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Abstract. Reconfigurable hardware can allow acceleration of compute
intensive tasks, provide line-rate packet processing capabilities, and in
short, expand the range of experiments and applications that can be run
on a testbed. Few large-scale networking testbeds have made any con-
certed effort towards the inclusion of virtualized reconfigurable devices,
such as FPGAs, into their systems as allocatable resources. This changes
with the SAVI testbed. In this paper, we present the current state of
heterogeneous, reconfigurable hardware resources in the SAVI testbed,
as well as how they are virtualized and facilitated to end-users through
the Control and Management system. In addition, we present several
use cases that show how beneficial these resources can be, including an
in-network multicore multithreaded network processor programmable in
C, and network-connected custom hardware modules.
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1 Introduction

There are now quite a number of large-scale research testbeds in use or being devel-
oped [1].Many of these have architectures that virtualize resources in some fashion,
allowing researchers andusers to have their ownprivate subset of testbed resources.
Oftenabsent fromthese resources however, are reconfigurabledevices, suchasField
Programmable Gate Arrays (FPGAs). It is highly desirable to incorporate these
devices into testbeds, as there aremany compute-intensive andhigh-speed process-
ing tasks that they excel at. Many testbeds are focused on Future Internet or other
networking themes where FPGAs can be very useful – they are capable of line-rate
packet processing, being used in commercial equipment like routers and switches
all the time, and their programmability allows the researcher to tailor their design
to whatever paradigm or protocol necessary for their experiment.

In this paper, we introduce the different types of virtualized reconfigurable
resources in the testbed of theSmartApplications onVirtual Infrastructure (SAVI)
network [2,3]. The purpose of the SAVI network is to investigate future applica-
tion platforms that rely on virtualized, flexible infrastructure. This infrastructure
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is able to deploy large-scale, distributed systems that utilize the resources (wireless
and wired networks, computing, devices) to deliver applications.

The SAVI testbed is a realization of this infrastructure, and is meant to be
a testing ground for SAVI research in application platforms and Future Inter-
net. The SAVI testbed implements a controlled and managed multi-tier cloud,
consisting of Core and Smart Edge nodes connected by virtual networks over a
large geographic region in Canada.

We describe in this paper how the heterogeneous resources in the Smart Edge
nodes are enabled, and then present the different types of reconfigurable hard-
ware resources in the SAVI testbed, and how each is controlled and managed. We
present several use cases for these resources, showing how they allow researchers
to run experiments and applications that were previously impossible, and how
virtualized reconfigurable resources can easily outperform applications run in
software on Virtual Machines (VMs).

We organize this paper as follows. Section 2 explores related and prior work
in the research testbed field, dealing specifically with reconfigurable resources. In
Section 3, we describe the SAVI testbed, it’s architecture and capabilities, and
examine it’s software-defined infrastructure manager called Janus, describing
how the system uses modifications to OpenStack to enable heterogeneous, non-
Virtual Machine resources. Section 4 describes the different virtualized reconfig-
urable hardware resources in the testbed and how they are enabled and managed.
In Section 5 we examine some use cases for these resources in the SAVI testbed,
in particular network-connected custom hardware accelerators, and FPGA-based
network processors. Section 6 looks at future work we hope to accomplish, and
Section 7 concludes the paper.

2 Related Work

There has not been a significant amount of work on including reconfigurable
hardware and FPGAs into research testbeds. The NetFPGA [4] has seen some
use within GENI [5,6] and Internet2 [7,8], however it is unclear as to whether
these are allocatable to end users as resources that are fully programmable and
managed on the same level as VMs. The precursor to the SAVI testbed, Virtu-
alized Application Networking Infrastructure (VANI) [9], integrated bare-metal
servers with FPGA cards as resources, and the SAVI testbed builds on what
began with VANI.

As far as we are aware, the SAVI testbed represents the first major push
towards inclusion of reconfigurable hardware as resources on par with VMs,
managed under the same system.

3 SAVI Testbed Control and Management

The SAVI testbed consists of several main components: Core data center nodes
with traditional cloud computing resources (VMs, storage, network), Smart Edge
nodes that complement traditional cloud resources with heterogeneous resources
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(bare-metal servers, FPGAs, GPUs), Access Nodes that provide wireless con-
nectivity, the SAVI testbed network that interconnects all components, and a
Control Center to orchestrate applications and experiments.

C & M
U of T Edge U of T Core

C & M

ORION CANARIE  CANARIE

SAVI Testbed Network

C & M

McGill Edge

C & M

Carlton Edge

C & M
Victoria Edge

C & M

Calgary Edge

C & M

Waterloo Edge

C & M

YorkU Edge

Virtual 
Network

Virtual 
Network

Application X
Resources

Application Y
Resources

C & M

Fig. 1. The SAVI testbed. The ORION [10] and CANARIE [11] networks connect all
components over a large geographic area of Canada. Experiments and applications can
leverage virtualized resources from anywhere in the testbed.

Figure 1 shows the current state of the SAVI testbed. The components of
the testbed are architected into a Control and Management (C & M) plane, and
an Applications and Experiments plane. Our discussion will mostly be limited
to the C & M plane, as we wish to describe how resources are controlled and
managed in the system. We will also mainly limit our discussion to the Smart
Edge node, as this is the component that contains the heterogeneous resources.
A detailed overview of the entire SAVI testbed system is available in [2].

Figure 2 shows a diagram of the SAVI testbed Smart Edge. Resources in the
system are virtualized using OpenStack [12], an open source cloud computing
framework. OpenStack management forms the Smart Edge C & M plane in con-
junction with the Software-Defined Infrastructure manager, called Janus. Janus
offloads certain tasks from OpenStack, such as network control and resource
scheduling, and also performs configuration management and orchestration of
the testbed’s OpenFlow-based Software-Defined Network (SDN). Janus uses
FlowVisor (FV) to virtualize the network into slices, and users can run their
own OpenFlow controller to manage their own private network slice. C & M
services are all reachable through RESTful [13] APIs. OpenStack Keystone and
Glance provide authentication and a global image registry respectively.

Of particular interest to this paper in Figure 2 is theNova component of Open-
Stack, which is the part that allocates resources. The standard Nova only sup-
ports processor virtualization, where Virtual Machines (VMs) are booted on top
of hypervisors that abstract away the physical hardware. The vision of the Smart
Edge however, incorporates heterogeneous resources in addition to VMs. Thus
Nova in the SAVI testbed is extended to enable it to manage these new resources.
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Fig. 2. The SAVI testbed Smart Edge node

3.1 Enabling Heterogeneous Resources

For OpenStack to manage different types of resources, they must all appear
homogeneous in nature. To accomplish this, we use a Driver-Agent system. A
driver for any resource implements required OpenStack management API meth-
ods, such as boot, reboot, start, stop and release. The driver then communicates
these OpenStack management commands to an Agent, which carries them out
directly on the resource, via a hypervisor or otherwise. In this fashion, Open-
Stack can manage all resources through the same interface. Figure 3 shows a
diagram of the Driver-Agent system.
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Fig. 3. The Driver-Agent abstraction used in the SAVI testbed OpenStack system

If a user desires to allocate a resource, they need to be able to specify what
resource type they want – we extend the OpenStack notion of resource flavor to
enable this. Usually, resource flavor refers to the number of virtual processors
and amount of RAM to allocate to a VM. Here we extend flavor to also include
resource type. The SAVI testbed currently has several of these additional resource
types including GPUs, bare-metal servers, and reconfigurable hardware.
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To be made aware of their existence, OpenStack must have resource references
placed in its database – one for each allocatable resource. This is done using the
nova-manage tool. The resource database entry includes the address of the Agent
that provides the resource, a type name that can be associated with a flavor,
and how many physical network interfaces the resource has. A flavor is created
for each unique resource type.

3.2 Heterogeneous Resource Boot Sequence

When a boot command is received by OpenStack, it resolves which resource type
is required from the flavor specified by the user. Scheduling is the process of
figuring out which Agent (there may be multiple for one resource type) will host
this particular resource instance – in the SAVI testbed, this may be offloaded to
Janus. Janus also takes care of networking for the resource – some heterogeneous
resources in the testbed can have several network interfaces, and Janus allows
users to connect each interface to a different network, even their own virtual
network slice with their own OpenFlow controller. Eventually OpenStack calls
the boot API method in the driver associated with the required resource type
and passes several parameters: the address of the Agent, the user-specified image,
and the network information generated by Janus that belongs to the resource.
The Agent takes the required steps to boot the resource and set up network
connectivity, whatever they may be for the particular type, and acknowledges
the driver request. A reference for the resource is then returned to the user.

4 Reconfigurable Devices as Resources

In the SAVI testbed, we use the Driver-Agent method to enable FPGA-based
reconfigurable hardware resources as well. The following subsections describe the
different FPGA resources available in the SAVI testbed.

4.1 BEE2 Board FPGAs

The SAVI testbed has a number of BEE2 systems [14]. The BEE2 is equipped
with five Xilinx FPGAs, with one used to control the others. In the testbed,
an Agent runs on an embedded system on the control FPGA, and manages the
other FPGAs as resources that can be allocated. Each FPGA resource has four
10G-capable CX4 interfaces that connect to the testbed SDN, allowing the user
to send and receive data from their hardware on the FPGA.

Since the user simply gets the entire device as a resource, they are responsible
for designing and compiling their hardware using vendor tools, ensuring that their
hardware ports match the correct pin locations on the BEE2, and ensuring that the
hardware will function correctly. Once they generate a bitstream file for program-
ming the FPGA, it is uploaded through the OpenStack Glance API as an image.

Note that we are again extending the definition of a concept in OpenStack. Nor-
mally, an “image” refers only to an Operating System (OS) image, howeverGlance
allows any file type to be uploaded as an image. Therefore, for a BEE2 FPGA
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resource, the image will be a bitstream generated by the FPGA tools. For the BEE2
resource, the Agent will receive this image from the OpenStack controller via the
driver, and simply configures it onto an unused FPGA. OpenStack sees the FPGA
as any other resource thanks to theDriver-Agent abstraction, and the user can now
make use of custom hardware acceleration in the SAVI testbed.

4.2 PCIe-Based FPGA Cards

To increase the range of different FPGA applications available to researchers, it
is useful to have FPGAs closely coupled to processors so that the reconfigurable
hardware can accelerate compute-intensive portions of software. The SAVI testbed
provides several PCI-Express-based FPGA boards connected to physical servers:
The NetFPGA, the NetFPGA10G [4] and the DE5Net [15]. The boards have vary-
ing FPGA device sizes and on-board memory, but have in common four network
interfaces that are connected to the testbed SDN. The NetFPGA has four 1G Eth-
ernet ports, while the NetFPGA10G and DE5Net have four 10G Ethernet ports.
A researcher can now design custom hardware that can accelerate software tasks,
provide line-rate packet processing, or a combination of both.

In addition to these boards, the testbed also contains MiniBEE [16] resources.
The MiniBEE contains a conventional processor and an on-board FPGA con-
nected through PCIe. It also has 10G network interfaces, a large amount of
memory and an expansion port for additional FPGA peripherals.

Since the PCIe boards are required to be mounted inside physical servers, the
SAVI testbed provides the server itself with the FPGA card attached as a resource.
In the case of the MiniBEE, the entire system is also offered as a resource.

4.3 Fully Virtualized Hardware

With the BEE2 and PCIe-based SAVI testbed resources, the FPGAs are not as
fully virtualized as they could be – OpenStack manages the resource, but a user
still gets the entire physical device. This may not be quite as scalable or flexible
as a fully virtualized approach, and also may not make full use of large FPGA’s
reconfigurable fabric. Therefore, we wish to virtualize FPGAs to a greater extent,
in order to more closely match conventional cloud computing models. We have
developed in the SAVI testbed a system that uses FPGA partial reconfiguration
(PR), a technique to reconfigure only a portion of an FPGA at a time, to split the
device into several virtual pieces [17]. Another custom driver and Agent allows
OpenStack to manage each of these PR regions as a resource. We call these
regions Virtualized FPGA Resources. Some hardware on the FPGA that is not
partially reconfigured (called the static logic) forms an embedded system that
interacts with the Agent, facilitating safe partial reconfiguration and setting up
VFR networking. Buffering and arbitration in the static logic results in a three-
cycle latency penalty for packet data streams into the VFRs, however throughput
is only affected by a one-cycle stall per packet.

Figure 4 shows a diagram of this system. The system is implemented on one
or several of the NetFPGA10G resources, showing how one resource in SAVI
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Fig. 4. Virtualized FPGA Resources in the SAVI testbed

can be used to provide additional, new resource types. Each VFR is connected
through an arbiter in the static logic to the board’s 10Gb Ethernet ports, and
thus the testbed SDN. Researchers can make use of template Verilog HDL files
and a script-based compile system to generate custom hardware that matches
the interfaces to the VFRs and generate images of this hardware that can be
uploaded via Glance and booted through OpenStack. The VFRs can be booted
very quickly relative to VMs, taking around 2.6 seconds on average to get to a
state where they are fully configured and able to process data. Because of this,
VFR-based systems can scale extremely rapidly.

The system also significantly simplifies hardware design for the user. All chip
level I/O, Ethernet interfacing and memory interfacing is done in the static
logic of the system. The static logic therefore removes several complex, difficult
integration tasks for users, and leaves them with a few standard, well-defined
interfaces with which to build their system. This also makes it much easier to
use tools like High-Level Synthesis instead of HDL design entry. Design and test
time is greatly reduced, and researchers can set up prototypes and experiments
much more quickly.

5 Use Cases

Researchers using the SAVI testbed now have access to FPGA-based hardware
acceleration, either in-network, CPU-coupled over PCIe, or a combination of
both. In this section we describe two use cases for the FPGA resources in the
testbed.

5.1 A Multicore, Multithreaded Network Processor

NetThreads10G [18] is a port and expansion of the original NetThreads system
by Martin Labrecque et al. [19]. Designed for the NetFPGA10G, it is a soft
multicore, multithreaded network processor. Figure 5 shows a diagram of the
system. Each of the four cores implements a modified MIPS instruction set, has
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a private instruction cache, and executes four-way multithreading. The four cores
share access to a data cache, and a 20 packet capacity buffer, which is filled with
incoming packets by hardware connected to the NetFPGA10G’s 10Gb Ethernet
stream interfaces. A set of 16 hardware locks enables safe sharing of data between
threads, and the NetFPGA10G on-board RLDRAM provides 64MB of system
memory.
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Fig. 5. The NetThreads architecture

The NetThreads framework also includes a MIPS gcc cross-compiler, and
library providing rudimentary functions to read and write the packet buffer,
allocate memory, and get and set the hardware locks for parallel programming.
The NetThreads10G hardware contains a dedicated programming circuit that
operates over Ethernet, meaning the system is programmable from anywhere in
the testbed network.

The SAVI testbed researcher now has access to a gigabit-line-rate network
processor that they can program easily in C – no hardware design necessary.
Using the system is simple – since the hardware is already synthesized, placed,
and routed, a user need only use the OpenStack API to allocate a NetFPGA10G
resource and then program the NetThreads bitstream onto the device. A pro-
grammer application takes the output files of the cross-compiler and sends them
over the network to the NetThreads system, whose programming circuit loads
the software into memory and starts the processor system that can run many
applications at line-rate.

5.2 A VFR-Based Load Balancer

Load balancing is an important part of large-scale cloud applications. In this
section we demonstrate how an arbitrary protocol load balancer [17] can be
implemented using the SAVI testbed’s Virtualized FPGA Resources.

The load balancer is designed using a template Verilog file whose ports match
those defined by the VFR system static logic. The hardware is designed to match
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a hypothetical protocol running on top of UDP, and distribute incoming packets
to a number of servers. Servers send update packets to the load balancer, which
tracks available server addresses in a memory. The balancer cycles through this
memory as packets arrive, sending them to servers in a round-robin fashion.
Figure 6 shows the VFR system compile and boot sequence.
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Fig. 6. Compiling and using VFRs. Hardware Design Language (HDL) files are com-
piled in conjunction with the static logic system using FPGA vendor tools. The gener-
ated image containing FPGA programming files can be “booted” through OpenStack,
and the user’s hardware is partially reconfigured into a VFR on the fly.

We compare the hardware load balancer to a software implementation run
on a VM in the SAVI testbed. A client VM sends packets to the load balancer to
be distributed amongst servers, and the servers send a direct response back to
the client after receiving a packet from the load balancer. The round trip time
is measured at the client and averaged over 10000 packets. Other VMs are used
to inject additional traffic so that we can measure the approximate throughput
capability of the software and hardware load balancers. A VM load balancer
can only handle up to around 25MB/s before dropping packets and performing
unpredictably. The VFR load balancer could handle over 100MB/s, even with
the presence of the static logic virtualization layer, and did not drop a single
packet. Figure 7 shows latency versus additional injection rate for software and
hardware load balancers. Since each point is an average of 10000 packets, we
show standard deviation as well.

This example shows how users of the SAVI testbed can offload network-
based processing to VFRs and get a substantial performance gain through the
simplified hardware design flow provided by the virtualization system.

6 Future Work

There is a significant amount of future work to be done with the reconfigurable
resources in the SAVI testbed. We plan to continue adding to the number of
physical FPGA resources in the system, and expand these resources to all Smart
Edge nodes in the testbed.

We will also continue exploring the concept of Virtualized FPGA Resources,
to see how closely they can be fit within the cloud computing model. This involves
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(a) (b)

Fig. 7. (a) Latency through VM Load Balancer. (b) Latency through VFR hardware
load balancer.

making them capable of more VM-like tasks, such as migration among physi-
cal machines. We also plan to investigate methods of chaining VFRs and other
resources over the network at the system level – creating heterogeneous process-
ing chains for arbitrary tasks.

7 Conclusion

We have presented the different types of reconfigurable resources in the SAVI
testbed, and how they are enabled by the testbed’s Driver-Agent abstraction for
heterogeneous resources. Researchers using the SAVI testbed can use familiar
management commands to access network-coupled and CPU-coupled FPGAs as
cloud resources, and make use of either predefined or custom-designed hardware.
These reconfigurable hardware resources will enable a new range of applications
and experiments that were previously unavailable in the SAVI testbed, and the
networking testbed community at large.
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