
E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 663–678, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

A New Method for Creating Efficient Security Policies
in Virtual Private Network

Mohammad Mehdi Gilanian Sadeghi1, Borhanuddin Mohd Ali1, Hossein Pedram2,
Mehdi Deghan2, and Masoud Sabaei2

1 Faculty of Engineering, Universiti Putra Malaysia, Malaysia
mmgsadeghi@yahoo.com, borhan@eng.upm.edu.my

2 Faculty of Computer Engineering and IT, Amirkabir University, Iran
{pedram,dehghan,sabaei}@ce.aut.ac.ir

Abstract. One of the most important protocols for implementing tunnels in
order to take action of secure virtual private network is IPsec protocol. IPsec
policies are used widely in order to limit access to information in security
gateways or firewalls. The security treatment, namely (Deny, Allow or Encrypt)
is done for outbound as well as inbound traffic by security policies. It is so
important that they adjust properly. The current methods for security policies
creation as seen in given security requirements are not efficient enough i.e.
there are much more created policies than requirements. In this paper, we define
a new method to decrease adopted security policies for a specific set of security
requirements without any undesirable effect. Our measurement shows that
security policies creation will be improved efficiently, and their updating time
will be decreased.

Keywords: IPsec policies, security policy, security requirement, virtual private
network.

1 Introduction

Virtual Private Network (VPN) is a group of techniques which makes implementation
of an organization’s private network on public and dynamic and scalable Internet.
Many protocols are used for the creation of virtual private networks (VPN) [1] and
IPsec protocol is one of the best for making security. IPsec policies [2] which are
placed on Security Policy Database (SPD) and Security Association Database (SAD)
consist of two parts, namely condition and action. The part of condition considers any
header field in IP packet for each policy. Generally, the part of action includes three
modes: Deny, Allow and IPsec_action. By mixing the properties of condition and
action, the policies would be represented. For example Packet with A source and B
destination addresses would pass in src=A, dst=B->Allow.

An inappropriate policy would possibly cause communication deficiency or serious
security breach [3, 4]. Some problems are due to manager’s carelessness for policies
adjustment, while some others might arise from interactions that cannot be easily
detected even with careful and experienced administrators. In the following, we study
one scenario of policies problem [5].

664 M.M.G. Sadeghi et al.

 SG :Security Gateway SG-1.1 SG-1 SG-2 SG-2.1

Fig. 1. Example of Policy Problem

In figure 1, there are financial department 1.1 in location 1 and financial
department 2.1 in location 2. Suppose that each department has a unique security
gateway as well as security policies in order to protect data. For example, department
1.1 decides to encrypt all traffic from 1.1 to 2 with a tunnel SG-1.1 to SG-2. At the
same time, the administrator for location 1 decides that whole traffic from location 1
to financial department 2.1 must be encrypted through a tunnel from SG-1 to SG-2.1
because of its importance. Thus, traffic from SG-1.1 to SG-2.1 would be covered
using two separate policies.

But such a scenario has a problem, i.e. with this configuration, a new header would
be encapsulated to packet in SG-1.1, and then another new header would be
encapsulated to these data in SG-1 again, finally they will be sent to SG-2.1
destination. When packets arrived at SG-2.1, the new header in second step is
decapsulated, so it is clear to determine SG-2 destination. Hence, SG-2.1 returns
traffic to SG-2. Finally, the new header in the first step is decapsulated in SG-2 and
traffic is sent to its real destination. Although our aim is to encrypt the traffic from
SG-2 to SG-2.1, there are some interactions between tunnels, so the real traffic will be
sent from SG-2 to SG-2.1 without any encryption.

The disadvantage of Figure 1 is solved in Figure 2 by choosing appropriate policy.
In Figure 2, the traffic is encrypted in SG-1.1. Again, it is encrypted in SG-1. The
destination for both tunnels is SG-2. They are decrypted there and changed into plain
text and then the traffic is encrypted in SG-2 and sent to the next tunnel between SG-2
and SG-2.1. If SG-2 is trusted in the second requirement, then the three-tunnel plan
can well satisfy both requirements.

 SG-1.1 SG-1 SG-2 SG-2.1

Fig. 2. IPsec policies to satisfy Security Requirements

In policy hierarchy [6], requirements (high level policy) are objectives while
implementation policies (low level policies) are specific plans to meet the objectives.
Each requirement may be met by a set of implementation policy. Thus, the process of
policy creation is to meet the demands of targets in such a way that it transforms the
requirements to implementation policies. So, it is necessary to choose policies very
carefully to meet all requirements.

 A New Method for Creating Efficient Security Policies in Virtual Private Network 665

2 Related Works

A working group on IP security policy (IPSP) formed in IETF has addressed complex
IPsec security policy problems. The requirements that we define in this paper
basically follow the IPSP requirement draft [7]. There is no complete solution found
up to now to meet all the objectives specified in the requirement and no interference
between policies has been considered. Moreover, many different studies have been
done on security policies [8, 9, 10] to standardize the policy specifications, which
currently address only low-level policy specifications. Similarly, other proposed
drafts regarding policy information base [11, 12] and data model [7] have also
focused on low-level policies while [13] analyzed policy management problem and
introduced global policies. [14]-[19] focus on finding an automated approach of IPsec
policy configuration. In these two papers [18,19], "Filtering rules" refer to security
requirements, while "IPsec policies" represent security policies. [20] presents an
extension to Ordered-Split algorithm that analyzes the traffic probability together with
the original algorithm to optimize the solution. Other research focuses on the policy
management alone. [21] demonstrates an algorithm for distributing policies among a
number of management stations, while [22] discusses an approach to conflict
handling relying on a priori models. In order to avoid firewall policy anomalies, [23]
proposes an approach to perform symbolic model checking of the firewall
configurations for all possible IP packets and along all possible data paths to provide
a complete solution.

The necessity of separation between high-level policies and low-level requirements
has been studied in [24, 6]. There are two levels of policy hierarchy described in
[14, 15] and this led to high level policies and low level security requirements that we
use in this research.

In [5] a method to create appropriate policies in order to meet their requirements
automatically has been presented. They guarantee the policy accuracy plus the
interference among policies as much as possible. But, this would not be useful any
longer because the number of security policies is more than security requirements. In
this paper, we present a method to decrease the number of created security policies
that will lead to increased efficiency as well as saving updating time for creating those
policies.

In section 2, we review related works. We discuss current methods for creating
policies in section 3. In section 4 a method is proposed to solve the problems of
current security policies and then analyze them. Our research conclusion is finally in
section 5.

3 Creating Security Policies to Meet Security Requirements

In total, there are four main security requirements for IPsec policies [14, 15].

9 Access control requirement (ACR): One fundamental function of security is to
conduct access control that is to restrict access only to trusted traffic. A simple
way to specify an ACR is: flow id.->deny | allow

666 M.M.G. Sadeghi et al.

9 Security Coverage Requirements (SCR): using security functions for the
whole area (between two locations) to prevent traffic from illegal access during
data transfer. A simple way to specify a SCR is to protect traffic from “from” to
“to” by a security function with certain strength: flow id.-> protect
(sec_function, strength, from, to, trusted_nodes) The requirement is satisfied
only if the traffic is with sufficient security protection on every link and node in
protection area from “from” to “to”, except that the trusted nodes can be left
uncovered by the function.

9 Content Access Requirement (CAR): Some nodes like firewalls with an
intrusion detection system (IDS) would need to examine traffic content in order
to decide how to manage passing traffic characteristic. CAR can be expressed as
denying certain security function to prevent the nodes from accessing certain
traffic. This is expressed as follows: flow id.-> deny_sec (sec_function,
access_nodes). The requirement is satisfied only if the traffic is not secured with
the function “sec_function” on any node specified in “access_nodes”.

9 Security Association Requirement (SAR): Security Association (SA) [2] needs
to perform encryption as well as authentication. There might be needs to specify
that some nodes desire or not desire to set up SA of certain security function with
some other nodes because of public key availability, capability match/mismatch
etc. A simple way to specify a SAR could be: flow id.->deny_SA
(SA_peer1,SA_peer2, sec_function). The requirement is satisfied only if none of
the nodes specified in “SA_peer1” forms SA with any of nodes specified in
“SA_peer2” with function “sec_function”.

Some security requirement characteristics have been mentioned above.
Characteristics of security policies; they include Deny, Allow, IPsec_action (sec_
port, algorithm, mode, from A, to A) for selected traffic. sec_port determines AH or
ESP protocols. Algorithm determines all possible algorithms of Internet Key
Exchange (IKE). Mode determines whether it is transfer or tunnel mode. From A to A
determines two factors to create security Association. Policies perform security
operations on passing traffic.

In [5], Bundle Approach was presented to create security policies, but the major
problem is non efficiency. In other words the rate of security policies would be
increased more than security requirements. In this way, the entire traffic would be
divided into some sub set of separate Bundles. Each Bundle includes one set of
security requirements. For one particular bundle, the condition part of policies
contains bundle selectors and action part contains appropriate security actions to
satisfy all requirements for the bundle. From Figure 3, there are a set of three security
requirements [5]:

Three_Reqs = { Req1 (src=1.*, dst=2.*Æ weak, ENC, 1.*, 2.*), Req2 (src=1.1.*,
dst=2.*Æ Strong, ENC, 1.1.*, 2.*), Req3 (src=1.*, dst=2.1.*Æ Strong, AUTH,1.*,
2.1.*)}

They include F1, F2 and F3 filters (they can be 2-tuple, 3-tuple or 5-tuple). Also
SG-1 and SG-2 security gateways are assumed as CAR nodes. Black, Gray and white
lines in Figure 3 are determined for Req1, Req2 and Req3 respectively.

 A New Method for Creating Efficient Security Policies in Virtual Private Network 667

 SG-1.1 SG-1 SG-2 SG-2.1

Fig. 3. Three_Reqs Example

The problem of using Bundle Approach is solved in two phases. In the first Phase,
the entire traffic flow will be divided into separate bundles and then a set of
requirements will be calculated for each of them. In the second phase for every
bundle, appropriate policies (for action part) are selected according to the given
requirements. In addition, the bundle’s selectors will be calculated. Next, we discuss
both the calculation selectors for each Bundle and the action part for creating the
policies as follows:

3.1 Selection Decision

A Relationship Tree is used for calculating the requirements as well as their order.
Figure 4 shows the relationship among three_Reqs filters. Filter F2 with Req2 has
been used as a child of Filter F1 with Req1 in relationship tree, because it is contained
by F1. Filter F3 with Req3 has overlap with F2. Thus, a new filter called F4 with
Req3 generate which is combined by two filters F2 and F3 and inset as child of F2
since F4 is contained by F2. F3 would be inserted to the relationship tree as a child of
F1, because it is contained by F1.

 Req1, F1

 Req2, F2 Req3, F3

Req4, F4

 Root

Fig. 4. Relationship Tree

As a result, it is clear that four policy sets are generated namely: {policy_set 1,
policy_set2, policy_set3, policy_set4} to satisfy requirement set {{Req1}, {Req1,
Req2}, {Req1, Req3} and {Req1, Req2, Req3}, respectively. The filters of the policy
sets are {F1, F2, F3, F4}. So, they include the following addresses, they are four
bundles {(1.1.*.*, 2.1.*), (1.*-1.1.*, 2.1.*), (1.1.*, 2.*-2.1.*), (1.*-1.1.*, 2.*-2.1.*)}.

3.2 Policies Decision

In this stage, the aim is to decide how to use a set of appropriate policies according to
requirements. If the inner most paths to carry packets is called primary tunnels, and

668 M.M.G. Sadeghi et al.

the corresponding SA is called primary SA, then the primary tunnels need to be
chained together across an area to provide security coverage for the area.

Our aim of tunnel creation is to satisfy Security Coverage Requirement (SCR),
Content Access Requirement (CAR) and Security Association Requirement (SAR).
Eligible Security Associations are confirmed by CAR and SAR. SCR has two major
functions: encryption and authentication. A primary tunnel can only provide the
coverage for just one function. The rest of the tunnels may be placed on top of
primary tunnel to provide the necessary coverage for the other functions, so they are
called Secondary Security Association. Finding Eligible SA is solvable using
Algorithms and Graphs. To find eligible primary SAs, we need three graphs: ENC
secondary graph, AUTH secondary graph and Primary graph, in which ENC and
AUTH graphs are needed to determine secondary SA paths [5].

As discussed in previous section, there are four bundles for Three_Reqs example.
If SG-1 and SG-2 security gateways are considered as Access Control Requirement
(ACR) except the three Security Coverage Requirements, we can start finding policies
using filter F1which contains Req1. Req1 has only encryption so it does not need
AUTH secondary graph. Primary graph and ENC secondary graph are based on
Figure 5. The edge 2-3 is called E1 that identify encryption for Req1.

Secondary ENC Graph Primary Graph

1 1

4

E1

2

3

2

3

4

Fig. 5. Graphs of Filter F1

Then policies of Filter F2 with Req1 and Req2 are calculated. In this case these
requirements contain only encryption so they do not need AUTH secondary graph.
The only graph which can satisfy Req1 and Req2 is according to Figure 6.a. The
edges are labeled as E2 because E2 is the stronger encryption Algorithm. (There are
two encryption security coverage called E1 and E2 between two nodes 2 and 3 but E2
is stronger than E1, so E2 is selected). Node 2 has been chosen as a Content Access
Requirement; therefore we would remove the edge between nodes 1-3 in order to
break down the tunnel in node 2. All graphs will be formed like Figure 6.b after
removing Edge.

Next we calculate policies of filter F3 with Req1 and Req3 according to Figure 7.a.
Both AUTH and ENC secondary graph are necessary in this case because Req1 acts
as encryption, and Req3 acts as authentication. Since there is no necessity for security
coverage for ENC between nodes 3-4, there would be no edge in ENC secondary
graph for these nodes. Node 3 has Content Access Requirement; consequently all
passed association from the node will be removed. Thus, the processed graphs are
formed as in Figure 7.b.

 A New Method for Creating Efficient Security Policies in Virtual Private Network 669

Secondary ENC Graph Primary Graph Secondary ENC Graph Primary Graph

a. Initial Graphs b. Processed Graphs

E2

3 E2

E2

2

1

4

3

2

1

3
E2

E2

2

1

3

2

1

4 4 4

Fig. 6. Graphs of Filter F2

Secondary ENC Graph Secondary AUTH Graph Primary Graph
a. Initial Graphs

Secondary ENC Graph Secondary AUTH Graph Primary Graph
b. Processed Graphs

A1

4

E1

4E1

1 11

A1

2 4

3

A1 2 2

3 3

4

E1 A1

1 11

4

A1

4

3

2 2 2

33

Fig. 7. Graphs of Filter F3

Finally, there is a filter F4 to calculate policies based on Req1, Req2 and Req3 like
figure 8.a. In such a case, nodes 2 and 3 are Content Access Requirement and edges
have to be removed. Final graphs will be formed like figure 8.b after removing edges.
Also, the edge 3-4 in ENC secondary graph needs no ENC security coverage and the
edge 1-2 in AUTH secondary graph needs no AUTH security coverage.

Figure 9 shows four groups of policies (tunnels) for four bundles with different
colors using Bundle Approach [5]. There is a hatching tunnel set which is placed
between traffic (1.1.*, 2.1.*). All these three satisfy the requirements of {Req1,
Req2,Req3}. Gray tunnels apply for traffic (1.1.*, 2.*-2.1.*) and satisfy the
requirements of {Req1,Req2}. White tunnels apply for traffic (1.*-1.1.*, 2.1.*) and
satisfy the requirements of {Req1,Req3}. Black tunnels satisfy the requirements of
Req1. In Total, 10 tunnels are necessary to satisfy the requirements of Three_ Reqs
example. It should be noted that there are no distrusted nodes (tunnels cannot break

670 M.M.G. Sadeghi et al.

 Secondary ENC Graph Secondary AUTH Graph Primary Graph
a. Initial Graphs

 Secondary ENC Graph Secondary AUTH Graph Primary Graph
b. Processed Graphs

4

E2

44

A1 3

E2

E2

2

1

A1

A1

3

1

3

22

1

A1

A1
4

E2
4

E2 A1

4

A1

E2

E2 E2 A1

A1
1

E2

3

1 1

2 2

3

2

3

Fig. 8. Graphs of Filter F4

SG-1.1 SG-1 SG-2 SG-2.1

Fig. 9. Solutions (Policies) for Three_Reqs Example Using Bundle Approach

down among these nodes) in this case; otherwise they will have to consider in tunnel
configuration.

4 Proposed Method

In the previous section, we observed that there are many created policies using
Three_Reqs example and in some cases are more than the actual requirements. Thus,
created policies are labeled as E1, E2 and A1 for each filter individually. But the
problem is to increase policies (repetitive policies) that cause overloading and
decreases efficiency because of the high costs of tunnels. On the other hand, if we use
a new requirement with a new filter that contains some of the previous filters, then we
have to consider these filters as children of the new filter in the relationship tree.
Furthermore, we have to change the policy of these filters because their requirements
have been changed. (Requirements of every node in the relationship tree equal its
requirements plus parents requirements.) Changing filters policy waste time since we
have to create new policies according to new requirements, and as a result policy
updating time will be increased.

 A New Method for Creating Efficient Security Policies in Virtual Private Network 671

The most important issue in order to reuse policies is how to adjust Selectors.
There was no problem in Bundle Approach because the policies have been created
individually for each selector (policies were generated recurrently). On the other
hand, if we want to use the previous policies for generating policies of the new filters,
then adjusting selector is not easy.

In our proposed approach, we use two recursive binary tree data structure [25]
which plays the role of adjusting selectors as well as using previous policy. Two
binary tree data structures accomplish each other so we can use them to remove
repetitive policies. Simply, we call them NP for New Policies and TP for Total
Policies. In TP tree there is a set of bundle policies plus selectors whereas in NP tree,
there are only new policies. First, the inputs of our algorithm are policies of each filter
that generate in Bundle Approach. Then we place these policy selectors in TP tree.
Next, we search NP tree to scrutinize how we can use previous created policies for the
new filter policies coverage. If there are no corresponding policies for policies of the
new filter, then we create new filter policies individually and put them as new nodes
in NP tree. Afterwards , we create an appropriate link among present nodes in NP tree
(new policies) and present node in TP tree (Filters selector), but If there are some
needed policies for the new filter in NP tree, we can put only one required link
between these nodes and the present node in TP tree.

So, all needed policies are accessible to each bundle with traverse TP tree data
structure. Also, we can also use this structure to adjust selectors. New policies would
be placed on NP tree and there are no repetitive policies there. On the other hand, if a
new filter which contains some previous filters is added, then in Bundle Approach the
policies of these filters that change requirements must be recreated, leading to an
increase in updating time. However in our proposed approach, the updating time is
reduced because some policies have been used again (We would be able to get access
to all the required policies for each filter while searching in TP tree).

We explained the proposed approach using Three_Reqs example: we assume that
security gateways addresses are SG-1.1= 00*, SG-1=0*, SG-2=1*, SG-2.1=11*. Filter
F1 has (scr =0*, dst=1*) address and Req1. First, we put a new node according to F1
selectors (0*, 1*) in TP tree. F1 required policy consists only (scr=0*, dst=1*, alg=E,
strg=1). Then, we search through all previous created policies in NP tree again to
examine whether there is any policy according to F1 new filter or not. Since NP tree
is empty and there is no node, no policy is in it yet. Therefore, we created a new node
in NP tree according to (scr=0*, dst=1*, alg=E, strg=1) policy. There is an association
between this node and present node in TP tree. Figure 10 shows how to make NP and
TP trees. F1 policies are accessible from TP tree.

Now, F2 enters with (scr=00*, dst=1*) addresses and Req2 and Req1. In the first
stage, we add F2 selector (00*, 1*) as a new node to TP tree. After that we search NP
tree to scrutinize previous policies to know if it is based on new policies such as
(scr=00*, dst=0*, alg=E, strg=2) or (scr=0*, dst= 1* ,alg=E, strg=2). In this case,
there is a policy for (scr=0*, dst=1*) in NP tree but encryption algorithms power is
totally adverse due to security coverage, so we can not use the previous policies.
Figure 11 shows two tree data structure for F2. It is accessible from TP to get filter F2
policies.

We add filter F3 with (src=0*, dst=11*) Address and Req1 and Req3 in the next
step. In this case, we add a new node (0*, 11*) to TP tree. All filter F3 policies are as

672 M.M.G. Sadeghi et al.

 a. NP tree b. TP tree

0

1

E1

0

1 F1

E1

Fig. 10. Filter F1

a. NP tree b. TP tree

0

1

E1
0

0

E2

E2

1

0

 E2

0

1 F1

E1

F2
E2

Fig. 11. Filter F2

the following: (src=0*, dst=1*, alg=E, strg=1), (src=1*, dst=11*, alg=A, strg=1),
(src=0*, dst=1*, alg= A, strg=1).While searching in the NP tree, we find a policy
corresponding to (src=0*, dst=1*, alg=E, strg=1). (in the first step the policy is
created for filter F1). But there are not two policies in NP tree and must be created as
well. Figure 12 shows TP and NP trees. We can also get F3 policies using TP tree.

In the final step, we put filter F4 with the following characteristics: (src=00*,
dst=11*) and {Req1, Req2, Req3}. Likewise, a new node will be added to TP tree
with (00*, 11*) addresses. The F4 policies are as follows: (src=0*, dst=1*, alg=A,
strg=1), (src=0*, dst=1*, alg=E, strg=2), (src=00*, dst=0*, alg=E, strg=2), (src=1*,
dst=11*, alg=A, strg=1). We note that all needed policies are available for searching
NP tree. Figure 13 shows the association between TP and NP trees for filter F4. We
can reach F4 policies using TP tree.

Using the proposed approach (e.g. Three_Reqs), as we used some policies again,
they will be decreased to five policies. Since creating each policy involves high costs
(e.g: SA key discussion, etc.), thus we optimize expenses as well as efficiency in
comparison with Bundle Approach. On the other hand, Updating time will be
decreased. Since in Bundle Approach we have to create all new policies according to
change each filter requirements at the first. (With changing filter requirements, their
old policies will be deleted and their new policies will be created according to new

 A New Method for Creating Efficient Security Policies in Virtual Private Network 673

a. NP tree b. TP tree

1

1 1
F3

F2

F1

0

E2

1

E1

0

E1

E2

0

0

E2

0

E2

1

1

A1

E1

A1

A1

A1

1

Fig. 12. Filter F3

a. NP tree b. TP tree

0
1

E1

0

1

0

0

1

E2 E2

1

0

E2

1
1

A1

1

F1

E1

A1

A1

A1

E2

A1

A1

1

E1

E2

E2

F3F2

F4

Fig. 13. Filter F4

2
1

3 5
4

SG-2.1SG-2SG-1.1 SG-1

Fig. 14. Solutions (Policies) for Three_Reqs Example Using New Approach

requirement). But in this new approach we reuse some policies, so there is no time to
create policies and we only calculate new policies time. Figure 14 shows the policies
using new approach.

674 M.M.G. Sadeghi et al.

New algorithm is based on Figure 15.

Fig. 15. New algorithm

4.1 Analyses and Simulation

We wrote our algorithm in C++ Language and Linux OS. The input to the algorithm
is the requirements file whereas output is the policies file which consists of
automatically created policies. Requirements will are created in the input file
randomly. In other words, one random set of sources would like to get secure connect
to one random set of destinations and its encryption algorithm power will be chosen
randomly. Simulation environment has been organized based on Figure 16.

Algorithm DeleteRepeatedPolicies(new-policies){
 selector  CalculateSeclector(new-policies)
 InsertTreeTP(Selector)
 for every newpolicy i,i+1 in new-policies
 if (SearchInTreeNP(new-policy i,i+1))
 LinkTPNP(Selector, new-policy i,i+1)
 else
 InsertTreeNP(new-policy i,i+1)
 LinkTPNP(selector, new-policy i,i+1)
 CalculatePolicies(NP)
 }

CalculateSelector(new-policies){
 Selector (new-policy1,new-policyn)
 if selector is in TP
 UpdateTP(new-policies, selector)

else
 Return selector
 }

UpdateTP(new-policies, selector){
 RemoveLinkTPNP(New-policies, selector)
 RemoveTreeTP(selector)
 DeleteRepeatedPolicies(new-poliocies)
 }

LinkTPNP(selector, new-policy i,i+1){
 TraverseTP(selector)
 TraverseNP(new-policy i,i+1)
 selectorADRS(new-policy i,i+1)

}

 A New Method for Creating Efficient Security Policies in Virtual Private Network 675

Fig. 16. Relationship between domains

We assumed that there are three levels in each domain and three levels in each sub-
domain. Security gateways are the same in domains and sub-domain. Movement route
in security gateways is linear, for example for connecting from 1.1.*.* to 2.2.*.* the
route in security gateways is as follows: 1.1.*.*, 1.*.*.*, 2.*.*.* and 2.*.*.*. The
number of nodes in the route is equal to 3*2= 6 using three hierarchical levels of
domains. We created 5, 10, 15, 20… 60 requirements randomly. Then we compared
Bundle and New approach based on these Requirements. Figure 17 shows the number
of created policies between the two approaches.

Fig. 17. Comparing the number of created policies in Bundle Approach and New Approach

In Bundle Approach, there are many policies (tunnels) to satisfy different
requirements. So, increasing the number of requirements will lead to an increase in
the number of policies, however this comes at the expense of scalability. In the
proposed approach, there are fewer policies since we reuse the previous policies as
much as possible.

On the other hand, when we add new requirements and they contain previous
requirements, the policies of previous requirements should be reproduced because
new requirement affect their policies. In Bundle Approach, all policies must be
created again so the updating time for policies is high while in the our proposed
approach, we only calculate new policies time. As a result, the entire traffic time will
be as short as the time we spent to create each bundle policy. Figure 18 shows a
comparison of the updated policies.

New Approach
Bundle Approach

676 M.M.G. Sadeghi et al.

Fig. 18. Comparing the number of updated policies in Bundle Approach and New Approach

Fig. 19. The number of Reused Policies in New Approach

Figure 19 shows the proposed approach and the number of reused policies. In other
words, it shows its decreased policies. There is a high expense to create each policy
(e.g. SA key discussion), so we can decrease costs through less policies.

5 Conclusion and Future Work

IPsec/VPN policies are used widely in security gateways or firewalls where security
treatment (Deny, Allow or Encrypt) is done for outbound as well as inbound traffic
through security policies. It is so important that they should be adjusted properly. On
the other hand, efficiency is a very important issue which is not considered in the
present methods. In this paper, we presented a new approach which optimizes the
creation of new policies. In fact we used these policies together with old policies so
that organizations or people would be able to determine easily their requirements at a
high level and they will no longer be concerned about efficiency loss as well as the

New Approach
Bundle Approach

 A New Method for Creating Efficient Security Policies in Virtual Private Network 677

increase of updating time. Repetitive policies cause scalability problem such that with
increasing requirements it does not run and this will lead to less efficiency. In this
paper, we proposed integrated policies. We can use this approach not only for
distributed policies but also for other parameters such as routing and QoS. Moreover,
we can scrutinize how to reach the requirements from policies.

References

1. Doraswamy, N., Harkind, D.: IPSEC, The New Security Standard for Internet, Intranets,
Virtual Private Network. Prentice Hall PTR, Englewood Cliffs (1999)

2. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol. RFC 2401 (1998)
3. Lupu, E.C., Sloman, M.: Conflict Analysis for Management Policies. In: 5th IFIP/IEEE

International Symposium on Integrated Network Management, pp. 430–443 (1997)
4. Lupu, E.C., Sloman, M.: Conflicts in Policy Based Distributed Systems Management.

IEEE Transaction on Software Engineering 25(6), 852–869 (1999)
5. Fu, Z., Wu, S.F.: Automatic Generation of IPsec/VPN policies in an Intra-Domain

Environment. In: 12th International Workshop on Distributed System: operation &
management (DSOM 2001), Nancy, France (2001)

6. Moffett, J.D., Sloman, M.S.: Policy Hierarchies for Distributed Systems Management.
IEEE Journal on Selected Areas in Communication 11, 1404–1414 (1993)

7. Blaze, M., Keromytis, A., Richardson, M., Sanchez, L.: IP Security Policy Requirements.
Internet draft, draft-ietf-ipsp-requirements-02.txt, IPSP Working Group (2002)

8. Condell, M., Lynn, C., Zao, J.: Security Policy Specification Language. Internet Draft,
draft_ietf_ipsp_spsl_00.txt (2000)

9. Jason, J.: IPsec Configuration Policy Model. Internet Draft, draft_ietf_ipsp_config_
policy_model_00.txt (2000)

10. Pereira, R., Bhattacharya, P.: IPSec Policy Data Model. Internet Draft,
draft_ietf_ipsec_policy_model_00.txt (1998)

11. Law, K.L.E.: Scalable Design of a Policy-Based Management System and its Performance.
IEEE Communication Magazine 41(6), 72–97 (2003)

12. Zao, J., Sanchez, L., Condell, M., Lyn, C., Fredette, M., Helinek, P., Krishnan, P., Jackson,
A., Mankins, D., Shepard, M., Kent, S.: Domain Based Internet Security Policy
Management. In: Proceedings of DARPA Information Survivability Conference and
Exposition (2000)

13. Baek, S., Jeong, M., Park, J., Chung, T.: Policy-based Hybrid Management Architecture
for IP-based VPN. In: Proceedings of 7th IEEE/IFIP Network Operations and management
Symposium (NOMS 2000), Honolulu, Hawaii (2000)

14. Fu, Z., Wu, S.F., Huang, H., Loh, K., Gong, F.: IPSec/VPN Security Policy: Correctness,
Conflict Detection and Resolution. In: IEEE policy 2001 Workshop (2001)

15. Yang, Y., Martel, C., Fu, Z., Wu, S.F.: IPsec/VPN Security Policy Correctness and
Assurance. In: Proceedings of Journal of High Speed Networking, Special issue on
Managing Security Polices: Modeling, Verification and Configuration (2006)

16. Yang, Y., Martel, C., Wu, S.F.: On Building the Minimum Number of Tunnels – An
Ordered-Split approach to manage IPsec/VPN policies. In: Proceedings of 9th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2004), Seoul, Korea (2004)

17. Yang, Y., Fu, Z., Wu, S.F.: BANDS: An Inter-Domain Internet Security Policy
Management System for IPSec/VPN. In: Proceedings of 8th IFIP/IEEE International
Symposium on Integrated Network Management (IM 2003), Colorado (2003)

678 M.M.G. Sadeghi et al.

18. Al-Shaer, E., Hamed, H.: Taxonomy of Conflicts in Network Security Policies. Proceedings
of IEEE Communications Magazine 44(3) (2006)

19. Hamed, H., Al-Shaer, E., Marrero, W.: Modeling and Verification of IPsec and VPN
Security Policies. In: Proceedings of 13th IEEE International Conference on Network
Protocols, ICNP 2005 (2005)

20. Chang, C.L., Chiu, Y.P., Lei, C.L.: Automatic Generation of Conflict-Free IPsec Policies.
In: Wang, F. (ed.) FORTE 2005. LNCS, vol. 3731, pp. 233–246. Springer, Heidelberg
(2005)

21. Sheridan-Smith, N., Neill, T.O., Leaney, J.: Enhancements to Policy Distribution for
Control Flow, Looping and Transactions. In: Schönwälder, J., Serrat, J. (eds.) DSOM
2005. LNCS, vol. 3775, pp. 269–280. Springer, Heidelberg (2005)

22. Kempter, B., Danciu, V.: Generic policy conflict handling using a priori models. In:
Schönwälder, J., Serrat, J. (eds.) DSOM 2005. LNCS, vol. 3775, pp. 84–96. Springer,
Heidelberg (2005)

23. Yuan, L., Mai, J., Su, Z., Chen, H., Chuah, C.N., Mohapatra, P.: FIREMAN: A Toolkit for
Firewall Modeling and Analysis. In: Proceedings of IEEE Symposium on Security and
Privacy (2006)

24. Moffett, J.D.: Requirements and Policies. In: Position paper for Policy Workshop (1999)
25. Adiseshu, H., Suri, S., Parulkar, G.: Detecting and Resolving Packet Filter Conflicts.

In: INFOCOM (2000)

	A New Method for Creating Efficient Security Policies in Virtual Private Network
	Introduction
	Related Works
	Creating Security Policies to Meet Security Requirements
	Selection Decision
	Policies Decision

	Proposed Method
	Analyses and Simulation

	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

