
KeyPocket - Improving Security and Usability
for Provider Independent Login Architectures

with Mobile Devices

André Ebert1(B), Chadly Marouane2, Benno Rott1,2, and Martin Werner1,2

1 Mobile and Distributed Systems Group, Ludwig-Maximilians-University,
Oettingenstrasse 67, 80538 Munich, Germany
{andre.ebert,martin.werner}@ifi.lmu.de

2 Virality GmbH, Rauchstrasse 7, 81679 Munich, Germany
{marouane,rott}@virality.de

Abstract. Nowadays, many daily duties being of a private as well as of
a business nature are handled with the help of online services. Due to
migrating formerly local desktop applications into clouds (e.g., Microsoft
Office Online, etc.), services become available by logging in into a user
account through a web browser. But possibilities for authenticating a user
in a web browser are limited and employing a username with a password
is still de facto standard, disregarding open security or usability issues.
Notwithstanding new developments on that subject, there is no suffi-
cient alternative available. In this paper, we specify the requirements for
a secure, easy-to-use, and third-party-independent authentication archi-
tecture. Moreover, we present KeyPocket, a user-centric approach aligned
to these requirements with the help of the user’s smartphone. Subse-
quently, we present its state of implementation and discuss its individual
capabilities and features.

Keywords: Multi-factor authentication · Mobile-based login architec-
tures · Security · Usability

1 Introduction

Whether booking a journey, transferring money to a bank account, or reading
the most recent news: Mobile devices with online capabilities are ubiquitous and
their usage is common today [1]. But service providers insist on the user to create
a user account, commonly secured by a username and a password, still. This
leads to the dilemma of having a trade-off between security and usability. Short
passwords, which do not contain special signs, numerics, or capital and lowercase
letters are good to remember, but have a lack of security. In contrast, a complex
password is hard to remember and users tend to write it down, which makes
it accessible for possible attackers [2]. Even in the pre-smartphone era, users
already had an average number of thirty user accounts and about 6.5 passwords
to secure them [3]. This results in a multiple or combined usage of the same
passwords for different services. But if one account is compromised, all accounts
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 41–57, 2015.
DOI: 10.1007/978-3-319-28865-9 3



42 A. Ebert et al.

secured with its credentials are also compromised [4]. Furthermore, complex
passwords which have been robust against Brute-force attacks in the past, get
stolen by Phishing or Keylogging mechanisms today [5]. Parwani et al. stated,
that a huge number of private as well as of business accounts are accessed illegally
every day, which results in great personal and financial damage [6]. Therefore,
Bonneau et al. explored more than 35 different authentication approaches and
claim that their security and usability is not suitable to substitute authentication
systems based on usernames and passwords, yet [7]. Due to rapid development of
smartphones and their capabilities to act as a mobile sensor, hardware tokens, or
transmission systems, their inclusion in multi-factor authentication architectures
is accelerated. Target is the improvement of usability and security in relation to
conventional systems as well as the provision of a trustworthy and easy accessible
platform for managing different credentials and identities for a user. Still, we are
not aware of a login architecture which satisfies these needs concerning usability,
security, data privacy, and service-independence.

In the following, we first present some fundamentals related to mobile authen-
tication as well as a choice of current authentication concepts in order to explain
their technical and architectural concepts in Section 2. The following section
defines requirements for a login architecture as a function of usability, security,
and technical as well as conceptual circumstances. Afterwards, we present Key-
Pocket, a provider-independent, easy-accessible, and secured login architecture
along with some of its unique features in Section 4. Furthermore, this section also
deals with concrete insights into the system’s implementation. Section 5 explores
the mentioned concept in reference to the demanded requirements and discusses
its features in respect of possible threats for mobile authentication. Afterwards,
we summarize our findings and provide a glimpse towards open issues and future
tasks.

2 Related Work

In this section, we present some security fundamentals in context of mobile
authentication. Moreover, we provide a brief overview across recent mobile-
device-based authentication architectures.

2.1 Secure Data Encryption and Transmission

Procedures for encryption are essential for the development of a authentication
architecture based on a mobile device due to several reasons. On the one hand,
it guarantees a secure data storage, on the other hand data integrity and con-
fidence during a transmission process is ensured. Munro et al. proclaim, that it
was difficult to encrypt data on Android smartphones, so far. Especially PIN-
based encryption methods were susceptible for Brute-force attacks and did not
provide adequate protection for sensible data [8]. But since the introduction of
Android 5.0 Lollipop, hardware-based disk encryption is integrated into the oper-
ation system (OS). Therefore, a 128 bit Advanced Encryption Standard (AES)



KeyPocket - Improving Mobile-based Authentication 43

algorithm in combination with Cipher Block Chaining (CBC) is used. The mas-
ter key also uses 128 bit AES encryption. For secure usage a key length of 256
bit is recommended [9]. Until now, we are not aware of any successful attacks
onto recent Android versions. The procedure can currently be rated as secure
for encrypting data on Android devices.

Apple iOS offers its Keychain feature for secure credential management, which
was already part of Apples desktop operation system OS X. It realizes secure
handling and inspection of certificates as well as of user credentials. There also
occurred different security issues with the Keychain since its release, especially in
combination with the processor architecture of some older iPhone models and jail-
breaked devices. Referring to this issue, Heider et al. show that data can be stored
in a save way on recent iOS-devices by using the Keychain, still [10].

The TLS encryption protocol, formerly known as Secure Sockets Layer (SSL),
was originally developed for the combined usage with HTTPS in web browsers
and is a de facto standard for secured end-to-end communication in networks.
Therefore, the server provides a valid public key certificate (issued by a trustwor-
thy Certification Authority (CA)) to the client during the handshake procedure,
who is now able to validate it (e.g., period of validity, listed domain names, etc.)
[11,12]. Due to security vulnerabilities, which emerged during the last years,
there were doubts about the SSL technology’s reliability. Despite that, Georgie
et al. show that mainly inaccurate implementations (e.g., deactivated certifi-
cate validation) or poorly designed SSL libraries and not the protocol itself are
responsible for these flaws [13]. An example for a security leak, which got a lot
of attention during the last year was the Heartbleed bug. It was detected in
the OpenSSL framework and facilitated the readout of 24 - 55% of the memory
of popular HTTPS site’s servers. However, the bug was fixed in version 1.0.1g
[14,15]. In addition, Georgie et al. indicate that SSL can be used in a secure
manner without any issues, as long as configuration parameters are set explic-
itly and development guidelines are followed. Irrespective of that, HTTPS and
TLS/SSL do not protect the user from every kind of connection-aimed attacks.
Callegati et al. indicate that even HTTPS connections are not immune against
Man-in-the-Middle attacks (MitM) [16].

2.2 Smartphone-Based Login Architectures

Public-key-cryptography-based login architectures use encryption in order to
protect the user’s credentials from unauthorized access. In context of the cho-
sen architectural concept, the used technologies, assigned roles and identified
tasks are significantly dependent of the proposed system-design. All approaches
introduced in the following integrate a smartphone into their authentication
infrastructure. Its role differs in each individual concept (e.g., hardware token,
data transmission, identity management, etc.).

Czeskis et al. proclaim an authentication system for opportunistically pro-
vided cryptographic identity assertion, called PhoneAuth [17]. The approach is
called opportunistic because it is only used if the user fulfills the required system



44 A. Ebert et al.

setup, consisting of a compatible web browser and a smartphone. In order to use
PhoneAuth, the user first visits the web page he desires to log in to and enters
his credentials. Subsequently, the browser redirects this data to the server, which
creates a login ticket with a challenge for authentication. This ticket is sent back
to the browser by using a TLS encrypted connection, which forwards it to the
user’s smartphone. The device functions as the second factor possession and is
registered explicitly as belonging to the user. By signing the browsers public
key contained by the login ticket with the user’s private key on the smartphone,
the user’s identity can be proofed without doubt to the server. As soon as the
user’s identity is verified, the server sets a cookie which is channel-bound to the
browser’s key pair and the user becomes logged in. The authors state, that all
MitM attacks are perceived by the usage of a TLS channel ID, which is unique
for each communication partner. However, in its current state the system is not
able to provide a reliable and usable management for complex passwords. They
still need to be entered manually into the websites login form.

Based on the research of the university of Tübingen, Borchert et al. present
a system for an indirect login under the usage of NFC [18]. For processing it, a
smartphone and a NFC smartcard containing the user’s asymmetric key mate-
rial is needed. In order to conduct the indirect login the server generates a
challenge, which is encoded together with the server’s address in a two dimen-
sional code (e.g., QR-Code) and shown at the login page. After scanning the
code, the login address is presented to the user for confirmation. This allows the
system to suspend MitM attacks. Subsequently, the user brings his smartcard
near the smartphone and the challenge as well as the server’s name are forwarded
from the mobile device to the card via NFC. The smartcard now computes the
response in terms of a private-key-signed challenge, which is sent back to the
sever in combination with the original challenge and the username. Because
of an in prior carried-out registration process, the user’s public key is already
known to the server, which is now able to verify the user’s proclaimed identity.
The authors do not make any specifications about the usage of the smartcard’s
PIN function. Furthermore, the smartphone’s only functionality is being a relay
between the smartcard and the server. The predecessor of the indirect NFC login
called ekaay was also developed by Borchert et al. and is a one-factor possession
architecture without the inclusion of a smartcard [19]. In this scenario, a new
key pair is created on registration and the pre-shared public key is sent to the
user. To proceed with the login, the user scans the shown QR-Code and signs the
contained challenge, which enables the server to verify the users authorization
permission. Because of the pre-shared key practice, this method is susceptible
for MitM attacks. In addition, the key is no one-time key, which means that as
soon as the system is compromised, a secure data exchange is not possible any
more.

Van Rijswijk et al. present tiqr, a concept similar to ekaay which facilitates
the binding of each service account to a unique key on its creation [20]. The tiqr
architecture itself is similar to ekaay and needs to be implemented on the service
provider’s website. Each user account is bound to a unique key. A difference



KeyPocket - Improving Mobile-based Authentication 45

to ekaay is, that the key pair with the pre-shared public key is created locally
on the user’s device and subsequently transfered to the server. For the sake of
login confirmation and protection from Phishing attacks, the user needs to check
the login address and complete the procedure by entering his PIN. By binding
accounts to individual keys as well as due to the constraint to implement tiqr
on a service provider’s server, the flexibility of the concept is weakened.

Snap2Pass also binds user accounts directly to a key and provides a symmet-
ric as well as an asymmetric encryption mode [21]. Using the symmetric mode,
a secret key is managed on the user’s device for each server. A new account
is created by scanning a QR-Code from the service provider’s login page. The
user provides only a username, the password is provided by the server in terms
of a pre-shared secret. For logging in, the user again scans a QR-Code, which
contains a challenge bound to the current browser session. The device computes
the corresponding HMAC-SHA1-hash and sends the signed challenge together
with the original challenge back to the server. The server now verifies both, the
user and the browser session and completes the login procedure. In public key
mode, a public key is generated on application startup on the user’s device and
is sent to the server, which now is able to verify the signed challenges. By using a
pre-shared secret and storing it on the mobile device, the system is downgraded
from the usage of two security factors (possession and knowledge) to one factor
(possession).

The QR-Code based authentication concept propagated by Galois Inc. is
similar to ekaay and tiqr, though it currently only exists as a loose concept
without implementation and was published on the company’s website [22]. For
registration, a QR-Code containing a random secret, which is also saved in a
session-bound cookie, must be scanned. In the following, either a username is
entered by the user inside the corresponding smartphone application or a Unique-
User-ID (UUID) is generated automatically. After sending the shared secret, the
random secret, the session cookie and the UUID to the service provider, the
registration process is completed. For logging in, the user scans a QR-Code
containing a random secret and a session cookie. The smartphone’s response
contains the corresponding UUID and the appropriate random secret for the
service’s website. After reviewing the credentials the user becomes logged in
automatically.

LastPass differs in multiple aspects from the systems mentioned above. It is
a cloud-based SSO login architecture, which perches on the usage of a browser-
plugin in order to communicate with the website of a service provider [23]. The
user’s inclusion into the LastPass system is carried out by using the correspond-
ing authenticator application. To use LastPass, the user clicks a button in the
browser to start the plugin. After entering his credentials, a one-time password is
sent to the user’s smartphone as a second authentication factor. This also needs
to be entered into the browser-plugin, in order to complete the login process on
the client’s side. An advantage of this concept is its device independence due to
storing and synchronizing user data in a cloud. By introducing the second fac-
tor possession, the system’s security is increased. But in this case, the increased



46 A. Ebert et al.

security also leads to a lack of usability, resulting in the login procedure becom-
ing more complicated. Not only that the user needs to enter credentials for each
login, additionally a one-time password is required, which results in multiple
media breaks. Moreover, because of entering credentials in the browser-plugin
the concept is vulnerable to Keylogging and Phishing attacks.

Besides smartphone-assisted login architectures without complex account or
user management, there are also some commercially available architectures with
extensive possibilities of managing personal data. Most of these do not use
local, but cloud-based technologies to store user data, which leads to advan-
tages regarding a provider’s actionability, e.g., in case of device theft or loss.
Otherwise, this also indicates privacy issues. Due to their proprietary architec-
ture, the concepts presented in the following could not be evaluated completely
in respect of their specific conceptual or technical details.

Click2Pass presents a login via smartphone application in combination with
an own web API, which needs to be implemented on the provider’s server [24].
Some PHP code fragments serve as an implementation guideline for developers,
the comparatively protracted and complex registration process could discourage
potential users.

MyDigipass provides a cloud-based two-factor authentication solution com-
patible with mobile applications as well as with websites. After the registration
process, all personal data can be managed in a cloud. This offers a plus on
usability,e.g., regarding data migration on device theft. Passwords are stored on
a mobile device, which functions as a token. Currently, devices which are avail-
able as a token are Android and iOS smartphones and due to its eID function
the Belgian identification card, among others. In order to log in, the user enters
the MyDigipass launchpad where all registered services are listed. After choosing
one service by a click on its icon, the user needs to enter a PIN code and after
a successful verification he is redirected to the service’s website or its mobile
application.

LaunchKey and Zapper offer possibilities for multi-factor authentication
based on a platform specific registration and implementation process [25,26].
LaunchKey in particular features a decentralized architecture where the entire
authentication layer resides on the user’s mobile device. Therefore, a crypto-
graphic connection between the user and mobile device is initiated via SMS,
QR-Code, email or manual entry. Due to a variable usage of fingerprints, geofenc-
ing, bluetooth device check, PINs, etc., the implementation of granular security
levels is feasible. After the pairing and the security level setup, the reception of
authentication and authorization requests is possible.

Clef supplies a smartphone-based login working with OAuth 2.0, which is
also used by OpenID and Twitter [27,28]. A security enhancing feature of Clef is
the usage of geolocations as well as the device’s hardware information and usage
data for fraud detection.

OneID also facilitates a cloud-based approach, where all user data is saved
encrypted in order to enhance the users privacy [29]. For its transmission as well
as its decryption, a pre-shared key is used, which is stored on the user’s device.



KeyPocket - Improving Mobile-based Authentication 47

Additionally an individual PIN can be set in order to secure this key. Even if a
device gets lost, it is not possible to get access to the user’s data itself due to its
distributed storage in a cloud.

An authentication concept for Mac OS X based on BLE for an iPhone in
combination with a MacBook is Kocktounlock [30]. As soon as the mobile phone
is near the MacBook, it is prepared to become unlocked – only an additional
knock onto the phone screen is needed as a signal of intent. Kocktounlock is not
working anymore since Mac OS X Yosemite due to the lost feature of a MacBook
to act as an iBeacon. Furthermore, the approach is not applicable to websites
but only to unlock the OS’ lock screen.

A generic, smartphone-based authentication solution which uses the smart-
phone as a key for vehicles and security doors or barriers is BlueID [31]. The
communication between system components and the user’s device is secured
by an asymmetric public key infrastructure and the usage of certificates, which
are issued by the system’s own trust center. Data with login information is
transferred optionally via WiFi, Bluetooth Smart, mobile network or NFC. For
implementing the system on the service’s side, a software development kit is
provided.

3 Requirements of a Mobile-Based Login Architecture

In the context of developing an alternative login concept with the help of a
mobile device, there is a rash of different requirements to be considered. Thus,
we identified important basic points on basis of the concepts introduced before
and by respecting the paradigms of usability.

1. Security. There are several security aspects to be kept in mind: a) the user’s
account and personal data must be protected under all circumstances and
stay secret as well as with integrity, even in case of device theft or loss, b) it
must be ensured that only the user alone has access to personal data, and
c) all data transfer is secured and encrypted in order to eliminate all kind of
unwanted manipulation.

2. Usability. The system’s usage is as easy and its provided security as high
as possible.

3. Modularity, Compatibility and Scalability. Existing as well as new
service accounts can be integrated into the login architecture easily and
without technical limitations.

4. Privacy. The user itself is the only person having access to user sensitive
data.

5. Third-Party-Independence. The architecture is independent of imple-
mentations, limitations, and restrictions, stated by existing service architec-
tures or foreign providers.

6. Hardware Independence. The hardware requirements are as little as pos-
sible; there is no need for additional hardware except the user’s smartphone.
All used devices are standard versions and commercially available.



48 A. Ebert et al.

4 KeyPocket - An Architecture for Secure and Usable
Web Service Access

In the following we present KeyPocket, a user-centric, secured, and easy-
accessible authentication architecture featuring multi-factor authentication as
well as a decentralized identity management. The only precondition for usage is
a smartphone and a computer with a compatible web browser. After highlight-
ing its core concepts and main components, we also provide detailed information
about its concrete implementation.

4.1 Architectural Concept

The KeyPocket architecture consists of three main components: 1) the user
entity, which is constituted of the user and a mobile device, 2) the relay-server,
and 3) a browser-plugin.

Fig. 1. Providing an overview across KeyPockets login process

Figure 1 illustrates the KeyPocket login concept in context of a flow chart.
Core features of the architecture are its independence from third-parties, the
decentralized user management as well as some unique security characteristics.
E.g., the deployment of one-time key pairs and the commitment of a system for
divided public key exchange. Instead of using a pre-shared key for encryption,
an individual key pair is created on-demand for each login process. Multi-factor
authentication becomes available due to knowledge (PIN), possession (the user’s
mobile device as a token) and being (e.g., analyzing the users fingerprint or
voice). Another security factor is the proof of geographical proximity of the user
to the device, which is about to become logged in due to QR-Code scanning. All
network-based communication is secured by the usage of HTTPS and TLS.



KeyPocket - Improving Mobile-based Authentication 49

4.2 Main Components

There are three main entities, which are essential for our architectural concept.

User-side Setup. On the one hand, the user’s smartphone is used as a storage
for credentials, on the other hand its camera is needed for optical data transmis-
sion and its network connection for transferring data to the relay-server. Before
the smartphone is ready to use, the KeyPocket application must be installed.
Afterwards, no further registration is needed. This enables the user to manage
data completely autonomous and on-device; privacy issues due to third-parties
can be suspended. To ensure the secure storage of data, it is encrypted before
saving and only available by entering a password or providing the correct bio-
metric information.

Browser-side Setup. The browser-plugin is the architecture’s control unit.
Here, required one-time key pairs (OTKP) are generated, encoded and provided
to the user on-demand. Moreover, the plugin is frequently polling at the relay-
server for requested user credentials. As soon as they are available at the plugin,
they become decrypted and filled into the form on the service provider’s website.
After confirming these values, the process is completed. The correct form fields
are identified by unique Cascading Style Sheet (CSS) selectors.

Relay-Server. The relay-server’s main tasks are the forwarding of request and
response calls (e.g., containing the users credentials) between the user’s smart-
phone and the browser-plugin as well as the provision of a part of the one-time
public key (OTPK). For realizing this connection, the relay-server supplies a
Representational State Transfer (REST) interface.

4.3 Third-Party Independence and Privacy Enhancement

On the one hand, KeyPocket is a third-party independent system in terms of
that there is no need to implement any code on the service provider’s server.
The service provider itself does not need to be aware of KeyPocket in order to
make it work and due to its generic design it basically works with all web-based
login sites without further conditions. On the other hand, the user downloads
and installs the browser-plugin as well as the mobile application and is ready
to use the architecture without any further registration processes. Moreover, no
personal data, not even the user’s email address for a registration is known to
the KeyPocket infrastructure – all data is encrypted, managed and stored on-
device. The relay-server only temporarily stores encrypted credentials until they
are retrieved for processing a login.

4.4 Processing a Login

The following process is visualized in Figure 1. A login is initiated by the user
opening a service’s login page in the browser. After entering a login page, the



50 A. Ebert et al.

user clicks the KeyPocket plugin symbol and the browser-plugin generates a new
OTKP, containing a public key and a private key (1). A part of the public key
(Part1PubKey) is forwarded to the relay-server (2). There it is stored temporar-
ily and its hash is generated and sent back to the browser-plugin (3). There, a
QR-Code is computed and shown for scanning by the user. The code contains
three parameters: 1) the site ID, typically the domain name, 2) the hash of
Part1PubKey and 3) the second part of the public key Part2PubKey (4). The
smartphone now requests Part1PubKey from the relay-server (5). Due to the
split public key system, it is impossible for attackers to obtain the complete pub-
lic key and thereby is not able to channel malicious information into the system.
Furthermore, a better readable and less granular QR-Code for easier scanning is
created. As soon as the relay-server responds with Part1PubKey (6), the mobile
device is able to merge the public key from its two fragments. By affirming the
procedure due to provision of a password or a fingerprint, the user’s credentials
are decrypted from the device’s storage. Subsequently, they become encrypted
again with the one-time public key and transmitted to the relay-server (7). The
browser-plugin frequently polls for the requested crendentials (8) and once they
are available, they are transmitted to the plugin (9). The plugin encrypts the
parameters with its private key, fills them into the designated form fields on
the providers login page and confirms the procedure. If the user’s data is valid, he
is forwarded to the provider’s individual welcome page. The presented approach
is completely independent from third-party implementations and can generally
be used for any kind of service.

4.5 On-Device Identity Management

In order to avoid privacy issues as well as attacks onto a central database contain-
ing sensible data, KeyPocket resigns a cloud-based management of user data. All
user data is encrypted, respectively, is stored decentralized on-device. Depend-
ing on technical features of the used device, personal data is only available by
entering a password or by providing biometric features. As soon as credentials
become requested, the application searches for corresponding data on the user’s
device, encrypts them with the OTPK and returns them. If no suitable data is
found, the user can enter new credentials or link already existing account infor-
mation. Due to the fact that the user’s device is the only place where private
data is stored, the migration to other devices is feasible due to credential export
and import via encrypted database files, e.g., KeyPass’ .kdb. There is no data
distributed on a web server that needs to be updated.

An issue which is still unsolved within the current concept is a homogeneous
sync process for changing an existing account’s password on the smartphone as
well as in a service provider’s database. Currently, this procedure needs to be
done manually by the user. The use of background HTTP requests for posting a
new password entered on the user’s smartphone to the provider’s corresponding
website could be a solution. Still, this approach lacks of a generic potential
due to the need of knowing individual server addresses and parameter names.



KeyPocket - Improving Mobile-based Authentication 51

Therefore, this issue still needs to be addressed by further research in order to
solve it sufficiently.

4.6 Implementation

The current version of KeyPocket is available for Google Android and Apple iOS
– general as well as further information can be found on the project’s website1.
A second version with some major changes is about to be released within the
forth quarterly period of 2015. Some conceptual characteristics, e.g., the export
of user credentials via database file, are not featured by the current KeyPocket
version, but will be part of the next release. The following implementation details
are coined to the currently published version.

Fig. 2. Login process from the browser plugins point of view

Browser Plugin. Currently, browser-plugins for Google Chrome and Mozilla
Firefox are provided. Both are implemented with JavaScript and individually
optimized for the specific browsers. After their installation they are ready for
usage without any further registration or setup process. The plugins’ architec-
ture is based on a message-oriented-architecture and Figure 4.6 shows the login
process from a plugin’s point of view. Therefore, an asymmetric key pair with a
length of 2048 bit is created (1) with the Rivest Shamir Adleman (RSA) algo-
rithm. In the following, the public key is split into two parts and one part is
transferred to the relay server (2), which is responding with the corresponding
hash of the public key part (3). The other part of the public key is shown to the
user in the QR-Code. Subsequently, the plugin polls the server until it answers
with the user’s credentials or the login is terminated by the user (4). After the
plugin has decrypted the credentials (5), it fills them into the selected login
fields of a service’s website (6,7). The identification of input fields is realized

1 https://www.keypocket.de/

https://www.keypocket.de/


52 A. Ebert et al.

with the help of CSS selectors provided by an offline database. If a website’s
input fields are not registered in the database, the user is asked to mark the
input fields manually with a mouse click. Unknown and new input fields become
added automatically to the database after a successful login.

Relay Server. The relay-server is based on Java 1.8 and was implemented
with the Play Framework2. It provides two REST interfaces, all data is JSON
encoded and the connection is secured by TLS/HTTPS. The /pubkeys interface
is used to transfer one part of the public key to the server, which hashes the
key and stores it temporarily in a database. The same interface also used for
the data’s retrieval. The /credentials interface allows the temporarily storing
and retrieval of the credentials, together with a corresponding hash. As soon as
the credentials were transferred to the browser-plugin for the login, they become
deleted automatically.

Smartphone Application. Within the current architectural concept, the
user’s smartphone is used to store all encrypted credentials, to transfer them
to the relay server and for scanning the browser-plugin’s QR-Code. Currently,
Android and iOS devices are supported. Due to the fact, that not all Android
devices are capable of using biometric data for securing the password vault,
a master password is used as a fallback for devices without fingerprint sen-
sor. In order to verify the password without storing it on device, a random
salt with a size of 128 bit and SHA1PRNG is created first. Subsequently, it
is hashed together with the user’s password with 2000 iterations, 256 bit and
PBKDF2WithHmacSHA1. The resulting hash is stored on device for password
verification – a second hash key is created and stored with another salt and the
users password, in order to use it for credential encryption. The credentials itself
are encrypted with the AES algorithm with 256 bit in combination with HMAC.
The creation of one hash key with i = 1000 iterations takes about v = 0.15 s,
with i = 2000 iterations it takes about v = 0.2 s on a Samsung Galaxy S3
smartphone. The same amount of time is needed to decrypt the password later
on for each decryption. This means, that even if an attacker had a CPU power
of f = 10000 times faster than the user and the user’s password an entropy of
n = 30 bits, the attacker would still need about v∗2n−1

f = 10.737 hours to crack
the password for i = 2000. In this context, the more iterations i are used, the
more difficult it is for an attacker to learn a secret. On the other hand, espe-
cially due to limited resources on mobile devices it is necessary to find suitable
parameters oriented on security as well as on usability.

For the iPhone implementation, we use the standard iOS Keychain in com-
bination with a password or, if a fingerprint sensor is available, the user’s finger-
print as a security feature.

2 https://www.playframework.com/

https://www.playframework.com/


KeyPocket - Improving Mobile-based Authentication 53

5 Discussion

In this section we want to discuss the different features of the proposed Key-
Pocket architecture on a qualitative basis. Therefore, we first match its security
characteristics to threats relevant in this context. The qualitative requirements,
which we identified in Section 3 are the system’s usability, modularity, com-
patibility, scalability, security, privacy protection, and its independence from
external hardware as well as from third-party providers. Finally, some general
issues which occurred during the implementation phase are mentioned.

5.1 Threat Robustness

There are lots of different possibilities for attackers to compromise a user within
the environment of mobile communication and authentication. In context of a
Man-in-the-Middle attack, the attacker engages between two communicat-
ing parties and monitors their communication secretly. The so gained informa-
tion can be modified, replaced or used for malicious purposes. Furthermore,
the aggressor could disguise as the legitimate communication partner (e.g., a
server) and response in this role to the other communication partner’s requests
in order thieve sensitive information [32]. Our application is not only robust to
MitM attacks because of the usage of secured and fully encrypted communication
channels. Furthermore, its split public key usage and the one-time key concept
enhance the robustness significantly. Only in step (6) of Figure 1 an attacker is
enabled to thieve a part of the key, which is useless without its counterpart. In
general, Brute-force attacks can be aggrevated significantly by using sufficient
passwords (e.g., sufficient length, special characters, capital and lowercase char-
acters) [8]. Our architecture facilitates a completely user controlled data storing
concept on the user’s mobile device. Hence, the existing potential of Brute-force
attacks is inevitable (e.g., on device theft). Nonetheless, as mentioned in Section
2, all data stored with the help of the iOS Keychain can be rated as relatively
secure. For Android, we use a custom tailored encryption approach, which forces
an attacker to invest several days or months in order to crack the user’s password
(accepting that the attacker has the CPU power of an up-to-date, high-end con-
sumer machine and the user uses a password of sufficient complexity, see Section
4.6). After all, if no biometric sensor is available, the encryption security highly
depends on the complexity of the user’s password. The recording and readout of
user input by the usage of malicious applications and without the user’s knowl-
edge is called Keylogging [33]. In general, our architecture offers no potential
for Keylogging, because only the KeyPocket application is used for entering data.
Still, if an attacker would be able to log the user’s input while using KeyPocket
(e.g., the OS security systems are compromised due to jail-breaking, rooting,
etc.), the only potential for Keylogging attacks is present while the user enters
his password or new account data. All already existing data is still safe due to
its complete encryption. Furthermore, for doing harm with knowledge about the
password, an attacker would still need the user’s device. This also extends for
Shoulder-surfing attacks, which means curious gazes across the user’s shoulder



54 A. Ebert et al.

without his knowledge and in order to peek passwords or other sensitive data.
Within the scope of a classic Phishing attack, the user becomes redirected to
a fake website, which is based on a brands website the user knows and trusts in.
After entering his credentials into a faked website’s login form and confirming
it, the user is redirected to a site of the original provider and is probably not
aware of the attack or the resulting leak of private data. There are only a few
possibilities to take actions against these attacks on a technical basis. For the
most part it is up to the user to verify the authenticity of a website [34]. Related
to that, Phishing attacks are also a weakness of our proposed system, for it relies
on the user to check service addresses manually. But, although we cannot force
a user to carefully check an unknown server address, he still needs to take notice
of it and to confirm it manually. In context of Sweep attacks, an attacker is
able to steal multiple credentials at the same time due to the exploitation of a
password manager’s autofill functions [35]. This danger is suspended due to the
hold out on a clear signal of intention by the user before filling in credentials
into input fields.

5.2 Qualitative Requirements

In the following, we examine our architecture’s features in respect of the require-
ments for an mobile-based authentication architecture. Concerning its Usabil-
ity, KeyPocket offers an easy-to-use approach without ignoring the necessity for
security standards – the only precondition for usage is the installation of the
KeyPocket software. For logging in, there are only two steps: 1) scanning the
QR-Code, and 2) confirming the login by providing a second security factor. Due
to its need for only one password to be remembered by the user or the usage of
biometric data for opening the credential’s vault, the simplicity and usability is
enhanced significantly for the user. In contrast to some of the approaches intro-
duced in Section 2, KeyPocket facilitates no device pairing, which enables multi-
device usage. Missing multi-device support is mostly related to the necessity for a
registration process, an existing provider dependence, or pre-shared keys bound
to a specific service or device. In order to guarantee Modularity, Compati-
bility, and Scalability, new and existing user accounts can be added to the
application without restrictions and there are no limitations for their number
or the assignment of accounts to domains and vice versa. A disadvantage of the
KeyPocket architecture may be its need for a relay-server, which could be seen
as a Single-point-of-failure or, in case of a large amount of login requests, could
lead to scalability problems. Concerning Hardware Independence, there are
no preconditions except the need for a smartphone with internet and a camera
in order to use KeyPocket. Compared to other approaches, no additional tokens
(e.g., Smartcards or ID cards) are used. As already mentioned, no cloud-systems
or provider dependent storage is used in order to save and manage the user’s
credentials. There is no registration process and no information about the user
within the system except the encrypted data on the smartphone and a tempo-
rary copy of credential pairs during the login process on the relay-server. But
even this temporary copy is deleted after a few seconds. All of these routines



KeyPocket - Improving Mobile-based Authentication 55

and practices are strengthening the users Privacy significantly. Furthermore,
Third-Party Independence is strengthened due to the fact that no service
providers or third-parties are involved in the handling of confidential data and
no registration process is needed. Furthermore, there is no code about to be
deployed on the service provider’s systems. The user solely decides, where and
when to use the system without our or the service provider’s knowledge.

5.3 General Notes

In the following, some specific details concerning KeyPocket are to be men-
tioned. Our generic plugin-based approach enables the adaptability for nearly
each service provider featuring a website login without the providers inclusion.
However, due to the necessity of using selectors for identifying form fields, the
system’s reliability can be weakened because of external influences (e.g., updates
of provider sites, changes in technology, etc.). This may also lead to increased
costs due to maintenance work. Nonetheless, this problem is addressed due
to the feature of allowing users to mark unknown input fields manually and
to use these information to update our database constantly. Furthermore, due
to technical reasons the generation of on-demand key pairs took nearly 6 seconds
with Google Chrome in a worst case scenario. This is way to much for a system
with high usability requirements. In order to solve this problem, we changed
our initial protocol for key creation and create the first key pair already on
browser startup. Implying that the user is not logging in into different services
with a frequency higher than each 6 seconds, we found this optimization to be
sufficient. This pre-usage creation enables the system to simulate an on-demand
usage experience.

6 Conclusion and Future Work

Within the scope of this paper, we provided a secured, and third-party inde-
pendent platform for processing logins on websites under inclusion of the user’s
smartphone. The ability to manage digital identities without enforcing an addi-
tional registration process or effectuating privacy issues is provided to the user.
Additionally, we introduced some unique features, namely the usage of a split
one-time public key in combination with further security factors like possession,
being and geographical proximity.

Another issue which is still unsolved is the development of a holistic process
for updating and synchronizing account information automatically. Currently, it
is the user’s duty to do this manually.

Despite our efforts, there are still open issues as well as possibilities for exten-
sions. For example, scanning of QR-Codes has performance issues due to techni-
cal reasons and furthermore, it lacks of user acceptance. It could be substituted
with technologies featuring similar security aspects (e.g., geographical proximity,
protection against eavesdropping, etc.) in this context, e.g., NFC or BLE. This
could also increase the system’s usability due to the disposal of the additional
scanning interaction and is subject of our research for future KeyPocket versions.



56 A. Ebert et al.

References

1. Van Eimeren, B.: Always on - smartphone, tablet und co. als neue taktgeber im
netz (ard/zdf). Media Perspektiven 7(2013), 386–390 (2013)

2. Adams, A., Sasse, M.A.: Users are not the enemy. Communications of the ACM
42(12), 40–46 (1999)

3. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web, pp. 657–666. ACM
(2007)

4. Gaw, S., Felten, E.W.: Password management strategies for online accounts. In:
Proceedings of the Second Symposium on Usable Privacy and Security, pp. 44–55.
ACM (2006)

5. Morris, R., Thompson, K.: Password security: A case history. Communications of
the ACM 22(11), 594–597 (1979)

6. Parwani, T., Kholoussi, R., Karras, P.: How to hack into facebook without being a
hacker. In: Proceedings of the 22nd International Conference on World Wide Web
Companion, pp. 751–754. International World Wide Web Conferences Steering
Committee (2013)

7. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 553–567. IEEE (2012)

8. Munro, K.: Android scraping: accessing personal data on mobile devices. Network
Security 2014(11), 5–9 (2014)

9. Android 5.0 Encryption 2015. https://source.android.com/devices/tech/security/
encryption/ (accessed January 20, 2015)

10. Heider, J., Boll, M.: iOS keychain weakness FAQ. Fraunhofer Institute for Secure
Technology (2011)

11. Rescorla, E.: Rfc 2818: Http over tls. Internet Engineering Task Force (2000)
12. Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X. 509 internet

public key infrastructure online certificate status protocol. IETF RFC2560, June
1999

13. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating ssl certificates in non-browser soft-
ware. In: Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, pp. 38–49. ACM (2012)

14. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., et al.: The matter of heartbleed. In: Pro-
ceedings of the 2014 Conference on Internet Measurement Conference, pp. 475–488.
ACM (2014)

15. Tsoutsos, N.G., Maniatakos, M.: Trust no one: thwarting “heartbleed” attacks
using privacy-preserving computation. In: 2014 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 59–64. IEEE (2014)

16. Callegati, F., Cerroni, W., Ramilli, M.: Man-in-the-middle attack to the https
protocol. IEEE Security and Privacy 7(1), 78–81 (2009)

17. Czeskis, A., Dietz, M., Kohno, T., Wallach, D., Balfanz, D.: Strengthening user
authentication through opportunistic cryptographic identity assertions. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
pp. 404–414. ACM (2012)

18. Borchert, B.: Ekaay-smart login (2013). http://www.ekaay.com/

https://source.android.com/devices/tech/security/encryption/
https://source.android.com/devices/tech/security/encryption/
http://www.ekaay.com/


KeyPocket - Improving Mobile-based Authentication 57

19. eKaay Smart Login System (2015). http://www.ekaay.com/ (accessed January 14,
2015)

20. Van Rijswijk, R.M., Van Dijk, J.: Tiqr: a novel take on two-factor authentication.
In: LISA (2011)

21. Dodson, B., Sengupta, D., Boneh, D., Lam, M.S.: Snap2pass: Consumer-friendly
challenge-response authentication with a phone. Stanford University (2010)

22. Galois QR Authentication (2015). http://galois.com/blog/2011/01/quick-
authentication-using-mobile-devices-and-qr-codes/ (accessed January 19, 2015)

23. Schieb, J.: Schieb. de Wissen—Das sichere Login: So haben Hacker keine Chance,
vol. 1, pp. 42–44 (2014)

24. Click2Pass Handy statt Passwort (2015). http://www.click2pass.net/ (accessed
January 14, 2015)

25. Next Authentication and Authorization Plattform (2015). https://launchkey.com/
platform/mobile/ (accessed January 14, 2015)

26. Zapper (2015). https://www.zapper.com/about.php/ (accessed January 19, 2015)
27. CLEF Secure Two Factor Login (2015). https://getclef.com/features/ (accessed

January 19, 2015)
28. Jones, M., Hardt, D.: The oauth 2.0 authorization framework: Bearer token usage.

Technical report, RFC 6750, October 2012
29. OneID (2015). https://www.oneid.com/ (accessed September 03, 2015)
30. KnockToUnlock (2015). http://www.knocktounlock.com/ (accessed September 03,

2015)
31. BlueID (2015). https://www.blueid.net/ (accessed September 03, 2015)
32. Asokan, N., Niemi, V., Nyberg, K.: Man-in-the-middle in tunnelled authentication

protocols. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security
Protocols 2003. LNCS, vol. 3364, pp. 28–41. Springer, Heidelberg (2005)

33. Felt, A.P., Finifter, M., Chin, E., Hanna, S., Wagner, D.: A survey of mobile
malware in the wild. In: Proceedings of the 1st ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices, pp. 3–14. ACM (2011)

34. Hong, J.: The state of phishing attacks. Communications of the ACM 55(1), 74–81
(2012)

35. Silver, D., Jana, S., Chen, E., Jackson, C., Boneh, D.: Password managers: attacks
and defenses. In: Proceedings of the 23rd Usenix Security Symposium (2014)

http://www.ekaay.com/
http://galois.com/blog/2011/01/quick-authentication-using-mobile-devices-and-qr-codes/
http://galois.com/blog/2011/01/quick-authentication-using-mobile-devices-and-qr-codes/
http://www.click2pass.net/
https://launchkey.com/platform/mobile/
https://launchkey.com/platform/mobile/
https://www.zapper.com/about.php/
https://getclef.com/features/
https://www.oneid.com/
http://www.knocktounlock.com/
https://www.blueid.net/

	KeyPocket - Improving Security and Usability for Provider Independent Login Architectures with Mobile Devices
	1 Introduction
	2 Related Work
	2.1 Secure Data Encryption and Transmission
	2.2 Smartphone-Based Login Architectures

	3 Requirements of a Mobile-Based Login Architecture
	4 KeyPocket - An Architecture for Secure and Usable Web Service Access
	4.1 Architectural Concept
	4.2 Main Components
	4.3 Third-Party Independence and Privacy Enhancement
	4.4 Processing a Login
	4.5 On-Device Identity Management
	4.6 Implementation

	5 Discussion
	5.1 Threat Robustness
	5.2 Qualitative Requirements
	5.3 General Notes

	6 Conclusion and Future Work
	References


