
The Contextual Map - A Context Model for

Detecting Affinity between Contexts

Robert Schmohl and Uwe Baumgarten

Institut für Informatik, Technische Universität München
Garching bei München, Germany

schmohl@in.tum.de, baumgaru@in.tum.de

Abstract. Context-awareness represents an important research domain
in mobile computing by utilizing information about persons, places and
objects anytime and anywhere. The highly dynamic contexts created by
this paradigm raise questions how to efficiently determine alikeness and
affinity between such contexts. Inspired by mechanisms from location-
aware computing, we tackle the issue of contextual proximity by con-
structing an n-dimensional map-model, which serves as a context model
for regular context repositories. This Contextual Map enables us to store
non-location contexts in a map-based way. Further, this model enables us
to conduct location-based n-dimensional proximity detection on the non-
location contexts, hence giving us the possibility to determine contextual
proximity. This paper introduces the contextual map model, describing
how principles from the location-based service domain can be leveraged
on general context-aware computing and how they can be employed to
detect affinities between different contexts.

Keywords: Context-aware computing, contextual affinities, contextual
boundaries, proximity detection.

1 Introduction

Context-aware computing focusses on utilizing any information describing the
current context of an entity, which may be a place, a person, an object, etc. In
practice, this information comprises of the situation and possible actions of the
entity, derived from its current surrounding, which is captured by sensors of de-
vices associated with the entity, or the infrastructure hosting such devices [1,3].
To store and exploit such contextual information, context-aware systems uti-
lize sophisticated context models. Those models represent the context captured
from the real-world in a way suitable for further processing, such as identifying
contextual coherences and inferring new context.

Context-awareness is applicable in numerous application domains. Especially
the utilization of mobile devices emphasizes the exploitation of the highly dy-
namic environment in which mobile hosts usually roam. However, providing in-
formation about the most current context to mobile applications is an elaborate
effort. For this reason, context-aware systems are usually middleware solutions

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 171–184, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

172 R. Schmohl and U. Baumgarten

capable of acquiring and managing contextual data autonomously, hence pro-
viding the resultant context to high-level applications via a dedicated interface.

In order to identify similarities among individual entities’ contexts we employ
techniques known from location-based computing. Although exhibiting a high
degree of specialization, map-based location models yield principles, which can
be applied to conventional context-aware computing as well. We have discovered
that the principle of proximity in the location domain can be applied to face
certain aspects of context-awareness, too. The geographical proximity in the
location domain expresses that entities are close to each other. By projecting
this setting on more general contexts, contextual proximity may express that
contexts are alike or affine, hence “close” to each other.

This approach has yielded the conceptualization of the contextual map model,
abstracting contextual information into an n-dimensional map, thus assigning
each piece of context a position in this map. Since this context model represents
contextual information in a n-dimensional cartesian map model, it allows the ap-
plication of mechanisms known from location-aware computing on non-location
contextual information.

For the identification of contextual proximity, we calculate the Euclidean dis-
tance between n-dimensional contexts to determine their degree of alikeness, such
as we would calculate the distance between locations of objects in 3-dimensional
space. In our approach, we define context boundaries as the degree of alikeness be-
tween different contexts. More precisely, we monitor dynamic affinities between
pieces of context according to their changing distances to each other in the con-
textual map. Those distances allow us to determine, whether context boundaries
have been crossed, hence whether contexts become more affine (converging) or
less affine (separating). Figure 1 sketches the idea behind the contextual map.

A

Context of A

B

Context of B

A

B

Real World Contexts Contexts in Contextual Map

Contextual Proximity

Fig. 1. Contexts in the Contextual Map

This paper explores the application possibilities of the contextual map model
as a middleware solution on mobile hosts. Section 2 enumerates the work related
to our project. Section 3 introduces the principles from the domains of location-
and context-awareness, that we base our work on. With this information given,
we introduce our contextual map model in section 4. Section 5 explains, how the
contextual map is employed to monitor affinity between contexts and how this is
related to contextual boundaries. Subsequently, section 6 summarizes the overall

The Contextual Map - A Context Model for Detecting Affinity 173

workflow of employing the contextual map model before the paper is concluded
in section 7, giving an outlook on the enhancements of the approaches presented
here.

2 Related Work

Prior to the conceptualization of the work presented here, we have surveyed
the domain of context-aware computing deriving an architecture that allows a
generalized view on the domain [10]. Here, we are presenting a novel concept of
a context model exploiting principles of the location-aware computing domain.
Since it is quite specialized in nature, it is to be regarded supplemental to well
proven context models [12], such as ontologies [1,2,4,5].

Proximity and separation detection allows the definition and utilization of
context boundaries when employed with the contextual map model. Such con-
text boundaries define distances between contexts in the contextual map hence
specifying degrees of affinity between those contexts. Roman et. al [9] have con-
ducted similar work by defining thresholds where exceeding of those thresholds
equals crossing of such boundaries. Proximity and separation detection, as pre-
sented by Küpper and Treu [7], requires frequent location updates of the involved
mobile hosts. Besides the common update semantics including polling, periodic
updates, distance- and zone-based updates, there is a common endeavor on de-
signing update semantics, which minimize the amount of updates while keeping
the location of the target as current as possible [7,6]. Küpper and Treu present
efficient ways to achieve this objective by employing sophisticated algorithms
with circular and strip-like update zones in 2-dimensional space.

A notable alternative to our work is depicted by the theory of context spaces
introduced by Padovitz et al. [8]. As the contextual map, context spaces aim at
the multi-dimensional representation of contextual attributes. Multi-dimensional
context spaces are partitioned into regions denoting bounds of specific contextual
situations. Concrete context states mapped from real world entities are then
associated to such context regions according to their proximity in the context
space.

3 Background

3.1 Context-Aware Computing

Context-aware systems usually build upon the following fundamental workflow
visualized in figure 2. They capture information about their surrounding from
context sources, such as sensors, the network infrastructure, auxiliary software,
etc. Subsequently, this information is refined by relating this information to the
context in question. This task is usually performed by a dedicated component,
namely the context capturing interface. The resultant contextual information is
stored in context models. Inference engines use this data to derive new contex-
tual information according to application-specific rules. The data derived at the

174 R. Schmohl and U. Baumgarten

Context Application

Context API

Context Repository

Inference Engine
Inferencing

Rules

Context Capturing Interface

Context Sensors

Planning Level

Application Level

Reasoning Level

Syntactical Level

Lexical Level

Context Sources

Fig. 2. Architectural Draft for context-aware computing

end of this process is made available by context APIs to any application utiliz-
ing the most current context. As stated, figure 2 shows a generic architecture
utilizing this workflow [10]. In summary, the context API provides transparent
access to a context-aware middleware, which utilizes all contextual data from
the attached context sources autonomously. This approach facilitates the devel-
opment of context-aware application and enables portability of a context-aware
system.

3.2 Proximity and Separation Detection in 2-Space

The detection of mobile entities approximating or departing each other depicts
important application cases for location-based services [7]. As with all of the
services implying location, proximity and separation detection requires frequent
location updates of the involved mobile hosts. Based upon the location commit-
ted by the targets, proximity or separation can be detected. There are four basic
mechanisms on how to trigger a location update [7]: polling, periodic updates,
zone-based updates and distance-based updates.

A common endeavor on designing update semantics is the minimization of the
amount of updates while keeping the location of the target as current as possi-
ble [7,6]. There are two efficient ways to achieve this objective in combination
with detecting proximity or separation of mobile entities [7]. Both conduct the
detection mechanism following a mobile entity’s location update, which work as
followed. The first approach is based on circular areas centered around mobile
hosts. Location updates are committed upon leaving those areas. Proximity and
separation are detected upon calculating the smallest (proximity) and largest
(separation) possible distances, which both depend on the circles’ radii. The sec-
ond approach focuses on defining an orthogonal strip between two mobile entities

The Contextual Map - A Context Model for Detecting Affinity 175

smallest possible distance

largest possible distance

update zone

update zone

update zone (proxim
ity)

update zone (separation)

mobile node

last known position

Fig. 3. Proximity and separation detection

and spanning a circle around the center of the line between them. Proximity is
detected upon a location update triggered by one of the targets entering the
strip. Separation detection is conducted after a location update committed by a
target leaving the circular zone. Figure 3 illustrates both approaches.

4 The Contextual Map Model

In this section we introduce the contextual map model for storing contextual
information in a context repository, as depicted in figure 2. After presenting
the model’s structural characteristics we focus on how contextual information is
mapped into this model. To improve the reader’s understanding, we are going to
illustrate the working principle of the contextual map by employing an example,
which exploits the context of a weather station.

4.1 Composition

The key idea of the contextual map model is to represent the context of entities
in an n-dimensional realm. The context of a single entity corresponds to a single
entry in the contextual map. Such an entry is composed of n coordinates and
hence can be interpreted as a position in the map. Referring to our example,
the context of our weather station denotes the current weather conditions at a
specific location. Its context represents a single position in the contextual map,
whereas the context of another weather station denotes another map position.

An entity’s context, captured by various context sensors, is mapped into the n
dimensions of the contextual map by employing a particular mapping function.
We are going to sketch such a function in the subsequent section 4.2. After
mapping the information into the contextual map, the entity’s current context
is represented by n coordinates inside the map. Analogously, one can imagine a 3-
dimensional map of space, which is employed to represent the location of entities

176 R. Schmohl and U. Baumgarten

in space. We extend this 3-dimensional model by adding additional dimensions,
in order to include further contextual information other than location. Finally,
each dimension corresponds to an elementary contextual attribute of a complete
piece of context. In the contextual map, a single dimension is the smallest unit
of context representation.

To further augment our model, we allow the contextual map to be partitioned
into ranges. A range groups the map’s dimensions, which share typological sim-
ilarities. For instance, our weather station’s location is a piece of context, de-
composing into three subordinate building blocks corresponding to the location’s
cartesian coordinates. In the contextual map, three dimensions can be dedicated
for coordinate representation, grouping them to one range dedicated to the rep-
resentation of locations. Since the weather station’s context includes more than
merely its location, additional ranges must be included. E.g., an additional range
may include the station’s environmental readings with a single dimension being
dedicated to each sensor (e.g. temperature, humidity, etc.). Table 1 sketches this
example.

The dimensions in the contextual map may be regarded as its axes, requiring
well defined units of representation. The choice of those is virtually unrestricted
as long as it fits the contextual attribute, which it is supposed to represent. How-
ever, within ranges units have to be uniform spawning a d-dimensional cartesian
coordinate system for each range with d being the amount of the range’s dimen-
sions. E.g., the dimensions of the weather station’s location range all need to be
defined in kilometers, whereas all of the environment range’s dimensions have to
be defined in a uniform way representing the particular weather condition (see
table 1). This is necessary to enable efficient detection of contextual affinity as
discussed later in section 5.

The n-dimensional representation of an entity’s context in the map is atomic
and thus exploitable for further analysis. Changes of its context can alter the
contextual correlation to other entities in regard to contextual boundaries. Since
contextual boundaries usually define the scope of similar context, we can employ
mechanisms known from 2- or 3-dimensional map models to detect proximity
among contexts inside the contextual map, hence identifying contextual affinities
by identifying proximate context, as explained later on in section 5.

4.2 Context Mapping

Based on the context model introduced in the previous section 4.1, it remains
to be clarified how contextual information is mapped into the contextual map.
The basic approach is to employ a mapping function, which inputs quantified
contextual data from according context sources and maps them to cartesian
coordinates of the diverse ranges in the contextual map. Formally, given an
entity, its context is mapped to the contextual map as followed:

m : s →

⎛
⎜⎜⎝

v1

v2

...
vn

⎞
⎟⎟⎠ |s ∈ S, v ∈ Vn

The Contextual Map - A Context Model for Detecting Affinity 177

Table 1. Example ranges

Range # of dimensions Axis definition

Location 3 (x, y, z) Cartesian coordinates (km)

Environmental data 4 (temperature, barometric
pressure, humidity, wind speed)

0 (min) to 100 (max)

where S is the set of quantified context source data and Vn the correspondent
n-dimensional realm in the contextual map. v represents a single context in
the contextual map with v corresponding to the entity’s real-world context.
According to the fragmentation of the contextual map into ranges discussed
in the previous section 4.1, m needs to map individual contextual data to the
correspondent ranges in Vn.

It is to be noted, that S may cover a very heterogeneous spectrum of contex-
tual sources [11] implying heterogeneous definitions of m as well. In the rest of
the paper we proceed with a mapping technique tailored to our weather station
example. We assume that the context of an entity is typified and hence given by
a set of scalars, each corresponding to its according type of context.

Given our weather station example, we first define a representation for its
context in the contextual map model and define a mapping function for the con-
textual data to be mapped into that map, subsequently. We proceed as followed.
First, we define two context types: location and environmental data. We assign
each type a range with an according amount of dimensions in the contextual
map, as shown in table 1. Consequently, we assign the dimensions of each range
uniform axis definitions.

With this setting, it is possible to define a mapping function m, which transfers
the weather station’s context into the contextual map. First of all, we require
m to handle each context type and its corresponding range separately. m takes
the quantified contextual data captured and derived from the weather station’s
context and calculates its position in the contextual map adhering both range
and axis definitions. Mapping location into the map is quite straight forward:
The station’s coordinates are translated to cartesian coordinates in the map.
The coordinates for the environmental data are calculated by determining the
relation of the current value to the pre-defined extremes. Let temperature to be
allowed to adopt a value between -50◦C and 50◦C resulting in 100 adoptable
units. With the axis of dimensions of the environment range ranging from 0 to
100, a currently measured temperature of 25◦C corresponds to a coordinate of
75 for the temperature dimension. The mapping of the remaining environmental
measurements works analogously.

The mapping function presented here covers a special use case, and must
not be seen as universally valid. The heterogeneous spectrum of context-aware
application cases [10,11] requires m to be adapted individually depending on
the required application cases. A large part of this heterogeneity comes from
the heterogeneous environment, which usually surrounds context-aware systems.
Given the assumption, that contextual data is captured and quantified, m is to
be defined in a way to specifically handle the input given by that quantification.

178 R. Schmohl and U. Baumgarten

Since the context of entities is dynamic, the mapping must be employed iter-
atively to ensure the most current context to be stored in the contextual map.
Such context actuality is achieved by frequent contextual updates. The according
update semantics are discussed later on in section 5.3.

5 Application of the Contextual Map

So far, we have solely depicted the contextual map model in the previous section
4. In this section we discuss the applicability of our context model. We assume
that entities possessing their own contexts utilize mobile devices, which acquire
and manage such contexts and commit contextual updates to distribute this
information. In the following we first discuss the definition of context boundaries,
which form the basis for enabling triggers based on contextual proximity/affinity.
With context boundaries defined, the principles of measuring the proximity of
contexts are introduced, hence allowing to determine the affinity between those
contexts. In addition, we reflect on efficient update semantics, to derive the
current context to be most current despite of minimized efforts.

5.1 Context Boundaries

Contextual boundaries represent the degree of alikeness between contextual in-
formation. More precisely, contextual boundaries may be defined between dif-
ferent entities to determine the affinity of their individual contexts. This affinity
expresses how interesting or - contrarily - uninteresting another entity’s context
is. Concluding, context getting closer also raises its relevancy for the concerned
entity [9].

For example, a car driver may be interested in proper weather conditions
on his route, hence taking action if a proximate weather station reports strong
weather. We define the contextual boundaries between the entities car driver and
weather station on two ranges: location (Rloc) and environment (Renv) (compare
table 1). Both ranges compose the context of each entity. An entitiy’s physical

Location Weather

Contextual Range Boundary

Context of Weather Station

Context of Driver

Fig. 4. Crossing Context Boundary Example

The Contextual Map - A Context Model for Detecting Affinity 179

position is represented in Rloc. Renv represents a weather station’s currently
measured environmental readings and the driver’s personal conception about
not-agreeable weather. Now, we can define a context boundary, which delimits
the driver’s willingness to drive according to how bad the weather is. The bound-
ary concerning Rloc expresses a weather station’s distance to the driver, so that
it actually becomes of his interest. The boundary on Renv focuses on how close
the current weather at a station may come to the weather conditions regarded
as critical by the driver. The contextual boundary between the entities driver
and weather station gets crossed if the driver gets close to the weather station,
which reports conditions close to the driver’s critical criteria. Figure 4 illustrates
the definition and crossing of this example boundary.

Given this example, we can formally define a contextual boundary B:

– A proximity threshold ti is defined on each contextual range Ri, which is rel-
evant to B. Each ti is a single value dependent on all of the Ri’s dimensions,
hence, defining the degree of alikeness of Ri’s contexts. Basically speaking,
the threshold represents the distance, which delimits the range’s contextual
information to be ”proximate” or not.

– The set of thresholds ti of all ranges R1, ..., Ri, ..., Rm relevant to B defines
the contextual boundary: B = (t1, ..., tm)

5.2 Detecting Affinity of Contexts

With the principle of contextual boundaries defined, we proceed with describing
how contextual boundaries can be exploited using the contextual map model.
As we have argued earlier, crossing context boundaries corresponds to differ-
ent entities’ contexts getting either more ore less affine (or rather contextually
”closer/farther” to/from each other), thus crossing the affinity degree specified
by the boundary.

With context boundaries defined in a contextual map, the next step is to de-
termine crossings of those boundaries indicating changes of contextual affinities.
Each of a context boundary’s thresholds is defined on a single range. For this
reason the check for two contexts having crossed the boundary by converging or
separating from each other is performed range-specifically. Given two entities P
and Q, their respective contexts P and Q are partitioned into multiple ranges.
Since ranges group contextual data of equal types, we compute the distances
between the two contexts inside each range separately (only ranges affected by
the boundary). Such a range-level distance between P ands Q is represented by
the Euclidean distance D:

D =

√√√√ d∑
i=1

(pi − qi)2 (1)

with pi and qi being the coordinates of dimension i of the contexts P and Q,
respectively, and d denoting the number of dimensions of the concerning range.

180 R. Schmohl and U. Baumgarten

With the distance D calculated, we employ proximity and separation detection
[7] to determine, if the contexts of the two entities are ”closing” or ”separating”
on range level. The thresholds of a contextual boundary serve as limits to enable
proximity or separation alerts. Such an alert is triggered when all of the bound-
ary’s thresholds have been breached, i.e. when the boundary has been crossed on
each relevant range. The ”direction” of exceeding a context boundary’s thresh-
olds declares whether P and Q have converged or separated while crossing the
context boundary, hence getting either more or less affine, respectively.

Returning to our weather station example, we assume, that the contexts of
both the car driver and surrounding weather stations are iteratively captured
and mapped to the contextual map. Hence, each weather station and the car
driver get a constantly updated contextual map position associated with their
respective context. The car driver has defined a contextual boundary defining
dangerous weather, at which he is not willing to drive (i.e. weather coming close
to his critical weather definition). Hence this boundary is decomposed into two
thresholds defined on two ranges as depicted earlier in section 5.1 and figure 4:
on Rloc expressing the driver’s tolerated distance to a weather station reporting
bad weather, and on Renv defining the tolerance interval to weather conditions
at which the driver refuses driving. Let the boundary’s thresholds be further de-
fined as 10 kilometers on Rloc and 15 units on Renv (as depicted in table 1). The
distances D between the contexts of driver and weather station are computed
for each range upon receiving a contextual update. In this example, such an up-
date may yield changing weather conditions and/or changing driver’s location.
As soon as the driver gets closer than 10 kilometers to a weather station, which
reports weather less than 15 units distant to the driver’s critical weather defini-
tion, the defined context boundary is crossed and a proximity alert is triggered.
Hence, the driver may take action changing his route or stop driving.

5.3 Update Semantics

An obvious precondition for detecting proximity/separation of contexts in the
contextual map is the knowledge about its most current positions in the map.
Context actuality is achieved by contextual updates, i.e. updates containing
an entity’s most current context information. The challenge is to define efficient
update semantics, so that a minimal amount of updates delivers the most current
context possible. E.g., frequent updates issued in short intervals deliver very
actual context information, but are highly inefficient, since most of them are
redundant due to missing context changes.

In section 3.2, we have outlined efficient semantics for issuing location up-
dates to detect geographical proximity among mobile hosts [7]. Those mecha-
nisms allow the acquisition of the most current context with a minimal amount
of location updates. With little effort, we can transfer those principles on the
contextual map. Both the geographical setting in section 3.2 and the contextual
map are settled in multi-dimensional Euclidean space (with the geographical
setting being 2-dimensional expressing width and depth). The proximity and

The Contextual Map - A Context Model for Detecting Affinity 181

separation detection mechanisms from section 3.2 work zone-based based on
circles and strips. Extending those mechanisms on the contextual map concludes
the definition of those on d-dimensional hyperspheres and hyperplanes:

– Hyperspheres method: In the 2-dimensional realm (R2), contextual updates
are sent upon leaving the circular zone spawned around the according en-
tity’s position during the last update (last known position). Extending this
principle on the d-dimensional realm (Rd), we define a d-dimensional hyper-
sphere around this position in the contextual map. This position forms the
center point C of a hypersphere with its radius r denoting the update zone.
This definition allows us to determine, if the current context manifests itself
at a position outside the hypersphere, i.e. if the Euclidean distance between
the current context P and C is greater r. Formally, a contextual update is
triggered upon the following condition:

√√√√ d∑
i=1

(Pi − Ci)2 > r

– Hyperplanes method: For proximity detection in the geographical realm,
strips are spawned orthogonally between two mobile nodes eligible for prox-
imity detection. Contextual updates are sent by a mobile node upon en-
tering such a strip. Thus, the update zone is bounded by two lines. The
d-dimensional analogy requires the definition of two (d− 1)-dimensional hy-
perplanes, bounding the update-zone in R

d. Since this approach is still set-
tled in Euclidean space, we can formally define those two hyperplanes in R

d

analogously as in R
3. Let there be two contexts, P and Q, with according

coordinates in the contextual map. First, the middle point C between those
contexts is to be defined. Now, the hyperplanes need to be defined orthogo-
nally to the line connecting P and Q, and they need to be equidistant from
the the center point C, in order to position the strip exactly in between P
and Q. With the update zone set we can now trigger a contextual update,
if one of both contexts enters the strip-area bounded be the two defined
hyperplanes. However, this method is only feasible to conduct proximity de-
tection between the two contexts. For separation detection the strip-method
cannot be applied, as argued in section 3.2. In order to conduct separation
detection, we define an update zone bounded by a hypersphere, centered at
C. The contextual update is then triggered upon a context ”leaving” the
hypersphere, as we have discussed this process earlier already.

To demonstrate the applicability of the update semantics presented here, we
return to the example with the driver and the weather station. We have two con-
texts, the driver D and the station S. We further regard the two relevant ranges
in the contextual map: weather conditions Renv and location Rloc. However, the
dynamic changes, which take place here are restricted to the weather station’s
current weather and the driver’s location. Concluding, we have to pay attention
to D’s position in Rloc and S’s coordinates in Renv, only. To proceed with this

182 R. Schmohl and U. Baumgarten

example we employ an update zone bounded by hyperspheres. Therefore, hyper-
spheres are defined around D and S on their respective ranges Rloc andRenv.
For D, it seems reasonable to select a radius of 10 on Rloc, denoting an update
necessity from the driver every 10 kilometers (neglecting the third dimension z
as denoted in table 1 for reasons of simplicity). For the update-sphere of S, we
define a radius of 5 on Renv. This corresponds to an update triggered when the
weather conditions at the weather station change by 1

20 of the scale (see range’s
axis definition in table 1).

6 Overall Workflow

With the basic working principle of the contextual map model discussed, we are
now about to summarize the general workflow of detecting affinities between
contexts.

1. Context capturing: The first step consists of abstracting the environmental
context into the context model. The contextual map has to be set up ac-
cording to this context, i.e. ranges, its axes are to be defined (section 4.1).
Subsequently, the initial context is mapped into the contextual map. This
includes the identification of entities possessing their own definable contexts
and mapping them into the contextual map (section 4.2). As a result, every
entity possesses a position in the map, corresponding to its initial context.

2. Setting of contextual boundary: In the next step, the contextual boundaries
have to be defined, so that contextual affinity detection becomes possible.
This includes the identification of ranges affecting the according boundary
and defining the delimiter thresholds on the actual ranges (section 5.1).

3. Definition of update semantics: The entities’ terms for committing updates
about their most current contexts must be defined. This regards the selection
of the appropriate bounding model for the update zones in R

d, (hypersphere
and hyperplane models in section 5), as well as the size of the update zones
(hypersphere = diameter, hyperplanes = distance between each other).

4. Monitoring current context: It is assumed, that a mobile host is attached to
each entity. It keeps track of the entity’s current context, hence maintaining a
contextual map representation of its entity locally. The mobile host captures
the most current context from its context sensors, quantifies it in the context
capturing interface (see figure 2), and merges the resultant data into its local
contextual map (section 4.1). The entity’s changing context corresponds to
changing coordinates of its contextual position in the map.

5. Determine contextual update: The constant local monitoring of the entity’s
context enables the determination to commit a contextual update. This is
exactly the case, when the entity’s context in the local contextual map leaves
the update zone (section 5). A contextual update is committed to the system
by the entity’s mobile host.

6. Proximity/separation detection: The distances from the entity’s context to
other contexts are determined by calculating the Euclidean distance (5.2).
This process is conducted on each range affecting a context boundary.

The Contextual Map - A Context Model for Detecting Affinity 183

7. Trigger proximity and separation alerts: The calculated distances are checked
with the affected contextual boundaries. If a change of distance equals a
crossing of a boundary (section 5.1), a proximity or separation alert is trig-
gered. The alert is available for applications utilizing the context API as
depicted in figure 2.

Figure 5 illustrates the workflow described above as a UML activity diagram.

Global System

Entity

Context
Capturing

Setting
boundary

Setting
Update

Semantics

Local
Context

Monitoring

Contextual Update
determined

Awaiting
Updates

continue monitoring

Proximity/
Separation
Detection

Application
-specific
Action

Alert

Fig. 5. Workflow

7 Conclusion and Outlook

With the contextual map, we have proposed a novel context model concept
facilitating the work with contextual affinity. We have proposed a definition
for context boundaries consisting of the degree of alikeness between different
contexts based on typified ranges of contextual information. Together with the
contextual map model, we are able to track specific alikeness of contexts and
put it into relation with contextual boundaries. This process finally enables us
to enrich the context API for context-aware applications (see figure 2) by pro-
viding contextual triggers, which report that a specified degree of contextual
alikeness has been reached. The contextual map suggest the implemented as
middleware concept augmenting existing context model by providing contextual
affinity management.

With the conceptual sketch available, the next step encompasses the refine-
ment of selected aspects of the conceptual map, especially the following two:
First, a major issue concerns the heterogeneity of the mapping function. Han-
dling heterogeneous context sources allows a more standardized process of map-
ping context to the map. The second issue in question regards the aspect of
distribution. Although clearly being applicable to pervasive computing environ-
ments, we have not yet proposed architectures on how to distribute the con-
textual map model and its peripheral components on mobile nodes, networks
infrastructures and so on.

Our most significant mid-term goal is the construction of a prototype model,
which may allow a proof-of-concept simulation. This goal will then allow us to ana-
lyze issues on how to integrate the context model in proven context-aware systems.

184 R. Schmohl and U. Baumgarten

References

1. Christopoulou, E., Goumopoulos, C., Kameas, A.: An ontology-based context man-
agement and reasoning process for ubicomp applications. In: sOc-EUSAI 2005: Pro-
ceedings of the 2005 joint conference on Smart objects and ambient intelligence [2],
pp. 265–270 (2005)

2. Christopoulou, E., Kameas, A.: Gas ontology: An ontology for collaboration among
ubiquitous computing devices. Journal of Human-Computer Studies [1], 664–685
(2005)

3. Gellersen, H.W., Schmidt, A., Beigl, M.: Multi-sensor context-awareness in mobile
devices and smart artifacts. Mob. Netw. Appl. 7(5), 341–351 (2002)

4. Rezwanul Huq, M., Thanh Tuyen, N.T., Lee, Y.-K., Jeong, B.-S., Lee, S.: Modeling
an ontology for managing contexts in smart meeting space. In: SWWS 2007: Pro-
ceedings of the 2007 International Conference on Semantic Web and Web Services
(2007)

5. Khouja, M., Juiz, C., Lera, I., Puigjaner, R., Kamoun, F.: An ontology-based model
for a context-aware service oriented architecture. In: SERP 2007: Proceedings of
the 2007 International Conference on Software Engineering Research and Practice
(2007)

6. Kieß, W., Füßler, H., Widmer, J., Mauve, M.: Hierarchical location service for
mobile ad-hoc networks. SIGMOBILE Mob. Comput. Commun. Rev. 8(4), 47–58
(2004)

7. Küpper, A., Treu, G.: Efficient proximity and separation detection among mo-
bile targets for supporting location-based community services. SIGMOBILE Mob.
Comput. Commun. Rev. 10(3), 1–12 (2006)

8. Padovitz, A., Loke, S.W., Zaslavsky, A.: Towards a theory of context spaces. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, 2004, vol. 1, pp. 38–42 (March 2004)

9. Roman, G.-C., Julien, C., Huang, Q.: Network abstractions for context-aware mo-
bile computing. In: ICSE 2002: Proceedings of the 24th International Conference
on Software Engineering, pp. 363–373. ACM Press, New York (2002)

10. Schmohl, R., Baumgarten, U.: Context-aware computing: a survey preparing a
generalized approach. In: IMECS 2008: Proceedings of the International Multi-
Conference of Engineers and Computer Scientists 2008, International Association
of Engineers (2008)

11. Schmohl, R., Baumgarten, U.: A generalized context-aware architecture in hetero-
geneous mobile computing environments. In: The Fourth International Conference
on Wireless and Mobile Communications, 2008. ICWMC 2008, vol. 1, pp. 118–124
(August 2008)

12. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In: Davies, N., Mynatt,
E.D., Siio, I. (eds.) UbiComp 2004. LNCS, vol. 3205. Springer, Heidelberg (2004)

	The Contextual Map - A Context Model for Detecting Affinity between Contexts
	Introduction
	Related Work
	Background
	Context-Aware Computing
	Proximity and Separation Detection in 2-Space

	The Contextual Map Model
	Composition
	Context Mapping

	Application of the Contextual Map
	Context Boundaries
	Detecting Affinity of Contexts
	Update Semantics

	Overall Workflow
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

