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Abstract. Distinguishing the kind of sensor which has acquired a digi-
tal image could be crucial in many scenarios where digital forensic tech-
niques are called to give answers. In this paper a new methodology which
permits to determine if a digital photo has been taken by a camera or
has been scanned by a scanner is proposed. Such a technique exploits
the specific geometrical features of the sensor pattern noise introduced
by the sensor in both cases and by resorting to a frequency analysis can
infer if a periodicity is present and consequently which is the origin of
the digital content. Experimental results are presented to support the
theoretical framework.
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1 Introduction

Digital images are nowadays used in the majority of the application fields in place
of “old” analog images because of their easiness of usage, quality and above all
manageability. These favorable issues bring anyway an intrinsic disadvantage: dig-
ital content can be simply manipulated by ordinary users for disparate purposes
so that origin and authenticity of the digital content we are looking at is often very
difficult to be assessed with a sufficient degree of certainty. Scientific instruments
which allow to give answers to basic questions regarding image origin and image
authenticity are needed [1]. Both these issues are anyway connected and some-
times are investigated together. In particular, by focusing on assessing image ori-
gin, two are the main aspects to be studied: the first one is to understand which
kind of device has generated that digital image (e.g. a scanner, a digital camera
or it is computer-generated) [3,7] and the second one is to succeed in determining
which kind of sensor has acquired that content (i.e. the specific camera or scanner,
recognizing model and brand) [6,1,4]. The main idea behind this kind of researches
is that each sensor leaves a sort of unique fingerprint on the digital content it ac-
quires due to some intrinsic imperfections and/or due to the specific acquisition
process. Various solutions have been proposed in literature among these the use of
CFA (Color Filter Array) characteristics [5] is quite well-know, nevertheless two
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seem to be the main followed approaches. The first one is based on the extrac-
tion, from images belonging to different categories (e.g scanned images, photos,
etc.), of some robust features which can be used to train a SVM (Support Vector
Machine). When training is performed and whether features grant a good char-
acterization, the system is able to classify the digital asset it is asked to check.
The second approach is based on the computation of fingerprints of the different
sensors (this is particularly used in sensor identification) through the analysis of
a certain number of digital contents acquired by a device (e.g. images scanned by
a particular scanner, photos taken by a camera and so on). Usually fingerprints
are computed by means of the extraction of PRNU noise (Photo Response Non-
Uniformity) [1,2] through a digital filtering operation; PRNU presence is induced
by intrinsic disconformities in the manufacturing process of silicon CCD/CMOSs.
After that the PRNU of the to-be-checked content is compared with the finger-
prints and then it is classified. In this paper a new technique to distinguish which
kind of device, a digital scanner or a digital camera, has acquired a specific image
is proposed. Because of the structure of CCD set, the (PRNU) noise pattern, left
over a digital image, will have a completely different distribution: in the scanner
case it should show a mono-dimensional structure repeated row after row in the
scanning direction, on the other hand, in the camera case, the noise pattern should
present a bi-dimensional template. On the basis of this consideration we construct
a 1-D signal and by resorting to a DFT analysis, which exploits the possible exis-
tence of a periodicity, understanding which has been the acquisition device. The
paper lay-out is the following: Section 2 introduces a characterization of the sensor
pattern noise and the periodicity is discussed, in Section 3 the proposed method-
ology is presented and then in Section 4 some experimental results are brought to
support theoretical theses; conclusions are drawn in Section 5.

2 Sensor Pattern Noise Characterization

PRNU (Photo Response Non-Uniformity) noise is quite well-known as being an
effective instrument for sensor identification because it is deterministically gen-
erated over each digital image it acquires. Such a noise is therefore an intrinsic
characteristic of that specific sensor. The extraction of this noise is usually ac-
complished by denoising filters [8] and information it contains are used to assess
something on the sensor characteristics. If we focus our attention on the acqui-
sition process, it is easy to comprehend that when a photo is taken by a digital
camera, basically a PRNU with a bi-dimensional structure is superimposed to it;
on the contrary, when a digital image is created by means of a scanning operation
the sensor array which slides over the to-be-acquired asset located on the scanner
plate leaves its mono-dimensional fingerprint row by row during scanning. So in
the last case, it is expected that a certain periodicity of the 1-D noise signal is
evidenced along the scanning direction. This behavior should be absent in the
camera case and this difference can be investigated to discern between images
coming from the two different kinds of device. Being R(i, j) with 1 ≤ i ≤ N
and 1 ≤ j ≤ M , the noise extracted by the scanned image of size N × M , and
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assuming i (row) as scanning direction, it can, at least ideally, be expected that
all the rows are equal (see Equation 1).

R(i, j) = R(k, j) ∀ 1 ≤ j ≤ M, 1 ≤ i, k ≤ N (1)

So if a 1-D signal, S of N × M samples, is constructed by concatenating all
the rows, it happens that S is a periodical signal of period M (Equation 2).

S = [R(1, 1), · · · , R(1, M), · · · , R(N, 1), · · · , R(N, M)] (2)

It is also worthy to point out that if the 1-D signal is mounted along columns
direction (i.e. this would be right assuming that j is the scanning direction),
S is not periodical anymore, but it is constituted by diverse constant steps
each of length M . A periodical signal such as S, represented in Equation 2,
contains a number of repetitions equal to N and therefore will have basically
a frequency spectrum made by equispaced spikes. Such spikes will be spaced of
(N×M)/M = N and will be weighted by the spectrum of the basic replica of the
signal. So most of the energy of such a signal is located in these spikes. Obviously
this is what should happen, in practice the 1-D signal will be corrupted and its
periodical structure altered. Consequently the spectral spikes will be reduced and
their magnitude partially spread over the other frequencies. If it is still possible
to individuate such peaks, it will be simple to distinguish between a scanned
image and a digital photo.

3 The Proposed Methodology

According to the idea presented in Section 2, let us describe in detail which is
the proposed methodology to achieve that aim. The to-be-checked image I (size
N × M) is denoise filtered [8] obtaining Id which is subtracted to the initial
image to extract the sensor pattern noise R (see Equation 3).

R = I − Id (3)

To improve the possible presence of the deterministic contribution due to
the 1-D PRNU pattern noise, R is divided into non-overlapping stripes (both
horizontally and vertically, because both possible scanning directions have to
be taken into account) and then all the different rows (columns) belonging to a
stripe are averaged according to Equation 4 where L is the width of the stripe.

Rr(k) =
1
L

L∑

i=1

R[i + (k − 1)L] 1 ≤ k ≤ N/L (4)

After that two new noise images, named bar codes, respectively Rr (size
N/L × M) and Rc (size N × M/L), have been obtained; Rr and Rc have the
same number of samples. If an image has been scanned in the row direction, for
instance, it is expected that Rr will be composed by equal (ideally) rows, on the
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Fig. 1. Bar codes of size N/L × M (scanning direction = row): camera image (top),
scanned image (center) and ideal bar code for a scanned image (bottom)

other side such a characterization can not be expected in the column direction for
Rc and, above all, for an image coming from a digital camera (both directions):
this circumstance is presented in Figure 1. Bar codes are then used to create the
mono-dimensional signal by concatenating respectively rows of Rr and columns
of Rc and then periodicity is checked. Sometimes to reduce randomness a low
pass filtering operation (usually a median filter) is applied to bar codes, along
the rows and the columns separately, before constructing 1-D signals.

For the sake of clarity, let us call Sr and Sc the two mono-dimensional signal,
obtained as previously described, from Rr and Rc respectively. DFT (Discrete
Fourier Transform) is applied to both these signals and the magnitude of the
coefficients is considered. After that a selection is carried out on the basis of the
following criterion: amplitude values above a threshold T (see Equation 5 where
α is a weighting factor usually set to 0.4) and at the same time located in the
expected positions within the spectrum (see Section 2) are taken.

T = α ∗ max(max(abs(DFT (Sr))), max(abs(DFT (Sc)))) (5)

In the end all the values satisfying the previous selection criterion are added,
separately for row and column cases, yielding to two energy factors, Fr and Fc

respectively and their ratio RATIO = Fr/Fc is computed. If the digital image
has been scanned in the row direction, a high value of RATIO is expected
(if the scanning direction has been along columns RATIO will be very small),
otherwise if the image has been taken by a digital camera the two energy factors
should be comparable and a value of RATIO around one is foreseen. Doing so
it is possible not only distinguishing between images coming from a scanner or
from a camera but, in the scanner case, determining the scanning direction. To
improve robustness, this technique is applied to all the three image channels (R,
G, B) and three energy contributions are collected in each factor Fr and Fc.

4 Experimental Results

Experimental tests have been carried out to support the theoretical framework.
Digital images coming from 4 different scanners (Epson Expression XL 10000
2400x4200 dpi, HP Scanjet 8300 4800x4800 dpi, HP Deskjet F4180 1200x2400
dpi, Brother DCP 7010 600x2.400 dpi) and from 7 commercial cameras (Canon
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DIGITAL IXUS i ZOOM, Nikon COOLPIX L12, Fuji Finepix F10, HP Pho-
tosmart C935, Nikon D80, Samsung VP-MS11, Sony DSC-P200) have been ac-
quired in TIFF and JPEG format. Because of the diverse size of the contents,
the analysis have been done by dividing them into images of fixed dimension
N × M (1024 × 768). Obtained results have confirmed theoretical assumptions
as it can be seen in Figure 2 (a) where RATIO values are plotted and a separate
clustering is observed (for sake of clarity when RATIO was over 1 the inverse
was taken, due to this, information about scanning direction is lost). In Figure
2 (b), only scanned images, correctly detected, are figured: in this case inversion
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Fig. 2. Energy RATIO for 200 scanned (circle) and 200 camera (cross) images (a).
Energy RATIO only for 950 scanned images, correctly detected: scanning directions
are evidenced (b).
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(a) (b)

Fig. 3. Statistical distribution of RATIO: camera (a) and scanned images (b)

Table 1. Confusion matrix for scanned and camera images over a data set of 2000
images (left) and scanning direction recovery for scanner correct answers (right)

Camera Scanner

Camera 89.74% 10.26%

Scanner 14.65% 85.35%

Row Column

Row 100.00% 0.00%

Column 0.00% 100.00%

of RATIO has not been done and, to make visualization easier, high values are
saturated at 6. It is simply to distinguish the two different scanning directions
individuated by high and low values of RATIO; in particular it is interesting to
note the left and the right side of the plot related to column scanning direction
and the central part related to row direction. In Figure 3 the statistical distri-
bution of RATIO for 1000 camera images (a) and 1000 scanned ones (b) are
pictured where, in this case, higher values have been saturated at 50; a strong
concentration is evidenced on the tails of the graph for the scanner case. Finally,
a massive test has been carried out on a data set of 2000 images (half scanned
images and half photos) by setting a threshold at 0.2 with RATIO normalized
between 0 and 1 (as done for Figure 2 (a)): percentages are presented in the rows
of Table 1 (left). In Table 1 (right) percentages related to the scanning directions
in the scanner successful cases (85.35% of Table 1 left) are reported.

5 Conclusions

In this paper a new technique to distinguish between digital images acquired by a
scanner and photos taken by a digital camera has been proposed. Sensor pattern
noise periodicity along the scanning direction is checked for classification through
a frequency analysis. Experimental results have been presented to support the
theoretical framework. Future developments will regard the integration of this
feature within a SVM.
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