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Abstract. We explore practicality of using power consumption as a
non-destructive non-interrupting method to check integrity of software
in a microcontroller. We explore whether or not instructions can lead
to consistently distinguishable side-channel information, and if so, how
the side-channel characteristics differ. Our experiments show that data
dependencies rather than instruction operation dependencies are domi-
nant, and can be utilized to provide practical side-channel-based meth-
ods for software integrity checking. For a subset of the instruction set,
we further show that the discovered data dependencies can guarantee
transformation of a given input into a unique output, so that any tam-
pering with the program by a side-channel-aware attacker can either be
detected from power measurements, or lead to the same unique set of
input and output.
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1 Introduction

Checking software integrity is a fundamental problem of system security. Given a
device under test (DUT), a verifier tries to determines whether it runs the desired
code or not. Developers traditionally focus on realizing functionality, while ignor-
ing the fact that an attacker can change the behavior of the DUT by overwriting
its program and/or data remotely [15,17,18,23] or locally [7,11,13,25].

Many approaches have been proposed to try to enforce that a device runs the
original code. The approaches can be classified by where the verifier resides. An
internal approach resides in the same device with the target software. Hypervi-
sors [30,45], mandatory access control [1,42], and control flow integrity [14,19],
are internal software-based approaches that aim to prevent “anomalous behav-
ior” of programs that share the same hardware with the verifier. Watchdog
coprocessors [33,38] and TPM [4,9] are internal hardware-based approaches that
examine hardware status such as “signatures” of code that appear on buses or
statistics of software and firmware to prevent deviations from the original design.
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The verifier can also be outside of the DUT, leading to external verifica-
tion. Software attestation [27,34,44] and remote attestation [21] are approaches
in which a verifier external to the DUT asks the DUT to provide evidence of
integrity from time to time and checks it against prior knowledge of hardware
and software configuration and/or shared secrets.

Another promising external approach is to check evidence of integrity from
side-channels. Unlike attestation, which communicates with the DUT explic-
itly and actively, this approach tries to identify tampering by analyzing passive
information leakage from the DUT, such as timing of network traffic, power
consumption, electromagnetic (EM) emissions, light emissions, vibrations, etc.
[6,24,35–37]. These channels are “side” because they are unavoidable byproducts
of implementing the desired functionality on a physical device. A side-channel
approach has advantages over other approaches in that

1. It does not interfere with the normal execution of the DUT – the DUT does
not even know about the existence of the verifier;

2. since the DUT does not have a verifier implemented, an attacker who suc-
cessfully penetrates into the DUT still does not know about the existence or
the implementation of the verifier;

3. verification instrumentation and algorithms can be easily updated;
4. it works with legacy devices that cannot implement modern integrity check-

ing techniques;
5. it works with attacks against CAD tools which may tamper the debugging

and programming traffic and therefore fail all internal protection mecha-
nisms.

Previous research has been successful in using side-channels to check IC
integrity [6,24,35]. By comparing side-channel information of the DUT to that
of the “golden samples”, researchers are able to find minimal differences that
indicate tampering of the design. A great number of embedded systems, how-
ever, are based on general-purpose microcontrollers/microprocessors. Detailed
hardware information about the microcontrollers (μCs) are in general not acces-
sible to system developers. It is therefore hard to obtain “golden samples” for
side-channel analysis (SCA).

Using side-channel information for integrity checking of μCs without detailed
design information poses a great challenge. Given a set of samples of side-channel
emissions, we need to extract instruction-level information about the running
device. The sample is an aggregation of power consumption cost by reading
memory, executing instructions, accessing peripherals, and noise. In the worst
case the tampered code only gets executed once during sampling. The verifier
therefore does not have the advantage of reducing noise in samples by averaging
thousands of execution traces, as in DPA [26,28].

Previous attempts on instruction-level SCA have been focused on reverse
engineering of instruction operations [16,20,39] by using either the power con-
sumption or the EM side-channel, and have achieved different degrees of success.
One recent work [31] proposed using instruction-level power consumption SCA
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for software integrity checking, yet was found not repeatable on a different (but
simpler) μC [39].

Current trends in SCA demand more and more advanced acquisition equip-
ment such as broadband high-sensitivity oscilloscopes, Picosecond Imaging Cir-
cuit Analysis [37], micro magnetic-field probes [40], etc. Occasions that need
SCA-based checking for legacy or low-cost μCs are not always able to afford
such equipment. Another major obstacle is noise both from the ambient envi-
ronment and from the DUT. As shown by research on breaking cryptographic
embedded systems [5], power consumption is mainly due to bus traffic as opposed
to the smaller currents within a CPU.

In this work, we propose practical methods and results for power-based soft-
ware integrity checking. Our contributions are:

– We point out pitfalls in previous work that an attacker will always try to
replace instructions with those that have similar side-channel characteristics,
and thus turns any (< 100%) recognition rate on random code into near-0
on crafted code.

– We propose a systematic approach for SCA profiling which enables us to
design experiments and analyze the effects of runtime status on power con-
sumption efficiently.

– We show mechanisms that determine side-channel characteristics. The
results have direct implications on using simple (versus differential) SCA
for software integrity checking of embedded systems in practice.

– For a subset of the instruction set, we show that the data dependencies we
have discovered are enough to guarantee unique transformations of input
and output. So, the verifier can ensure that even if the program is altered
by a side-channel-aware attacker, as long as the side-channel measurements
are the same, the program still computes the same value.

2 Related Work and Pitfalls

Research on SCA is mostly focused on breaking cryptographic hardware, includ-
ing general-propose μCs, FPGAs, and ASICs. The goal is to extract secret
keys by analyzing several thousands of executions of cryptographic routines
[22,26,28,35]. Cryptographic routines are in general publicly available. In our
case, in contrast, only a single trace of side-channel emission is available, and we
also need to derive runtime instructions from side-channel measurements. Tech-
niques in breaking cryptographic hardware are therefore not directly applicable
to SCA for software integrity checking.

SCA for IC integrity relies on full knowledge of the IC design. By scanning
emissions of the IC for enough time, it is possible to detect untriggered trojan cir-
cuits [6,24,36,37]. For software-integrity checking of μCs, detailed knowledge of
the IC design is not available. It is therefore not possible either to use simulation
tools or to infer power consumption from the architecture design.

At the system level, SCA has been used to provide preliminary detection of
abnormal behaviors such as malware and anomalous reboots. Yang et al. [43]
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used external power measurements to distinguish between several categories of
failures in remote high-end sensing systems. WattsUpDoc [12] applies machine
learning to detect untargeted malware by monitoring system-wide AC (wall out-
let) power consumption of medical devices and SCADA systems that run variants
of the Windows operating system. WattsUpDoc specifically excludes malware
that is designed to evade power analysis. While an aggressive malware may be
visible at the system level through abnormal power consumption (e.g., by drain-
ing too much energy), a stealthy malware will hide itself in the noise introduced
from multiple components that are running in parallel in a big system. Real
malware detection requires instruction-level integrity checking techniques.

Previous work on instruction-level SCA uses random data input, PCA+LDA
and template analysis [16,20,31,39]. In particular, [39] claims a relevant recogni-
tion rate of 96.24% on test data and 87.69% on real code by using multi-position
localized EM emissions and semi-invasive access to the chip. In [31], a 100% clas-
sification rate was reported by using power measurements, However, neither [39]
nor us succeeded in repeating the authors’ results on a different (but simpler) μC.

There are two major shortcomings in all of the previous work. First, previous
work has been focused on recovering the instruction operations. Data, includ-
ing operands and values of registers are regarded as noise. Operands and other
runtime status such as PC are therefore not known.

The more significant drawback of previous research, however, is that little is
known about the reason for failure of recognition. Given any non-100% average
recognition rate, an attacker will naturally try to write malware utilizing only
the misclassified instructions to any extent possible, and therefore turns a high
recognition rate on random code into 0 on crafted code, in a way similar to [29].
This problem is fatal both for reverse engineering and for software integrity
checking. It is more demanding to discover whether instructions can lead to
distinguishable side-channel information or not and, if so, how the side-channel
characteristics differ.

3 A Systematic Approach for Instruction-level
Side-channel Analysis

We use PIC16F687 as our DUT, because most previous research in this area has
been performed on this IC [16,20,31,39]. We assume that the attacker is able
to modify the software of the DUT, for instance by reprogramming the device
or inserting trojans into the CAD software. The attacker is able to profile the
side-channel emissions of the DUT and to modify the software in a fashion that
minimizes side-channel deviations. The attacker is however unable to modify the
hardware, including the IC design and the PCB on which the DUT is mounted.

PIC16F687 is a 8-bit RISC μC in Harvard architecture. It has a 14-bit pro-
gram bus, which is connected to the program flash, and a 8-bit data bus, which
is connected to RAM, EEPROM, PORTs, ADC, etc. The instruction set has 35
operations, all executed in single instruction cycle, except branches. The proces-
sor has a two-stage pipeline, therefore unconditional and conditional branches
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Fig. 1. Measurement setup

take two instruction cycles if a branch is taken. Each instruction execution is
overlapped with the next instruction fetch. The working register is one of the two
operands of the ALU. There is a 128-byte register file including general purpose
registers and special function registers (SFRs).

Because there are so many factors that may affect power consumption, an
ad hoc experiment will soon become unmanageable. We develop a systematic
approach for instruction-level side-channel analysis:

– Build semantic models of the instruction set, using known architecture infor-
mation.

– Generate random testing code that is long enough to execute each instruction
operation many times.

– Calculate runtime status according to semantic models for each instruction.
– Cross-validate power consumption and the semantic models with respect to

instruction operations and runtime status.

We use random instructions rather than real code in order to evenly sample the
code space, avoiding overfitting to any specific code base. Potential high-order
side-channel characteristics that exist only among some particular instruction
pairs/blocks will be averaged out when using random code. While we may lose
some information for particular instruction blocks, we retain side-channel prop-
erties that are applicable to arbitrary programs. It is therefore not necessary
to reanalyze every new piece of software made to run on the target IC, as we
are able to develop general protection mechanisms. See Section 5 for additional
details.

Semantic models. Building semantic models of an instruction set includes elab-
orating the detailed operations, such as fetch, decode, and data read/write, that
happen during an instruction execution. Because the known architecture infor-
mation is not complete, our semantic models are only assumptions, which can



282 H. Liu et al.

be cross-validated with the side-channel measurements. This has numerous ben-
efits. First, this is necessary for predicting branches during code generation.
Second, analyzing the measurements with respect to the runtime status reveals
effects of data versus those of processing. Third, waveforms can also be checked
against the predicted runtime status in order to guarantee that the chip func-
tions correctly. This is necessary because using a large shunt resistor (see below),
introduces common impedance coupling and narrows the voltage drops between
VDD and VSS , whereas a large enough shunt resistor eliminates amplification
circuits which may introduce additional noise. Sanity checking of the waveform
against the predicted status helps in choosing the right resistor value besides the
bandwidth consideration.

Based on the limited architecture information described in the PIC16F687
datasheet [2,3], we deduce that potential data that may appear on buses, and
therefore are likely to cause the major power consumption, include values of the
program counter (PC), the operands and opcode of instructions, the working
register, the selected file register, and the STATUS SFR. Then we generate random
code traces and calculate bus traffic from instruction semantics.

Power traces are collected following the standard setup for power-based SCA,
as shown in Figure 1. The ground pin of the DUT is connected to a 82Ω shunt
resistor. Voltage drop across the shunt resistor is captured by the PicoScope
5444B 200MHz USB oscilloscope. The ground pin, instead of the power supply
pin, is used due to limitations of the oscilloscope. To mitigate the low-pass filter-
ing effects of the chip itself [28,32], we set the frequency to 125 kHz. The sample
rate is 31.3 MS/s. Higher frequency settings suffers more from the low-pass fil-
tering effects and do not work with the oscilloscope. The setup is low-cost and
reflects a worse-case scenario from the verifier’s perspectives.

To build side-channel models, the verifier needs to have access to the device.
For integrity checking, it is reasonable to assume that the verifier has access to
the exact DUT, thus to ignore small variations among chips of the same device
model resulted from the process technology. In all the following experiments,
tests are performed on the same device that is used to build the models.

3.1 Recognizing Operations Versus Recognizing Execution
Instances

For our 2K-memory μC, we generate 1435 instructions, which are randomly
selected from 29 instruction operations (excluding CALL, RETFIE, RETLW, RETURN,
SLEEP, and CLRWDT). Operands are also random.1 CALL, RETFIE, RETLW, and
RETURN are manually inserted in multiple places so that the program can exe-
cute normally. 1020 power traces are collected, among which 50% are used for
modeling and 50% are used for testing. A typical waveform is shown in Figure 2.
PIC16F687 has an instruction cycle of four clock cycles, denoted as Q1 to Q4.
The waveform exhibits sharp peaks at clock rising/falling edges, showing that

1 To have enough samples per operation, file register access is limited to 12 general-
purpose registers and the STATUS SFR.
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Fig. 2. Sample waveform of executing “MOVLW 0x69” and “ADDWF 0x40,F”

the low-pass effects are not prominent in our experiment setup. Samples are
time-aligned according to peak values.

We first build a model with respect to instruction operations, as in previ-
ous research [16,20,31,39]. Given a single trace of power samples of four clock
cycles, the verifier tries to recognize one out of 33 instruction operations, a typical
pattern recognition/classification problem. We apply various classifiers, includ-
ing naive Bayes, kNN, SVM, Multilayer Perceptron, etc., together with/without
feature selection by PCA, mutual information, and LDA. The best recognition
rate is obtained by using template analysis [10,16]. The power consumption is
approximated as multi-variate Gaussian signals, which yields very good results in
recognition/classification and separability analysis. One template is built for each
instruction operation ωi. When selecting l samples in one instruction cycle for
modeling, the templates are l-dimensional Gaussian distributions with parame-
ters estimated from power consumption observations when executing ωi.

p(x|ωi) =
1

(2π)l/2|Σi|1/2
exp

(
− 1

2
(x − μi)

T Σ−1
i (x − μi)

)

μi =
1
Ni

Ni∑
j=1

xij

Σi =
1

Ni − 1

Ni∑
j=1

(xij − μi)(xij − μi)
T

where xij is an l-dimensional observation of executing operation ωi in the mod-
eling data, Ni is the number of such observations in the modeling data. When
given a new observation x, the instruction operation is estimated by applying
the Bayes rule, which is the ωi that gives the maximum a posteriori probability.

ω̂ = argmax
ωi

p(ωi|x) = argmax
ωi

p(x|ωi)P (ωi)
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For integrity checking, the a priori distribution P (ωi) is meaningless, since the
verifier is unlikely to know with which instruction the attacker may use to replace
the original code. We therefore assume the a priori distribution is uniform, thus
reduce Bayes rule to the maximum likelihood criterion.

ω̂ = argmax
ωi

p(x|ωi)

One template is built for each operation. For file-register operations, each
template is built for writing to the file/working register. In total, 47 templates
are built. The resulting average recognition rate is 45.6%, which is comparable
to unoptimized results of [10,16] and the single-location result of [39]. While
some operations still have acceptable recognition rates, such as CLRW (99.0%
recognition rate), GOTO (97.8%), and COMF f,F (95.7%), other operations, such
as CLRF, DECFSZ f,W and IORWF f,F, are almost always misclassified.

To explore the sources of recognition errors, we perform the same template
analysis but now build one template for each instance of instruction execution.
The models thus incorporate power consumption caused by execution with dif-
ferent operands and runtime status. For the same data, we build 1435 templates.
Applying again the maximum likelihood criterion, the average recognition rate
is surprisingly 99.90%, in contrast with 0.0678% for random guess.

3.2 Separability

The high recognition rate can be explained by the separability of templates. One
measure of separability is the Bhattacharyya distance, which is related to the
upper bound of the minimum attainable error of the Bayes classifier [41].

Pe ≤ εCB =
√

P (ωi)P (ωj)
∫ ∞

−∞

√
p(x|ωi)p(x|ωj)dx

For multi-variate Gaussian,

εCB =
√

P (ωi)P (ωj)exp(−Bij)

Bij =
1
8
(μi − μj)

T (
Σi + Σj

2
)−1(μi − μj) +

1
2
ln

|Σi+Σj

2 |√|Σi||Σj |
Building templates for instances of instruction execution, the 30 errors in

30,000 tests correspond to 4 out of 1,028,895 pairs that have the smallest Bhat-
tacharyya distances (from 3.98 to 11.45), showing that the multi-variate Gaus-
sian models are good approximators of the signals. In contrast, for templates of
instruction operations, the Bhattacharyya distances of the majority of template
pairs, especially logic and arithmetic operations, are near zero, corresponding to
recognition rates near to those of random guess.
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Fig. 3. Difference between two measurements. Although the same program is executing,
the register values are different.

4 Data Effects

To discover the effects of runtime status such as bus traffic, we change testing
programs by modifying initial values of registers and rerun the measurements.
Because register values affect results of conditional branches, code near condi-
tional branches is adjusted, so that only the instruction immediate after each
conditional branch test is different while majority of instruction execution stays
the same. The difference between the two resulting measurements is shown in
Figure 3.

The measurements of “MOVLW 0x9B” have significant difference at the edge
of Q2. After executing “MOVLW 0x9B”, the measurements of “ADDLW 0x83” and
“MOVLW 0x6E” are nearly identical. Executing “RRF 0x71,W” differs at Q2 and
Q4, whereas executing “ANDLW 0x60” has significant difference at Q2 and slight
difference at Q4. Q1 and Q3 are on the other hand almost the same at all
time. This phenomenon coincides with the architecture description in [2]: for
instruction execution, instruction is latched in Q1, data memory is read in Q2
(operand read), data is processed in Q3, and in Q4 data memory is written
(destination write). After executing “MOVLW 0x9B”, the working register and the
STATUS register are the same 2, and the traffic on the data bus during operand
read and destination write is therefore the same, which leads to the same side-
channel measurements. The contents of the file register 0x71 are different, which
results in different traffic on the data bus and accordingly different measurements
at Q2 and Q4. The result of “RRF 0x71,W” is written to the working register,
and thus causes further differences at Q2 and Q4 when executing “ANDLW 0x60”.
On the other hand, Q1 and Q3 do not show heavy data dependency, even though
data is processed in Q3.

2 The STATUS register is affected by previous code not shown.
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Further analysis shows that there are strong linear relationships between
runtime status and side-channel measurements. Let runtime status at time t
be a vector of random variables D, the power consumption at t be a random
variable Y , the linear dependence between Y and D is formulated as

Y = aT D + b

where a is a vector of weights, b encloses remaining components in the power
consumption at time t including offsets, time-dependent components, and noise,
and is assumed independent from other variables [8]. For two random variables
X = aT D and Y , the Pearson correlation coefficient is a measure of linear
dependence between X and Y :

r =
cov(X,Y )

σXσY
=

σX√
σ2

X + σ2
b

r tends to ±1 as σ2
b tends to 0. Spearman’s rank correlation is the Pearson

correlation between weakly-ordered values. The two correlations are identical for
values which are monotonically related. Spearman’s correlation is more sensitive
to outliers.

Analysis shows that the Hamming distance (HD) of PC and (PC+1) influ-
ences the peaks in Q1, regardless of operations. This corresponds to the fact
that the pipeline depth of the DUT is two: each instruction execution is over-
lapped with fetching the next instruction, and the PC is incremented in Q1 for
instruction fetch.

The Hamming distance of values of operands influences the peaks in Q2. In
Q2, different types of operations will load different types of operands. For bit-
oriented file register operations and byte-oriented file register operations such as
CLRF, MOVWF, RRF, DECFSZ, and BTFSC, the content of the file register is loaded,
even if it will not be used in the computation in Q3 (as in CLRF and MOVWF). For
literal operations, the literal is loaded. The power consumption is proportional
to the Hamming distance of the value already on the bus (which is the result of
previous instruction execution), and the data loaded for current instruction exe-
cution. For vector D = (HD(old data on bus,new data on bus)), the regression
coefficient vector a is (2.87, 44.70), in mV. The Pearson correlation coefficient
(r) is 0.971, and the Spearman’s rank correlation coefficient (ρ) is 0.969.

The plateaus following the peaks in Q2 and Q3, are linear to the Hamming
weight (HW) of next opcode, regardless of instruction operations. For vector
D = (HW (next opcode)), the coefficient vector is (0.836, 14.41), in mV; r =
1.000 and ρ = 0.991.

The peaks in Q3 are linear to the Hamming weight of next opcode
and the Hamming weight of current opcode: for vector D = (HW (current
opcode),HW (next opcode)), the coefficient vector is (1.32, 0.828, 28.43), in mV;
r = 0.998 and ρ = 0.998.

The peaks in Q4 is linear to the Hamming distance of values on the data
bus and the Hamming weight of next opcode: For literal operations, vector is
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(HD(literal, new value of working register),HW (next opcode)), coefficient vec-
tor is (3.10, 2.19, 34.36), in mV; r = 0.992 and ρ = 0.987. For operations with the
working register as destination, the vector is (HD(value of file register, new value
of working register),HW (next opcode)), coefficient vector is (3.00, 2.17, 35.29),
r = 0.998 and ρ = 0.997. For operations with the file register as destination,
the vector is (HD(old value of file register, new value of file register),HW (next
opcode)), coefficient vector is (3.60, 2.15, 36.22), r = 0.998 and ρ = 0.998. The
Hamming distance of values of the STATUS SFR surprisingly does not signifi-
cantly affect the power consumption in Q4, which is reflected by the fact that
its regression coefficient is one order lower than those of other variables.

The relationships reveal several valuable sources of side-channel leakage that
can be utilized for different verification purposes. First, they reveal that side-
channel measurements have strong dependencies on data and weak dependencies
on instruction operations. This explains why templates of logic and arithmetic
operations have small Bhattacharyya distances: they have small differences in
the Hamming weights of their opcode spaces and the distributions of operands
and results (except for COMF, whose Q4 always has large power consumption
since its (HD(old value of file register, new value of working/file register)) is
always 8). While not helping in template analysis with respect to instruction
operations, data dependencies in peaks of Q2 and Q4 help to match data values
with operations. Second, the strong linear relationships also help to validate our
semantic models. Third, the dependency in opcodes through Q2 to Q4 leaks
information about the control flow. While not directly revealing the neighboring
opcodes, this helps in identifying some instructions such as NOP (having the
unique 0 opcode) and the NOP executed after each branch. Fourth, coefficient
vectors of the order of mV per bit, given the dynamic range of the measurements
of (15, 70) mV, are resilient to noise in simple (versus differential) power analysis.

To increase the potential SNR of operation-related signals, we generate test-
ing programs composed of code of the same Hamming weight. Except GOTO
and instruction types that cannot have targeted Hamming weight (e.g. NOP and
CLRW), all logic and arithmetic operations are included. Repeating the experi-
ment, previous conclusions on data dependencies still hold. Q3 has nearly the
same value, which can be shown by the small standard deviations (σ) among
waveforms. For execution instances, the maximum σ, occurring at the peak of
Q3, is 0.324 mV, in contrast with the maximum σ in previous experiments,
which is 4.193. For instruction operations, the maximum σ is 0.121, in contrast
with the maximum σ in previous experiments, which is 2.495. This implies that
Q3 does not yield sufficient margins for classification. Applying various pattern
recognition techniques, the best average recognition rate is 33.16% for instruction
operations, obtained by SVM with polynomial kernel, five-fold cross-validation.
The recognition rate is still much worse than that obtained by template analysis
for instruction execution instances, which is 99.53%.
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5 Side-channel Programming

Above experiments show that because of significant data dependency of
power consumption, side-channel profiling according to instruction operations is
unlikely to have high recognition rates or large margins. It is more suitable to use
runtime data status for simple power analysis, especially in noisy environments.
On the other hand, although there are very strong linear relationships between
waveforms and data read in Q2 and destination write in Q4, it is the Hamming
distance rather than the exact data that is involved. For a side-channel-aware
attacker, it is easy to compute data pairs that have the same Hamming distance
with previous data on the bus in Q2, go through different operations, and again
have the same Hamming distance with the operands in Q4, thus evading side-
channel-based checking. This is feasible even when considering the Hamming
weight relationships through Q2 to Q4, since the opcode is quite compact.

The good news is that a change in data may have cascading effects: in order
to tamper with data in one instruction, previous and next instructions must be
modified accordingly. The developers of the μC can utilize aforementioned data
dependencies to guarantee tamper detection. For a given instruction set, the
developers can find a trace of side-channel measurements {Q2i, Q3i, Q4i}, i =
1, . . . , n that for any programs, when given a set of initial register values, lead
to a unique set of resulting values. The developers can just choose one program
that transforms the input to the output. Any tampering with the program can
then either be detected from side-channel measurements, or lead to the same
unique set of resulting values.

For a simple example, let us confine the instruction set to include only
the literal operations {ADDLW, ANDLW, IORLW, XORLW} that perform add/bit-
and/bit-or/bit-XOR operations with the working register and a literal, and then
write results to the working register. The runtime status that has strong lin-
ear relationships with the side-channel measurements includes (HD(old work-
ing register,literal)) in Q2, (HD(new working register,literal)) in Q4, and
(HW (current opcode)) and (HW (next opcode)) through Q2 to Q4. It is possi-
ble to find that given the initial value of the working register 0x55, execution
of any four-instruction programs leads to the same resulting working register
0x1F, given the runtime status constraints (HD(old working register,literal)) =
[3, 6, 3, 7] for Q2’s of the four instructions respectively; (HW (current opcode)) =
[10, 10, 9, 11] for Q3’s respectively (also for previous Q2, Q3, Q4); (HD(new
working register,literal)) = [5, 4, 2, 1] for Q4’s respectively. There are two pro-
grams of four instructions that satisfy such side-channel constraints: {ADDLW
0x7C, ANDLW 0x3F, XORLW 0xF1, ADDLW 0x3F} and {ADDLW 0x1F, ANDLW 0x9F,
XORLW 0xF4, ADDLW 0x3F}, but all lead to the same resulting working regis-
ter 0x1F. The developers can randomly pick one of the programs, say, {ADDLW
0x7C, ANDLW 0x3F, XORLW 0xF1, ADDLW 0x3F}. Even if an attacker is able to
profile the side-channel characteristics of the μC, she can at best modify the
code into {ADDLW 0x1F, ANDLW 0x9F, XORLW 0xF4, ADDLW 0x3F}, which results
in exactly the same value and thus renders the attack meaningless, since other
modifications will violate the side-channel constraints.
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Data: ∀q2 = [q2(1), . . . , q2(n)], q3 = [q3(1), . . . , q3(n)], q4 =
[q4(1), . . . , q4(n)],W0, F

Result: w, num, op, opr, w1p, w1

genPrgm(q2, q3, q4, W0, F)

begin
w(1) ← {W0}
for i = 1, . . . , n do

for w0 ∈ w(i) do
Opr ← {x|HD(x,w0) = q2(i)}
for f ∈ F do

for x ∈ Opr do
y ← f(w0, x)
if HW (x) + HW (opcode of f) = q3(i) and HD(x, y) = q4(i)
then

num(i) ← num(i) + 1
op(i, num(i)) ← f
opr(i, num(i)) ← x
w1p(i, num(i)) ← w0

w1(i, num(i)) ← y
w(i + 1) ← w(i + 1) ∪ {y}

Algorithm 1. genPrgm: Compute programs that satisfy a given side-channel
trace

Data: ∀Q2 = {q2i, i = 1, . . . ,M2}, Q3 = {q3i, i = 1, . . . ,M3}, Q4 = {q4i, i =
1, . . . ,M4},W0, F

Result: ops, oprs, q2, q3, q4,W1

genSCP(Q2, Q3, Q4, W0, F)

begin
for q2 ∈ Q2 do

for q3 ∈ Q3 do
for q4 ∈ Q4 do

[w, num, op, opr, w1p, w1] ←genPrgm(q2,q3,q4,W0,F)

if w(n + 1) is Singleton then
W1 ← w(n + 1)
ops, oprs ← backtrace op and opr through w1 and w1p
break to top

Algorithm 2. genSCP: Compute combinations of programs and side-channel
traces that produce unique output
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This leads to the idea of “side-channel programming”, in which software
engineers utilize side-channel characteristics of existing hardware during devel-
opment to guarantee tamper detection. General algorithms for finding such com-
binations of side channel constraints and programs of any length are shown in
Algorithms 1 and 2, where W0 is the initial value of the working register, F is
a set of functions that simulate the operations in the instruction set, W1 is the
resulting value of the working register, and (ops, oprs) compose programs that
satisfy a n-long side-channel trace {q2, q3, q4} and also output a unique W1. For
the above small instruction set, it takes just seconds to find side-channel traces
that guarantee unique transformations of input and output on a commercial PC.
As the instruction set increases, complexity increases. We leave it as future work
to efficiently perform “side-channel programming” for the full instruction set.

6 Conclusion and Future Work

For simple power analysis, we explore whether or not instructions can lead to
consistently distinguishable side-channel information, and if so, how the side-
channel characteristics differ. By building semantic models of the instruction
set and cross-validating with side-channel measurements, we show that data
dependencies, rather than instruction operation dependencies, are dominant. We
reveal strong linear relationships between runtime status and side-channel mea-
surements, which enable “side-channel programming” that utilizes side-channel
characteristics of existing hardware in software development to provide external
verification of software integrity. We show how to generate combinations of side-
channel constraints and programs of any length for a subset of the instruction
set that guarantee a unique transformation of a given input, so that any tamper-
ing with the program by a side-channel-aware attacker can either be detected,
or lead to the same unique set of input and output. Our future work involves
side-channel programming for the full instruction set.

Side-channel characteristics are determined by the IC design of the DUT. The
comparatively small instruction set and simple architecture of the μC under test
greatly ease side-channel analysis so that the problem is tractable in reason-
able period of time. As more complex IC designs are used in embedded sys-
tems, instruction sets support more operations executed in a variable number of
instruction cycles, pipelines get deeper and more complex, and more components
function in parallel. And therefore significantly more factors will need to be incor-
porated into the semantic models. It may not be possible to find side-channel
characteristics for more complex ICs as succinct as discovered in this work for a
simple IC. It is, however, fundamentally possible to derive side-channel character-
istics as long as the IC operates deterministically. Our future work also involves
applying the proposed approach to other microcontrollers/microprocessors.
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