
A Hybrid Ant-Colony Routing Algorithm for

Mobile Ad-Hoc Networks

Shahab Kamali1 and Jaroslav Opatrny2

1 Unversity of Waterloo, Waterloo, Canada
skamali@cs.uwaterloo.ca

2 Concordia University, Montreal, Canada
opatrny@cs.concordia.ca

Abstract. The dynamic nature of mobile ad hoc networks makes it diffi-
cult to consider a specific model for their topology which might change in
a short period of time. Using the knowledge about the location of nodes,
several relatively efficient position based routing algorithms have been
proposed but almost all of them are sensitive to the network topology.
Ant colony optimization based routing algorithms form another family of
routing algorithms that usually converge to optimum routes. In our pre-
vious work we proposed POSANT, a position based ant colony routing
algorithm for mobile ad-hoc networks. Although POSANT outperforms
other routing algorithms in most cases, there are network topologies in
which POSANT does not perform well. In this paper we introduce Hyb-
Net, a hybrid ant colony optimization based routing algorithm for mobile
ad hoc networks which adapts itself to different network topologies. We
carry out an empirical analysis of the performance of our algorithm and
compare it with other routing algorithms. Our results show that HybNet
almost always performs efficiently, even in some complex and variable
network topologies.

1 Introduction

A mobile ad-hoc network might have a highly dynamic topology because mobile
nodes can freely join it, leave it or move inside it. For example, a network may
have more nodes in daytime than at night. Also the network graph might be
dense in some parts and sparse in other parts. This dynamic nature of mobile
ad-hoc networks increases the difficulty of message routing.

A position based routing algorithm uses the knowledge about the location of a
node, its neighbors and the destination node to make a local routing decision at
that node. To obtain the position of the destination node, position based rout-
ing protocols assume a location service (e.g. Greed Location Service(GLS)[11,3],
Simple Location Service(SLS)[3] and Reactive Location Service(RLS)[3]) is avail-
able that provides location information on the nodes in the network. The strategy
adopted by a location service is out of the scope of this paper and we just assume
that a location service provides such information.

GPSR[9], Compass routing [10] and Greedy routing [6] are examples of reac-
tive position based routing algorithms. These algorithms perform very well in

J. Zhou (Ed.): Complex 2009, Part II, LNICST 5, pp. 1337–1354, 2009.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

1338 S. Kamali and J. Opatrny

networks with specific topology characteristics but their performance might be
poor in some other networks (the performance metrics are discussed later in the
paper). Position based routing algorithms typically perform very well in dense
networks, while in sparse networks they might fail to find a route or the found
route might be much longer than the shortest path.

Algorithms which are based on ant colony optimization (ACO) form another
family of routing algorithms. ANTNET[5] and ANTHOCNET[4] are examples
of ant colony based routing algorithms. These algorithms eventually converge to
routes whose lengths are very close to the length of the shortest path [5], [7]. In
our previous work we proposed POSANT[8], a position based ant colony rout-
ing algorithm which outperforms the other ACO routing algorithms in terms of
convergence time or routing overhead in most cases. However, in some network
topologies the performance of POSANT is relatively poor and its convergence
time is much longer than other ant colony routing algorithm. To address this
problem, in this paper we present a routing algorithm that, like POSANT, adopts
a position based ant colony strategy. Unlike POSANT, which is based on some
assumptions about the network topology (POSANT assumes the optimum route
passes through nodes whose directions are close to the direction of the destina-
tion node), the strategy presented in this paper does not consider any specific
assumption about the network topology. The routing algorithm presented in
this paper is a hybrid routing algorithm that uses a combination of position-
aware and position-unaware ant-colony strategies; so it is called HybNet. This
algorithm performs well in networks with complex topologies where the other
routing algorithms might face difficulties and perform poorly. The applications
of this algorithm includes cases where the network topology includes dense and
sparse regions, empty regions, and especial shapes and also cases where the trans-
mission range of nodes can be highly irregular. In addition, HybNet is suitable
for cases where a large amount of data is transmitted after route establishment
and thus it is important to find optimum routes (i.e. an example is video and
audio streaming).

In the next section we first describe the network model and give a definition of
the routing problem. We then explain the related works including typical position
based and ant colony based routing algorithms. Section 3 defines HybNet and
Section 4 contains the simulation results of HybNet and a comparison with
POSANT, ANTNET, ANTHOCNET and GPSR routing algorithms. Section 5
contains conclusions.

2 Network Model and Related Routing Algorithms

We represent a mobile ad-hoc network as a planar graph with an edge between
each pair of nodes that can communicate directly (i.e. all communications are
bi-directional and a node will maintain a link to another node if they are able
to exchange messages directly). The transmission range of a node in a specific
direction is a line segment in that direction from that point to the farthest point

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1339

it can directly send messages to. We assume each node can have different trans-
mission ranges in different directions, as in the reality where the existence of an
obstacle or noise makes the transmission radius of a node irregular. Furthermore
due to different power consumption, different nodes may have different transmis-
sion ranges. Different regions of a network graph may have different topological
characteristics, e.g. a network graph may be dense in some regions and sparse
in other regions. It is assumed that each node knows its position, the position of
its neighbors and the position of the destination node. To reach a destination,
a message follows a path of intermediate nodes. The length of this path is mea-
sured in terms of hop-count (i.e. the number of edges on the path). The time
required for a packet to move from one node to a neighbor node is assumed to be
the same for all nodes (i.e. we do not consider distance between two neighboring
nodes, buffering, congestion and other causes of packet delay in this paper). So
the delay of a packet (i.e. the elapsed time since the moment that the packet is
launched from the source node until the moment that the packet is received by
the destination node) is a linear function of the length of its path to the desti-
nation. We suppose the route finding algorithm starts as soon as a data packet
needs to be sent from a source to a given destination (reactive routing) so the
routes should be established in the shortest possible time.

In the remaining of this section we briefly describe some related works.
GPSR[9] and Compass routing [10] are examples of position based routing

algorithms. These algorithms do not guarantee to find a shortest path to the
destination [6,2,9]. An example of a case when these algorithms find a path to a
destination which is longer than the shortest path is presented in Figure 1(a).

Figure 1(b) shows an example where these algorithms fail to find a route to
a destination.

����

�
�
�
�

��
��
��
��

����
����

��
��
��
��
����

����

�
�
�
�

A

E

F

I

B
DS

G H

C

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

S

D

(a) (b)

Fig. 1. (a) The route (from S to D) found by GPSR and DIR is SABCEFD while the
shortest path is SGHID. (b) DIR and GPSR fail to find a route from S to D.

There are several other position based routing algorithms but they have sim-
ilar shortcomings of either not guaranteeing to find a path to the destination
or finding a path which is much longer than the shortest path [6,2]. Although
position based routing algorithms have the above disadvantages, they have some
useful characteristics: typically no routing table or passed traffic history is main-
tained and no control packet needs to be exchanged. So these algorithms are sim-
ple to implement and the overhead of routing is small. Moreover failures occur
rarely when the network graph is dense [6].

1340 S. Kamali and J. Opatrny

Ant colony optimization (ACO) is a stochastic approach for solving combina-
torial optimization problems like routing in computer networks. ANTNET [5],
ANTHOCNET [4], ARA [7] and POSANT [8] are examples of ant colony op-
timization based routing algorithms. POSANT is an ant colony optimization
based routing algorithm which uses the knowledge about the position of nodes
as a heuristic to increase its efficiency. In general, ACO routing algorithms even-
tually converge to a group of routes which are very close in length to the optimum
route [5,7,12]. In most cases the convergence of ANTNET is slow. ANTHOC-
NET and ARA broadcast an ant in the route discovery phase. Although an ant
is a small control packet, broadcasting implies a large overhead on the network
especially when the size of the network is large. In ANTHOCNET, an ant carries
a list of its visited nodes, so its size will grow as it goes far from the source node
and the routing overhead will increase. As a result, ARA and ANTHOCNET
are not scalable. POSANT in most cases has a relatively short convergence time
but in some cases its convergence time may be longer than the convergence time
of ANTNET.

3 HybNet Routing Algorithm

In this section we introduce HybNet, a routing algorithm which performs effi-
ciently in networks with complex topologies. While a complex topology or a fast
topology transform might affect the performance of other routing algorithms,
the efficiency of HybNet remains relatively high. HybNet has three main phases,
route establishment, data transmission and link management. We suppose there
is a set of data packets in a source node S, waiting for a route to be estab-
lished between S and a destination. First, only forward and backward ants are
transmitted and after the algorithm decides that the routes are established, data
packets are transmitted.

Consider a destination node D and a network graph G. For each node N in G,
we partition its neighbors into three zones called zone1, zone2 and zone3. If H is
one of the neighbors of N , θH is defined as the angle between line segments NH
and ND. Node H belongs to zone1 if θH ≤ π/4, zone2 if π/4 < θH < 3π/4, and
zone3 if 3π/4 ≤ θH ≤ π, see Figure 2 (this definition is similar to the definition
of zones in POSANT [8]).

H

Fig. 2. (a) θH is the angle between NH and ND. (b) Different zones of N for destination
node D.

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1341

3.1 Pheromone Trails

In HybNet, for a specific destination two pheromone trails, a greedy trail and a
regular trail, may be assigned to each of the outgoing links of a node. For each
node we assign these trails to each of its outgoing links if the node is reached by
at least one forward ant heading to the destination. Suppose A is a node in the
network that receives an ant for the first time heading to destination D, and B
is one of the neighbors of A. To initialize the value of the greedy trail on AB, we
use a greedy policy, the assigned values decrease with the zone number. Having
three values νgr1, νgr2 and νgr3 such that νgr1 > νgr2 ≥ νgr3, an amount of
pheromone equal to νgri will be assigned to the greedy trail of AB if B belongs
to zonei. To the regular trail, that can also depend on the zone, one of the
three values νreg1, νreg2, νreg3 is assigned. However, in our experiments we used
νreg1 = νreg2 = νreg3.

Each node maintains a table which contains the values of the pheromone trails
assigned to its outgoing links for different destinations. Whenever a forward ant
for a specific destination arrives at a node, this table will be searched. If no
pheromone trail for this destination exists, the pheromone initialization process
assigns pheromone trails for this destination to all the outgoing links of that
node. If a node doesn’t receive any packet for the destination for a specific period
of time, the corresponding pheromone trails will be deleted from the pheromone
trail table of that node. This time period is defined to be in the order of seconds.
Also the entries in the BR table (to be defined later in this section) for that
destination will be deleted after that time.

3.2 Route Establishment

For establishing routes between a given source S and a destination D, HybNet
launches n forward ants from S heading to D at regular time intervals. In our
experiments we set n to be 1. Assigning big values to n might slightly decrease
the route establishment time but it also increases the overhead of the algorithm.
In addition to the pheromone trial table, each node maintains another table
which we call Back Routing (BR) table. When a forward ant enters a node from
one of its neighbors, an entry in the BR table will be created that stores the
identifier of the neighbor the forward ant is coming from, the sequence number
of the ant, and the identifier of the destination. At each node a forward ant
makes a stochastic decision in two steps to select the next hop. In the first step
it decides which of the greedy or regular pheromone trails to use for making a
stochastic decision in the second step. In the second step, it selects the next hop
stochastically using the values of the selected pheromone trails. In the destination
node, each received forward ant will be dropped and a backward ant will be sent
back to the source node. Using information in the BR tables, the backward ant,
which includes the sequence number of the corresponding forward ant, takes the
same route but in reverse to reach the source node. The decision of a forward
ant to use either greedy pheromone trails or regular trails is marked in the BR
table. When a backward ant reaches a node, the BR table will be searched for the

1342 S. Kamali and J. Opatrny

corresponding forward ant. Based on the type of the pheromone trail (i.e. greedy
or regular) used by that forward ant, we call this backward ant greedy or regular
backward ant (a regular backward ant in a node may be a greedy backward
ant in another node). At each node, a backward ant reports the length of the
traveled path from the destination to that node. Each node keeps the average
and standard deviation of reported distances to the destination by the greedy
and regular backward ants. For simplicity, we call them greedy average, greedy
standard deviation, regular average and regular standard deviation. When a
node receives a greedy or regular backward ant, it updates the greedy or regular
standard deviations and averages.

To reduce the effect of old backward ants, we define two fixed size windows in
each node that contain recently received backward ants. One window is assigned
to greedy backward ants and the other one is assigned to regular backward ants.
The average and standard deviation of reported distances to the destination will
be calculated only for the backward ants residing in the window. When a new
backward ant is received we put it in the corresponding window and discard the
oldest ant if the maximum widow size has been reached. Selecting an appropriate
maximum window size is important. If the maximum window size is too small,
the average delay calculated from the window information would be too far from
the real average. If the maximum window size is very big, existence of very old
ants would affect the result for a long time. Suppose αgr, σgr and αreg, σreg are
the average and standard deviation of the delays reported by greedy and regular
backward ants residing in the corresponding windows. These averages are used
by the future forward ants to decide on the use of greedy or regular trails for
selecting the next hop. Suppose Pgr is the probability that greedy trails are used
and Preg denotes the probability that regular trails are used by a forward ant.
Pgr and Preg are calculated using Equation 1.

Pgr =

⎧
⎨

⎩

1 if σgr < t and αgr < αreg

0 if σreg < t and αreg < αgr

Cgr otherwise
(1)

Preg = 1 − Pgr

In the above equation t is a threshold value and when the standard deviation
of the reported distances to the destination is less than this value, we conclude
they have taken paths with almost the same lengths. Cgr is a constant value
that determines which type of pheromone trails has higher chance to be used
at the beginning of the route establishment. In the second step, the ant should
be forwarded to one of the neighbors using the values of the pheromone trails
of the selected type. This is done using a stochastic decision similar to other
ACO routing algorithms. Suppose the algorithm decides to use greedy trails to
select the next hop. Consider a forward ant is currently residing in node N with
k neighbors H1, H2, ..., Hk. Suppose φgri is the value of the greedy pheromone
trail assigned to NHi. The ant will select Hi as the next hop with probability
pi which is calculated using the following equation:

pi =
φgri

∑k
j=1 φgrj

(2)

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1343

Algorithm 1. HybNet routing algorithm
{S is the source node, D is the destination node and C is the current node}
if C = S then

put one compass packet in C’s buffer
end if
for each clock time do

if C = S then
if one of the conditions in section 3.3 is true then

put one data packet in C’s buffer
else

put one forward ant in C’s buffer
end if

end if
for each message m in C’s buffer do

if (m→type = ForwardAnt) or
(m→type = DataPacket) then
NextHop = SelectNextHop()
send m to NextHop
if NextHop = D then

m →type = BackwardAnt
end if

else if m→type = BackwardAnt then
find NextHop in C’s BackRouting table
send m to NextHop
IncreasePheromone(NextHop,m)
update regular and greedy averages
if NextHop = S then drop m

else if m→type = Compass then
find NextHop using compass routing algorithm
send m to NextHop
if NextHop = D then

m →type = BackwardCompass
end if

else if m→type = BackwardCompass then
find NextHop in C’s BackRouting table
send m to NextHop
if NextHop = S then

enter greedy mode and drop m
end if

end if
end for
Evaporate()

end for

An analogous equation is used if the algorithm decides to use the regular
trails. Moving from node B to node A, a backward ant increases the amount of
the corresponding pheromone trails stored in AB. It uses a Formula 3 to update
the greedy pheromone trail on AB.

1344 S. Kamali and J. Opatrny

φgrAB = φgrAB + g(d) × ω(AB) (3)

In the above formula d is the number of traveled nodes from the destination
to node B by the backward ant, g(d) is a decreasing function of d, ω is a weight
function and its value depends on the zone of A in which B is residing.

ω(AB) =

⎧
⎨

⎩

w1 ≥ 1 if B is in zone1 of A
w2 = 1 if B is in zone2 of A
w3 ≤ 1 if B is in zone3 of A

(4)

This weight function helps the algorithm to converge faster because in most
cases the shortest path passes through nodes which are closer in direction to the
destination.

For updating regular trails, we use Equation 5. In this equation g and d are
the same as in Equation 3.

φregAB = φregAB + g(d) (5)

An evaporation process modifies the value of pheromone trails in regular time
intervals. It is done by multiplying the value of each pheromone trail by a number
µ < 1 at regular time intervals (Eq. 6). This is to reduce the effect of ants
happened to take non-optimum routes to reach the destination as the time passes
by.

φAB = µ · φAB (6)

We complete the definition of HybNet by proposing an algorithm to enhance
its performance. At the beginning of route establishment process, a special con-
trol packet which we call compass packet is sent to the destination. This packet
uses compass routing algorithm [10] to reach the destination. Upon receiving
this packet, the destination destroys it and sends a backward compass packet
back to the source node. The backward compass packet takes the same path as
the compass packet but in reverse to reach the source node. When the source
node receives this packet, it enters the greedy mode. In this mode when launch-
ing a forward ant, the source node marks it by setting a flag. The first time a
node like A receives a marked forward packet, it uses Equation 7 to update the
greedy pheromone trails on its outgoing links and also increases the value of Cgr

in Equation 1.
φgrAB = φgrAB · u(AB) (7)

In the above formula B is one of the neighbors of A and u(AB) is a weight
function whose value is dependent on the zone of A in which B is residing.

u(AB) =

⎧
⎨

⎩

u1 > 1 if B is in zone1 of A
u2, u1 ≥ u2 ≥ 1 if B is in zone2 of A
u3 = 1 if B is in zone3 of A

(8)

If the marked forward ant is the first forward ant for a specific destination
which arrives to A, the above update takes place after initializing the pheromone
trails in the routing table of A.

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1345

The motivation of using a compass packet is that compass routing finds a
route whose length is close to the length of the optimum route in most cases
when the average degree of nodes is high. Moreover, the overhead of sending a
single control packet in the network is negligible while using this packet may
significantly reduce the convergence time. Here we considered compass routing
algorithm because it is a robust porition based routing algorithm however, any
other position based routing algorithm could be considered.

3.3 Sending Data Packets

Sending data packets starts after routes are established between the source and
the destination. As we mentioned earlier, each node which is involved in the
route establishment process maintains greedy and regular averages and standard
deviations of the reported distances to the destination. To decide which time is
the best to start sending data packets, HybNet uses the standard deviations and
averages kept in the source node for that destination. Sending data packets too
late increases delay and sending them too early increases packet loss and the
delay caused by following bad routes. HybNet stops launching control packets
from the source node and starts sending data packets instead, if one of the
following conditions becomes true:

σgrsrc < t and αgrsrc < αregsrc or
σregsrc < t and αregsrc < αgrsrc or
σgrsrc < t and σregsrc < t.

In the above, t is the threshold of Equation 1, and αgrsrc, αregsrc, σgrsrc and
σregsrc stand for the average and standard deviation of the reported distances to
the destination for greedy and regular trails of the source node. If σgrsrc is small
enough, we can assume that at the source node the forward ants that decided
to use the greedy trails in the first step (i.e. we mentioned that each stochastic
decision is made in two steps) followed paths with almost the same length to
reach the destination. The same can be assumed if σregsrc is small enough. So
when σgrsrc < t and σregsrc < t we can say that the algorithm has converged to
a route or a group of routes with similar lengths, and it is a reasonable time to
start sending data packets. If the first condition is true then the ants which used
regular trails at the source node in the first step experienced more delay than
the ants used greedy trails. Also since σgrsrc is relatively small, the probability
that this condition changes is low. Regarding Equation 1 for calculating the
values of Pgr and Preg, in this case the packets will use greedy trails to select
the next hop and so will use the routes that the algorithm is converged to. The
same could be used to justify the second condition. In HybNet, data packets are
treated like forward control packets. Since ACO routing algorithms eventually
converge to optimum or almost-optimum routes [5,12], at least one of the above
conditions eventually becomes true and sending data packets will be started. Our
experiments, presented in the next section, confirm that sending data packets
starts relatively fast in practice.

1346 S. Kamali and J. Opatrny

3.4 Link Management

Failure recovery. If the link between two nodes like A and B breaks while a
connection is running between a source S and a destination D, HybNet performs
a failure recovery as follows. For each active connection, each involved node
defines a mode that can have two values, proper mode and broken mode. Initially
each node is in the proper mode. If A realizes that the link to B is broken and
there are pheromone trials corresponding to link AB for D in the pheromone
table of A, its mode will be changed to broken mode. In the broken mode, if A has
another outgoing link to which pheromone trails are assigned for destination D,
the stochastic data routing will be continued. Otherwise, A informs its neighbors
that there is no route from A to the destination anymore. Upon receiving this
message, each node enters broken mode and follows the same algorithm as if the
link to A is broken. If A receives duplicate packets while it is in the broken mode,
it will inform its neighbors that there is no route to D from A. It is to prevent
loops after a link failure. When a node receives a backward ant which should
pass through a broken link, the backward ant will be dropped. If the source node
has only one outgoing link that contains pheromone trails for D and this link
breaks or a message from this link is received that states there is no route to D,
a new route establishment process will begin and sending data packets will be
suspended until new routes are established. After a specific time which is defined
to be in the order of milliseconds is passed from the moment that the link failure
is detected, the mode of A will be changed to the proper mode.

Handling new links. When a new node joins the network, or when a node
moves and approaches some other nodes, new links may appear in the network.
Suppose node A figures out that it can directly communicate with a new node
C. Also suppose A has routing information about some destinations like D in
its pheromone table. HybNet assigns a greedy pheromone trail to link AC as
follows. A calculates the average of the value of the greedy pheromone trails
for destination D in its pheromone table. If C is located in zone1 of A (i.e. for
destination D), then a pheromone trail whose value is equal to this average will
be assigned to AC. Otherwise if C is located in the other two zones, the half
of this average will be assigned to this link. Similarly we assign a regular trail
for each destination to AC. The only difference is that we assign the average of
the value of regular pheromone trails regardless of the zone of A in which C is
residing. In the case that node C does not have routing information for D (i.e.
because node C is a new node or it is not reached in the routing process before),
after it receives a packet heading to D, a pheromone initialization process (i.e.
as explained before) assigns pheromone trails to its outgoing links. The same
approach is applied in node C for assigning pheromone trails to CA (i.e. for the
destinations that node C has routing information about them).

4 Performance Evaluation

In this section we evaluate the performance of HybNet and compare it with
POSANT, ANTNET, ANTHOCNET and GPSR routing algorithms. To perform

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1347

Table 1. Parameters of different algorithms and their values in our experiments

Algorithm Parameter Value Description

n 1 number of generated forward
ants at each clock time

t 1 standard deviation threshold
(νgr1, νgr2, νgr3) (20,1,1) pheromone initialization

(νreg1, νreg2, νreg3) (10,10,10) pheromone initialization
µ 0.95 pheromone evaporation

HybNet (ω1, ω2, ω3) (1.2,1,0.8) used in Equation 4
(u1, u2, u3) (10,1,1) used in Equation 8

cgr 0.5 used in Equation 1
window size 50 defined in route establishment

phase

POSANT t 1 standard deviation threshold [8]
(ν1, ν2, ν3) (20,1,1) pheromone initialization [8]

ANTHOCNET α1 2 defined in [4]
a 20 defined in [4]

this evaluation, we simulated the mentioned routing algorithms and tried them
on different sets of network graphs.

It is assumed that it takes one millisecond for each packet to go from one
node to a neighbor node and this time is always the same all over the network.
Table 1 lists the parameters of different routing algorithms considered in this
section and their corresponding values used in our experiments.

4.1 Values of the Parameters

In this section, we evaluate the effect of each parameter of HybNet on its per-
formance. To evaluate the effect of a parameter, we assign different values to it
while the other parameters are fixed and try HybNet on a set of randomly gen-
erated network graphs. This set includes 100 graphs with 60 nodes distributed
randomly and uniformly over an area of size 500× 500. The transmission ranges
of nodes vary from 50 to 70 units. For each network 10 source-destination pairs
are selected randomly and the result is averaged. In the following comparisons,
except the parameter whose effect is studied, the other parameters have the
values listed in Table 1. The performance is evaluated in terms of delivery rate
that is the ratio of the number of packets received by the destination node to
the number of packets sent by the source node, and average packet delay that is
the average time that takes for the sent packets to reach the destination. When
all packets experience the same delay, we can conclude that the algorithm is
converged to routes with almost the same length. So the standard deviation of
delays can be used to estimate the average convergence time.

In Fig. 3 and 4, the effect of n, the number of generated forward ants at each
clock time by the source node, on the performance of HybNet is studied. As
these figures show, the performance becomes better when two forward ants are
launched at each clock time, but it does not change significantly when n is 3.

1348 S. Kamali and J. Opatrny

Fig. 3. Average delivery rate of HYBNET with different values assigned to n

(a) (b)

Fig. 4. (a) average (b) standard deviation of packet delay of HybNet with different
values assigned to parameter n

The effect of the other parameters of HybNet on its performance is evaluated
similarly but because of space limitations we do not present the results here.

4.2 General Network Topologies

In this section we compare the performance of different routing algorithms by
trying them on a set of 200 randomly generated network graphs. Each graph
has 90 nodes distributed randomly and uniformly over an area of size 500× 500
square unit. The transmission range of each node varies from 40 to 60. For each
network, 5 source-destination pairs are selected randomly and the results are
averaged.

If a routing algorithm fails to deliver a packet to the destination, the sender
must somehow detect this failure and try to resend the packet hoping that this

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1349

30%

40%

50%

60%

70%

80%

90%

100%

1 11 21 31 41 51 61 71 81 91

Time(Clock number)

D
el

iv
er

y
ra

te

ANTHOCNET

ANTNET

POSANT

HYBNET

GPSR

Fig. 5. Average delivery rate of HybNet, ANTNET, POSANT, GPSR, and ANTHOC-
NET

4

5

6

7

8

9

10

11

12

1 26 51 76 101 126 151 176

Time(Clock number)

D
el

ay
(H

o
p

 C
o

u
n

t)

ANTHOCNET

ANTNET

POSANT

HYBNET

Fig. 6. Average packet delay of HybNet, ANTNET, POSANT and ANTHOCNET

time the algorithm delivers it. This increases the traffic in the network and also
the delay experienced by the receiver. Thus it is very important to guarantee a
high delivery rate. In Figure 5 the average delivery rate of HybNet, ANTNET,
ANTHOCNET, POSANT and GPSR is compared. This figure shows how the
average delivery rate varies with time. As the time progresses, the delivery rate
increases and eventually becomes almost 100% for all algorithms except GPSR.
As the graph shows, HybNet has the highest delivery rate among the others after
ANTHOCNET (which broadcasts ants). GPSR has a relatively low delivery rate.
It is because this algorithm fails in some cases as a result of irregular transmission
ranges of the nodes. ANTNET reaches 100% delivery rate slower than the other
ant based algorithms. The average packet delays are compared in Figure 6. This
figure shows how average packet delays of the algorithms vary by time. The
average delay of HybNet reaches to its minimum faster than the others. As
the time passes on, all the algorithms converge to the paths with almost the
same lengths and the packets experience almost the same delay. Because of the
relatively low delivery rate of GPSR in this network model, this algorithm is not
considered for this comparison. The reason for the fluctuations in ANTHOCNET

1350 S. Kamali and J. Opatrny

graph is that we chose α1 to be 2 which means routes which are longer than the
shortest path by at most 2 hops are also used for packet routing.

4.3 Complex Network Topologies

The effect of highly irregular network graph shapes on the performance of dif-
ferent routing algorithms is studied in this section. As we mentioned earlier,
one of the main contributions of this paper is to propose a routing algorithm
that unlike other routing algorithms, performs well regardless of the network
topology characteristics. Although POSANT, which uses information about the
position of nodes to enhance its performance as an ant colony routing algorithm,
performs fairly good in most cases, there are special cases that make this algo-
rithm to perform poorly. As an example consider the graph in Figure 8. To
make a comparison, we generated 100 networks with nodes distributed over an
area whose shape is shown in Figure 7. Each graph has 60 nodes. Each node is
placed randomly within the area except the source and destination nodes which
are placed in fixed points shown in Figure 7. This is a challenging example for
most routing algorithms. In Figure 9 the average delivery rate of the different
algorithms is compared. HybNet has the highest delivery rate after ANTHOC-
NET. GPSR has a very low delivery rate so it is not presented in this graph.
POSANT has a relatively poor delivery rate at the beginning. Figure 10 com-
pares the average delay of the mentioned routing algorithms. Because GPSR has
a very low delivery rate, it is not considered for this comparison. HybNet has
the shortest delay after ANTHOCNET. Also as the graph shows, ANTNET has
a shorter convergence time than POSANT. This comparison shows that in some

 D

S

 200 units

40
0

un
its

50
0

un
its

30
0

un
its

200 units

Fig. 7. Nodes of the graphs are distributed in the shaded area

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

S

D

Fig. 8. A complicated network topology regarding the placement of source S and des-
tination D

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1351

0%

20%

40%

60%

80%

100%

40 120 200

Time (Clock number)

D
el

iv
er

y
ra

te

ANTHOCNET

ANTNET

POSANT

HYBNET

Fig. 9. Average delivery rate of different routing algorithms in a set of graphs with a
special shape

10

15

20

25

30

35

40

45

0 25 50 75 100 125

Time (Clock number)

D
e

la
y

ANTHOCNET

ANTNET

POSANT

HYBNET

Fig. 10. Average delay of different routing algorithms in a set of graphs with a special
shape when the source and destination nodes are fixed

network graphs where nodes are spread over a very irregular area, the conver-
gence time of POSANT might be very long. Also in these cases position based
routing algorithms may have a very low delivery rate. HybNet has a relatively
short convergence time in these cases.

4.4 Mobility of Nodes

In this section the performance of HybNet when nodes move inside the network
is evaluated. We used a variation of Manhattan mobility model [1] in which
nodes move at a constant speed. In this mobility model, each node takes a
step in the same direction as its previous step with probability 50%. Also it
can take an orthogonal step (i.e. turn left or right) with probability 25% (i.e.
for each direction). The results presented in this part are acquired after trying
HybNet on a graph with 100 nodes spread over an area of size 500 × 500. The
transmission range of nodes is between 50 and 70. In each experiment each node
starts from the same initial position and moves regarding the above movement
pattern independent of the other nodes. In Figure 11, the average delay and

1352 S. Kamali and J. Opatrny

0

3

6

9

12

15

18

1 51 101 151 201 251

Time

A
ve

ra
g

e
d

el
ay

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 51 101 151 201 251

Time

D
el

iv
er

y
ra

te

(a)

0

3

6

9

12

15

18

1 51 101 151 201 251

Time

A
ve

ra
g

e
d

el
ay

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 51 101 151 201 251

Time

D
el

iv
er

y
ra

te

(b)

0

3

6

9

12

15

18

1 51 101 151 201 251

Time

A
ve

ra
g

e
d

el
ay

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

1 51 101 151 201 251

Time

D
el

iv
er

y
ra

te

(c)

Fig. 11. Average packet delay and delivery rate of HybNet when (a) nodes do not move,
(b) nodes move with speed 1 unit/clock and (c) nodes move with speed 2 unit/clock

delivery rate of HybNet when the nodes do not move is compared with the cases
that nodes move with speed 1 and 2 units per clock. Regarding the fact that
each node has a transmission range between 50 and 70 units, and each clock
time is 1 millisecond, a speed of 2 units per clock is quite fast in the real world.
The sudden drops in delivery rate happens when a path between the source and
destination nodes breaks as a result of nodes movement. As the figures show,
HybNet’s link management strategies perform well in making the algorithm to
converge to other routes and increasing the delivery rate. Since all nodes in the
network including the source and destination nodes move, the length of shortest
paths might vary, partly causing the fluctuations in the average delay.

4.5 The Overhead of the Algorithms

Parameters which are very important in evaluating the overhead of a routing
algorithm are the size and the number of the exchanged control messages. Pro-
ducing a huge number of control packets might increase the traffic in the network

A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks 1353

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 11 21

Time (Clock number)

N
u

m
b

er
 o

f
g

en
er

at
ed

 a
n

ts

Fig. 12. Number of generated ants in ANTHOCNET at each clock time

Table 2. Total number of generated ants

Clock time 0 5 10 300

HybNet 2 6 11 301

POSANT 2.53 12.67 25.35 756.4

ANTNET 1 5 10 300

ANTHOCNET 1 10488 125048 125048

and decrease the scalability of the routing algorithm. In Figure 12 the number
of generated ants by ANTHOCNET in different clock times is shown. As the
graph shows, a burst of ants is generated at the beginning of route establish-
ment when the algorithm broadcasts ants. The number of generated ants by
HybNet, POSANT and ANTNET is constant in each clock time. HybNet gener-
ates n ants in each clock time (i.e. n is 1 in our experiments). ANTNET generates
1 ant in each clock time and POSANT generates at most 3 ants at each clock
time. The total number of ants generated by HybNet, POSANT, ANTHOCNET
and ANTNET is compared in Table 2. The total number of ants generated by
ANTHOCNET grows exponentially at the beginning while it is a linear function
of time in HybNet, POSANT and ANTNET. The huge number of generated
ants by ANTHOCNET when it establishes a new route makes it impractical as
a reactive routing algorithm. Each ant in ANTHOCNET contains a list of its
visited nodes, so its size grows up as it goes far from the source node making the
overhead even worse. The small number of generated ants by HybNet, POSANT
and ANTNET doesn’t affect the network’s traffic.

5 Conclusions and Future Work

The topology of a mobile ad hoc network affects the performance of the currently
existing routing algorithms. In this paper a routing algorithm called HYBNET
is proposed which adapts itself with most network topologies. HYBNET uses a
hybrid approach for establishing routes between a source and destination. This
hybrid approach gives the algorithm a flexibility to perform well in complex

1354 S. Kamali and J. Opatrny

network topologies. In most cases HYBNET converges relatively fast to opti-
mum routes using a small number of control packets. This algorithm, like most
ACO routing algorithms, does not fail to establish routes when the network in-
cludes nodes with irregular transmission ranges. Our simulations confirm that
HYBNET has higher delivery rate and a shorter packet delay than ANTNET,
POSANT and GPSR in our network models. Also its overhead in terms of gen-
erated control traffic is much less than ANTHOCNET. Overall, HYBNET is a
robust routing algorithm which performs well in mobile ad hoc networks with
complex and variable topologies.

The number of parameters defined in HybNet make it difficult to apply this
algorithm in real systems. A part of our future work is to address this problem by
proposing mechanisms to automatically find the optimum value for each param-
eter. As it was shown in section 4, the performance of HybNet deteriorates when
nodes move at very high speeds. Finding algorithms to enhance the performance
of HybNet in such situations is another part of our future work.

References

1. Bai, F., Helmy, A.: A survey of mobility modeling and analysis in wireless adhoc
networks. In: Wireless Ad Hoc and Sensor Networks (2004)

2. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theoretical
Computer Science, 273–288 (2004)

3. Camp, T., Boleng, J., Wilcox, L.: Location information services in mobile ad hoc
networks. In: Proceedings of IEEE Conference on Communications, vol. 5, pp.
3318–3324 (2002)

4. Di Caro, G., Ducatelle, F., Gambardella, L.M.: Anthocnet: An adaptive nature-
inspired algorithm for routing in mobile ad hoc networks. Special Issue on Self-
Organisation in Mobile Networking 16, 443–455 (2005)

5. Di Caro, G., Dorigo, M.: Ant colonies for adaptive routing in packet-switched com-
munications networks. In: Proceedings of the 5th ACM International Conference
on Parallel Problem Solving from Nature, pp. 673–682 (1998)

6. Giordano, S., Stojmenovic, I., Blazevic, I.: Position based routing algorithms for
ad hoc networks: A taxonomy. Ad Hoc Wireless Networking (2003)

7. Gunes, M., Sorges, U., Bouazizi, I.: Ara - the ant-colony based routing algorithm for
manets. In: Proceedings of the 2002 International Conference on Parallel Processing
Workshops, pp. 79–89 (2002)

8. Kamali, S., Opatrny, J.: Posant: a position based ant colony routing algorithm for
mobile ad-hoc networks. In: ICWMC (2007)

9. Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless net-
works. In: Proc. ACM/IEEE MobiCom conference, pp. 243–254 (2000)

10. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In:
Proc. of 11th Canadian Conference on Computational Geometry, August 1999, pp.
51–54 (1999)

11. Li, J., Jannotti, J., De Couto, D., Karger, D., Morris, R.: A scalable location
service for geographic ad hoc routing. In: Proceedings of ACM/IEEE MOBICOM,
pp. 120–130 (2000)

12. Yoo, J.-H., La, R., Makowski, A.: Convergence results for ant routing. In: Proceed-
ings of CISS University of Princeton, Princeton, NJ (2004)

	A Hybrid Ant-Colony Routing Algorithm for Mobile Ad-Hoc Networks
	Introduction
	Network Model and Related Routing Algorithms
	HybNet Routing Algorithm
	Pheromone Trails
	Route Establishment
	Sending Data Packets
	Link Management

	Performance Evaluation
	Values of the Parameters
	General Network Topologies
	Complex Network Topologies
	Mobility of Nodes
	The Overhead of the Algorithms

	 Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

