attacks are
characterized by a very high rate, the engine has to detect just significant anomalies and
this weakness of the Chebyshev boundary becomes an advantage. In our experiment we
set t1 = 1 and t2 = 5.

Non-self-similar traffic may be found at the lower levels of the tree (per destination
rate, per protocol rate etc.). Another problem at the lower levels is the reduced number
of samples, complicating the ability to anticipate traffic behavior at these levels. In
order to identify the anomalies at those levels, we introduce an alternative measurement
model, see Section 6.4.

6.4 Modeling Non-self-similar Traffic

The MULAN-filter has to model anticipated traffic. There are two main challenges in
modeling anticipated traffic: the complexity of network traffic, and its variance over
time.

Bellovin [18] and Paxson [19] found that wide network traffic contains a wide range
of anomalies and bizarre data that is not easily explained. Instead of specifying the
extremely complex behavior of network traffic, they use a machine learning approach to
model actual traffic behavior. Research by Adamic [20] and Huberman and Adamic [21]
implies that this approach would fail since the list of observed values grows at a constant
rate and is never completed, regardless of the length of the training period. However,
Leland et al. [22] and Paxson & Floyd [23] show that this is not valid for many types
of events, like measuring packets per second rate.

Non-self-similar traffic may be found at the lower levels of the tree (per destination
rate, per protocol rate etc.). Another problem at the lower levels is the reduced number
of samples, complicating the ability to anticipate traffic behavior at these levels. In order
to identify the anomalies at those levels, an alternative measurement model should be
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introduced. Let Nc be the number of children of a node, and s be the sum of all sample
values of the node children. If a “small” subset of Nc represents a “high percentage”
of s, an anomaly is alerted. For example, consider a destination for which there are
seven protocol nodes, of which six have sample values of approximately ten packets
per second, and a seventh node has a sample value of 400 packets per second. This
would result in a mean value of 65.7, with rather high standard deviation of 147.4.
Using traditional models, it will be difficult to identify the seventh child as an anomaly.
Using the proposed model, one child represents ∼ 87% of all samples, so this node is
identified as an anomaly.

6.5 Handling Short Attacks

MIT traces contain short DDoS attacks (some of them are 1 second long). An example
from MIT traces is the SMURF attack. In the SMURF attack, the attacker sends ICMP
‘echo request’ packets to the broadcast address of many subnets with the source address
spoofed to be that of the intended victim. Any machine that is listening on these subnets
responds by sending ICMP ‘echo reply’ packets to the victim. Short attacks can exhaust
a victim but usually cannot defeat it. Since our algorithm blocks the anomalies from
entering the network, it declares an anomaly only after a node has being suspected for
some time. By reducing the sample interval, our algorithm can easily detect the short
attacks so an alert mechanism is added for them. As opposed to the common DoS
or DDoS attacks, in order to exhaust a service, the rate of the short attacks must be
significantly high so the anomaly will be much more conspicuous. Thus, in order to
reduce the false-positives we use more stringent detection rules for the short attacks.

7 Optimal Implementation

The main bottleneck that might occur in our engine is the tree lookup, which is per-
formed on arrival of each packet. Since the engine has to work at wire speed, software
solutions might be unacceptable. We suggest an alternative implementation.

The optimal implementation is to use a TCAM (Ternary Content Addressable Mem-
ory) [24]. The TCAM is an advanced memory chip that can store three values for every
bit: zero, one and “don’t care”. The memory is content addressable; thus, the time re-
quired to find an item is considerably reduced. The RTCAM NIPS presented in [25]
detects signatures-based attacks that were drawn from Snort [26]. In the RTCAM solu-
tion, the patterns are populated in the TCAM so the engine detects a pattern match in
one TCAM lookup. We can similarly deploy the MULAN filter in the TCAM. A TCAM
of size M can be configured to hold �M/w� rows, where w is the TCAM width. Let |Li|
be the length of the information at level i in the tree. Assuming that there are m levels,
w is taken to be ∑i |Li|, where 1 ≤ i ≤ m. In our example, the IP address at the first level
contains 4 bytes (for IPv4). An additional byte is needed to code the protocol at the
second level. For the port number at the third level we need another two bytes. Thus, in
our example w = 7. Since the TCAM returns the first match, it is populated as follows:
the first rows hold the paths for all the leaves in the tree. A row for a leaf at level i,
where i < Ln is appended with “don’t care” signs. After the rows for the leaves, we add



84 S. Tzur-David, D. Dolev, and T. Anker

123.34.55.10,TCP,456

123.34.55.10,TCP,124

123.34.55.10,TCP,876

123.34.55.10,UDP,555

123.34.56.4,***,***

123.34.54.7,***,***

123.34.55.10,TCP,***

123.34.55.10,UDP,***

123.34.55.10,***,***

********,***,***

root

123.34.56.4 123.34.54.7 123.34.55.10

TCP UDP

124 876456 555

Fig. 2. TCAM Population

rows for the rest of the nodes, from the bottom of the tree up to the root. Each row for a
non-leaf node at level l is appended with “don’t care” signs for the information at each
level j ≤ n such that l < j . The last row contains w “don’t care” bytes, thus indicating
that there is no path for the packet and providing the default match row.

Fig. 2 presents an example of the tree structure and the populated TCAM for that tree.
As shown, each node (except the root) has a row in the TCAM. When a packet arrives, the
algorithm extracts the relevant data, creates a TCAM key and looks for a TCAM match.
Each row in the TCAM holds a counter and a pointer to the row of the parent node. When
there is a TCAM match (except in the last row), the algorithm updates the counter at the
matched row and follows the pointer to the parent node’s row. The algorithm updates the
counters for each row along the path from the node corresponding to the matched row
to the row corresponding to the ancestor at the first level.

In our algorithm, there are only two places where the algorithm might add nodes to
the tree, when nodes are set for the first level, and on packet arrival. In both cases, the
algorithm adds leaves represented by the corresponding rows at the beginning of the
TCAM. Similarly, when the algorithm“cleans” the tree, it removes leaves, again, han-
dling the beginning of the TCAM. In order to easily update the TCAM while keeping
the right order of the populated rows, the TCAM is divided into L parts, where L is the
number of the levels in the tree.

The last obstacle our algorithm has to deal with is the TCAM updates. TCAM up-
dates are done when adding nodes to the tree and when removing nodes from the tree.
The TCAM can be updated either with a software engine or with a hardware engine.
Using software engine is much simpler but is practical only when there is a low number
of updates. Fig. 3 presents the average number of TCAM updates for each 100 packets
of the incoming traffic of the Computer Science school. The figure clearly illustrates
the creation of the tree. During the creation of the tree there are many insertions, thus
the number of updates is relatively high.

Each value is an average of values of all the days of MIT traces. The total average
update rate is ∼ 1.5 updates for 100 packets, more than 99% of the values are below 50
updates, with a small number of scenarios when the engine has to make up to ∼ 1700
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Fig. 3. TCAM Updates

TCAM updates. Today’s enterprise network equipment supports hundreds of Giga bits
per second of traffic and small and medium business devices handle 60−100 Giga bits
per second and above. One Giga interface supports 1.5 million packets per second, thus
enterprise network devices need to deal with about 500 millions packets per second, and
small and medium business need to deal with about 150 millions packets per second. A
software engine will not be able to fulfil these requirements and thus is not acceptable.
A hardware engine can achieve line speed rates. The available TCAM update speed
with hardware engine is in the range of 3 to 4 nano seconds, which is 250,000,000
to 330,000,000 updates per second. In light of the rate of TCAM updates, it can be
deduced that on average, one TCAM update is performed for every 67 packets. With a
traffic rate of 500 million packets per second, the engine has to make 500M/67 ≈ 7.5
millions updates per second, which is significantly less than the available TCAM update
rates limit. Even with 50 TCAM updates, the engine executes 500M/2 = 250 millions
updates per second which is still in range.

8 Experimental Results

The quality of performance of the algorithm is determined by two factors: scalability
and accuracy. In order to analyze the performance of the algorithm, a simulation was
implemented and tested with MIT DARPA traces and real traffic from our School of
Computer Science.

8.1 Scalability

Demonstration of scalability of the algorithm requires analysis of the memory require-
ment at every stage of execution. We measured the number of nodes on each sample
and we found an average size of the tree is 1028 nodes. This result is very encouraging
since it is a very reasonable memory consumption.

Another major advantage of our algorithm is the fact that the increase in tree size is
very moderate compared to the increase in the number of flows. This is clearly demon-
strated in Fig. 4 (Note that the x axis is a logarithm scale). In general, for any number
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Fig. 4. Tree Size vs Number of Flows

of flows the tree size is below 10000 nodes. There are few cases where the size of
the tree exceeds 30000 nodes, these cases occur when the traffic contains attacks. An
optimization to the algorithm, thats prevent such cases is presented in Section 8.3.

Memory consumption is one of the major difficulties when trying to extract per-
flow information in a security device. The main problem with the flow measurement
approach is its lack of scalability. Memory consumption of algorithms presented in
previous works is directly influenced by the number of flows, and in many cases the
algorithm performance is affected. Cisco NetFlow [7] solves this problem by sampling,
which affects measurement accuracy. Another work [8] develops algorithms that use an
amount of memory that is a constant factor larger than the number of the large flows.
The main problem in this approach is how to identify large flows. Two possible solutions
were presented, both of which lack accuracy. In [4], the authors try to aggregate data
by IP prefixes. For more than 1024 IPs, the data structure size does not fit in cache, so
that the algorithm rates drop proportionally to the total memory consumption. In our
engine, memory consumption does not grow linearly with the number of flows and the
algorithm accuracy is therefore not affected.

8.2 Accuracy

Accuracy is measured by the false-negative and the false-positive rates. False-negative
is a case in which the system does not detect a threat and false-positive is the case in
which the system drops normal traffic. This section presents the accuracy results both
on MIT DARPA traces and on the real traffic from our School of Computer Science.

MIT DARPA Traces. There are only two documented bandwidth attacks in the MIT
DARPA traces, both are SYN-attacks. Our algorithm finds these attacks. In addition,
our algorithm detects several other anomalous behaviors. The analysis indicates that
in one of the days, there are many retransmissions packets and a large number of se-
quential TCP-keep-alive packets, which is consistent with anomalous behavior. Another
example is the back attack targeted at the Apache web servers by submitting requests
with URL’s containing many front-slashes. As the server tries to process these requests,
it slows down and is unable to process other requests. In order to avoid detection, the
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attacker sends each front-slash in a different HTTP packet. The victim sends many TCP
ACK packets back to the attacker. Since the engine compares traffic per destination (at
the first level) it detects this traffic as anomaly. There is another case where our algo-
rithm detects many TCP SYN, RST and FIN packets. In one of the SYN attacks, the
source of the attack is an IP address within the network. As a result of the attack, the
victim sends many TCP RST packets back to the attacker. Consequently, the engine de-
tects two anomalies: the SYN packets to the victim and the RST packets to the attacker.

The School of Computer Science Traces. We analyzed the traffic in two modes. In
the first mode, we ran the algorithm on the original data and we looked for real attacks.
In the second mode we randomly added attacks to random destinations and verified that
the algorithm detects the injected attacks.

In the first mode we found some very interesting anomalous behaviors. In one alert,
the algorithm detects inbound scan on TCP, port 1433. In this attack, the attacker scans
the network, looking for a Microsoft SQL Server installations with weak password
protection and, if successful, looks to steal or corrupt data or use some features with
SQL Server to compromise the host system. Another alert indicates a single source
that scans the network for a listening HTTP server (scanning many IP addresses on
port 80). One more interesting alert indicates an inbound scan on TCP, port 139. Such
inbound scans are typically systems that are trying to connect to file shares that might
be available on the system and therefore should be blocked. While most of this traffic
is the result of worms or viruses, which can use open file shares to propagate, they can
be also the result of malicious users attempt to connect to the victim. Once connected,
they can download, upload or even delete or edit files on the connected file share.

The algorithm detected 4 exceptional IP addresses, all of them servers in the network.
The algorithm generated 87 alerts, almost all of them are IP addresses that communicate
with an IP address from the exceptions list. Since the exceptions list is a safe list of
servers, these alerts were omitted from the final results. We were left with 24 alerts.
There can be cases where a single host downloads a heavy file or backup heavy material
etc. In such cases, there will be a high rate between a single host to a single destination.
Our algorithm detects these channels as an attack. Since we don’t want to prevent this
legal traffic, our algorithm alerts these connections but it does not block the connection’s
traffic. Analysis of the results indicates that there are only 5 alerts containing more than
one source. These 5 alerts are false positives and they were generated from the highest
level in the tree, e.g. the alerts refer to IP addresses without indications for a specific
protocol or port. In case of an attack on a specific service, the tree detects the attack
also in lower levels, thus, an attack on this level may imply only some kind of network
scan, i.e. a port scan. When an attacker tries to scan the network, the size of the tree
significantly increases. Thus, by combining both anomalies, high rate on the highest
level and the size of the tree, we can eliminate these false positives.

In the second mode we randomly injected DoS/DDoS attacks of different kinds, our
algorithm found all of them. The injected attacks included the following attacks: ICMP
flood, where a host is bombarded by many ICMP echo requests in order to consume its
resources by the need to reply. Syn Attack, where random Syn packets are sent to the
attacked host with intent to fill the number of open connections it can hold and therefore
leave no free resources for new valid connections. DNS flood, roughly similar to ICMP



88 S. Tzur-David, D. Dolev, and T. Anker

flood, only more efficient against DNS servers as usually these requests require more
time spent on the server side. Smurf, where the attacker spoofs many echo requests
coming from the attacked host, and consequently the host is swamped by echo replies.

To reinforce our results, we compare the MULAN filter against LAD [27]. LAD is a
triggered, multi-stage infrastructure for the detection of large-scale network attacks. In
the first stage, LAD detects volume anomalies using SNMP data feeds. These anomalies
are then used to trigger flow collectors and then, on the second stage, LAD performs
analysis of the flow records by applying a clustering algorithm that discovers heavy-
hitters along IP prefixes. By applying this multi-stage approach, LAD targets the scal-
ability goal. Since SNMP data has coarse granularity, the first stage of LAD produces
false-negatives. The collection of flow records on the second phase requires a buffer to
hold the data and adds bandwidth overhead to the network, thus LAD uses a relatively
high threshold that leads to the generation of false-negatives. One major difference be-
tween the MULAN filter and LAD is that LAD only supplies detection of attacks, which
a network operator needs to process. This eases the implementation by two aspects; first,
the attacks are not detected online and the second is the tolerance to false positives. The
MULAN filter prevents the attacks with a negligible rate of false positives.

8.3 Controlling the Tree Size

In order to control the size of the tree in a way that it does not explode as it may do
during scanning attacks, we added the following rule: When the algorithm detects an
attack on any of the nodes in the tree, it stops adding children to that node until the
node’s rate falls below the threshold. As mentioned in Section 8.1, the reason the tree
had ∼ 15,000 nodes on that day is that two IP addresses received TCP traffic for many
different ports. For each unique port, the algorithm created a node in the tree. With the
above rule, when the anomalies are detected, the algorithm does not add more nodes
for new ports, although it does update the counter at the parent node (in this example,
the node that represents TCP). The algorithm resume adding children when the counter
at the parent is reduced and the parent is no longer categorized as an anomaly. The tree
size results after applying this optimization is presented in Table 1.

Table 1. Tree Size Results after Optimization

Day Packets Number Average Maximum
(W.D) (Nodes) (Nodes)

4.1 1,320,049 11.3 108
4.2 1,251,319 9.3 101
4.3 1,258,076 10.2 84
4.4 1,580,440 11.2 121
4.5 1,261,848 10.4 116
5.1 1,320,049 10.8 108
5.2 2,502,808 10.9 134
5.3 1,329,336 10.5 90
5.4 2,259,146 19.7 1,035
5.5 2,602,565 11.5 104
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9 Discussion and Future Work

The engine presented in this paper detects DoS/DDoS attacks. We fully simulated and
tested it with MIT DARPA traces and on real and recent traffic. There are two major ad-
vantages of our algorithm. One is the ability to save detailed information of the attacks
while using a limited amount of memory. The second advantage is the fact that our en-
gine finds all the attacks we expect it to find with a negligible number of false-positives.
These two advantages were achieved by the use of a hierarchical data structure.

A future work can identify a way to generalize this algorithm so it can detect other
types of attacks. One can create a state machine for each protocol, and identify patterns
that repeat in the different state machines. Thus, the nodes in the tree will hold the state
machine operations and suspicious behavior will be an anomaly from these operations.

Another algorithm could be developed for finding anomalies in different parts of a
packet or a flow. For example, a normal pattern can be the number of HTTP headers, in
which case, HTTP request with many headers (Apache2 attack) would be reported as an
anomaly. Another example is addressing a Mailbomb attack in which the attacker sends
many messages to a server, overflowing that server’s mail queue and causing system
crash. Each site has a different threshold of e-mail messages that can be sent by (or to)
one user before the messages are considered a Mailbomb. Thus, a high rate detection
engine might not discover this kind of attack. If the nodes in the tree will contain per
protocol information, the algorithm will detect the unexpected number of emails.
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