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Abstract. In this paper we consider Software-Defined Infrastructure
(SDI), a new concept for integrated control and management of converged
heterogeneous resources. SDI enables programmability of infrastructure
by enabling the support of cloud-based applications, customized network
functions, and hybrid combinations of these. We motivate SDI in the con-
text of a multi-tier cloud that includes massive-scale datacenters as well as
a smart converged network edge. In SDI, a centralized SDI manager con-
trols converged heterogeneous resources (i.e., computing, programmable
hardware, and networking resources) using virtualization and a topology
manager that provides the status of all resources and their connectivity.
We discuss the design and implementation of SDI in the context of the
Canadian SAVI testbed. We describe the current deployment of the SAVI
testbed and applications that are currently supported in the testbed.

Keywords: Virtualization · Cloud computing · Software defined
networking · Resource management

1 Introduction

The delivery of content and software applications is being revolutionized by appli-
cation platforms that encompass massive datacenters, the Internet, and smart
phones. Cloud computing, typically in very large remote datacenters, provide
unprecedented flexibility and economies of scale in the support of applications.
Software-definednetworking (SDN)allowsfine-grained control of applicationflows.
Together cloud computing and SDN promise a future open marketplace where
applications can be readily and rapidly programmed on a converged infrastructure.
Major collaborative open source efforts are helping advance these two technologies,
OpenStack [6] for cloud computing and OpenFlow [1] for SDN.

We view the cloud as being multi-tier in nature, with massive remote datacen-
ters in one tier, and converged smart edge nodes closer to the users. Computing
and networking resources in the smart edge are essential to support applications
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with low-latency requirements, to execute security functions, and to promote
efficient content distribution through local caching resources.

The location of the smart edge is roughly where telecom service providers
are placed. Therefore it is natural that the design of the smart edge should
consider the challenges of the service provider. The overarching challenge today
is the need to invest huge capital expenditures to increase wireless capacity
to accommodate higher traffic, while coping with slower revenue growth from
competition and customer expectation for continual sustained improvement. We
believe that virtualization can play a role in addressing these twin challenges.

The remote massive datacenter leverages virtualization of computing and
networking resources to deliver flexibility and compelling economies of scale. In
contrast, the smart edge is significantly smaller in scale and much more het-
erogeneous in its resources. The smart edge especially when defined to include
wireless and wired access networks include nonconventional computing resources,
namely FPGAs, network processors, ASICs for signal processing within purpose-
built boxes. We believe that flexibility and economies of scale can be attained
in the smart edge through the virtualization of computing, networking, and
non-conventional computing resources and the introduction of control and man-
agement systems for converged resources.

Until recently, control and management approaches have focused on the sep-
arate management of different infrastructure resources. For example, cloud con-
trollers such as OpenStack provide cloud resource provisioning, while network
controllers such as an OpenFlow and other SDN controllers provide network
control. In the smart edge, an integrated management and control system for
converged network and generalized computing resources can be more effective in
providing flexibility and performance in a cost-effective manner. Open interfaces
for controlling and managing these shared heterogeneous resources can provide
software programmability for dynamically deploying new functionality. In addi-
tion, advanced monitoring and measurement techniques and user access to infras-
tructure information can provide customized resource allocation or networking.
Therefore, we need a “software-defined infrastrastructure (SDI) to satisfy their
requirements beyond SDN and VMs.

In [2] we introduced the notion of SDI and in [3] we introduced the initial
design of the control and management of the SAVI testbed. In this paper we
first present the SDI architecture for designing a testbed for future applications
and services, focusing specifically on the SDI manager and its associated topol-
ogy manager. Next, we present the current design and implementation of the
SAVI testbed and its control and management system for converged heteroge-
neous resources based on the SDI architecture. We describe the SAVI Testbed
which has been deployed across much of Canada and used to demonstrate the
management of physical and virtual resources. We also describe the hands-on
workshop provided to SAVI researchers to promote the usage of the testbed. We
describe a tutorial to introduce users to a configuration management service,
as well as to the SDI manager to query and manage the physical and virtual
network infrastructure in the SAVI testbed.
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Fig. 1. A system architecture for SDI resource management

The paper is organized as follows. Section 2 describes a high-level system
architecture of SDI using major components. Section 3 presents SAVI cluster
configuration and heterogeneous resources and a design of SAVI testbed resource
control and management system. The current SAVI testbed deployment and sta-
tus are presented in Section 4. Finally, conclusion and future work are presented
in Section 5.

2 Software-Defined Infrastructure

In this section, we define SDI and present an SDI resource management archi-
tecture for the converged heterogeneous resources. In SDI, “Software-Defined
means providing open interfaces to: control and manage converged heteroge-
neous resources in different types of infrastructures for software programmabil-
ity; and give an access to infrastructure resource information such as topology,
usage data, etc. We design the SDI architecture to support those requirements.

Fig. 1 shows a high-level architecture of the SDI Resource Management Sys-
tem (RMS), in which an SDI manager can control and manage a resource of
type A, B, and C using a corresponding resource controller A, B, or C, respec-
tively. External entities obtain virtual resources in the converged heterogeneous
resources via the SDI RMS through “Open Interfaces. The converged heteroge-
neous resources are composed of virtual resources and physical resources. Virtual
resources include any resource virtualized on physical resources, such as virtual
machines. Physical resources include any resource that can be abstracted or
virtualized, such as computing servers, storage, network resources (routers or
switches), and reconfigurable hardware resources.

The SDI RMS provides resource management functions for the converged het-
erogeneous resources to the external entities. These functions include provisioning,
registry/configuration management, virtualization, allocation/scheduling, migra-
tion/scaling,monitoring/measurement, load balancing, energymanagement, fault
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management, performance management (delay, loss, etc.), and security manage-
ment (authentication, policy, role, etc.). The external entities can be applications,
users (service developers or providers), and high-level management systems.

The SDI manager performs coordinated and integrated resource manage-
ment for converged heterogeneous resources through a resource controller and
the topology manager. The SDI manager performs major integrated resource
management functions based on resource topology information provided by the
topology manager. Each resource controller is responsible for taking the high-
level user descriptions and managing the resources of a given type. The topology
manager maintains a list of the resources, their relationships, and monitoring
and measurement data of each resource. Furthermore, the topology manager
provides up-to-date resource information to the SDI manager for infrastructure-
state-aware resource management. Examples of the integrated resource man-
agement functions that can be performed by the SDI manager include: fault
tolerance, green networking (energy efficient and/or low-carbon emitting), path
optimization, resource scheduling optimization, network-aware VM replacement,
QoS support, real-time network monitoring, and flexible diagnostics.

3 SAVI Testbed Based on SDI Concept

The Smart Applications on Virtual Infrastructure (SAVI) project was established
to investigate future application platforms designed for applications enablement
[3]. We have developed a SAVI testbed system for controlling and managing
converged virtual resources focused on computing and networking. In previous
work [3], we extended Virtual Application on Network Infrastructure (VANI) [5]
for supporting non-conventional computing resources. In this section we extend
the previous SAVI testbed management system to one based on an SDI architec-
ture that provides a uniform abstraction for heterogeneous resources. First, we
present the SAVI cluster configuration and its heterogeneous resources. Second,
we present a high-level design of our Control and Management system based on
SDI. Third, we present an SDI manager which is a core component for integrated
resource management. Finally, we present the topology manager which provides
status of SAVI testbed nodes and resources.

3.1 SAVI Cluster

SAVI explores a multi-tier cloud that includes massive core datacenters, smart
edge nodes, and access networks, wherein all resources are virtualized. SAVI has
designed a node cluster that can provide virtualized and physical computing and
networking resources, including heterogeneous resources. We anticipate that the
Smart Edge will leverage these heterogeneous resources to provide greater service
flexibility, improved resource utilization and cost efficiencies. A SAVI cluster pro-
vides heterogeneous resources interconnected by a 10GE OpenFlow fabric. SAVI
has developed an approach to allow heterogeneous resources to be managed with
OpenStack [6]. Currently, SAVI clusters include Intel Xeon servers, storage, Open-
Flow switches, GPUs, NetFPGAs, Alteras DE5-Net and ATOM servers.
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Fig. 2. Design of a control and management system for SAVI node [2]

3.2 High-Level Control and Management System Design

Fig. 2 shows the design of a control and management system for a SAVI node
based on the SDI architecture to manage cloud and networking resources. A
SAVI node controls and manages virtual resources using OpenStack and Open-
Flow controller. In the Edge node (converged) network, a variety of heteroge-
neous computing and networking resources are available as shown in Fig. 2. The
SDI manager controls and manages virtual computing resources by virtualiz-
ing physical computing resources using OpenStack. The OpenFlow controller is
used for controlling networking resources. The OpenFlow controller receives all
events from the OpenFlow switches and creates a flow table including actions.
The SDI manager performs all management functions based on data provided
by the OpenStack and the OpenFlow controller, and it determines appropri-
ate actions for computing and networking resources using management modules
inside.

The SDI manager has a module manager to manage specific functional mod-
ules such as a scheduling module, a networking control module, a fault-tolerant
management module, or a green networking module. Details of each module are
out of the scope of this paper. As in SDN, we have separated the data and control
planes in the SAVI node. The OpenStack and OpenFlow controller are modules
for communicating directly with computing and networking resources. The SDI
manager in Fig. 2 is responsible for control and management tasks. The topol-
ogy manager collects cloud computing resource information using OpenStack
and networking resource information using OpenFlow. In addition, the topology
manager can collect system information from the physical resources using IPMI
and SNMP. Application and service providers can access not only control and
management functions but also topology information through RESTful APIs
which is a kind of open interfaces.
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Fig. 3. SDI manager design and an expanded view of the network control module

In the SAVI testbed, we have used and extended the following projects from
OpenStack: 1) Keystone for Identity management, 2) Nova for Compute and
a cloud computing fabric controller, 3) Swift for Storage, a highly available,
distributed, eventually consistent object/blob store, 4) Glance for Image man-
agement, 5) Neutron (formerly named Quantum) for network management, and
6) Cinder for volume management. Because the original OpenStack Nova does
not support virtualization of unconventional resources such as FPGA, NetFPGA
or GPU, we have extended Nova to support virtualization of such resources by
adding new device drivers. These are depicted with *-drivers under Nova in
Fig. 2.

We have used FlowVisor [8] as a controller that acts as a transparent proxy
between OpenFlow switches and multiple OpenFlow controllers. FlowVisor cre-
ates rich slices of network resources and delegates control of each slice to a
different controller, while enforcing isolation between the slices. Internally, we
have used the Ryu OpenFlow controller [9] which serves as a network control
proxy for the SDI networking control module. Through FlowVisor, any user can
use his/her own OpenFlow controller, even though it is outside the SAVI testbed
as shown in Fig. 3 [7].

3.3 SDI Manager

The SDI manager provides integrated resource management for converged het-
erogeneous resources by abstraction. As shown in Fig. 3, we have designed the
SDI manager as a module platform where each module is pluggable and realizes
a certain function of SDI control and management such as resource scheduling,
power management, network control, and so on. The SDI manager includes not
only predefined modules developed by us but also SDI services through open
interfaces for end users such as resource allocation APIs. By providing SDI ser-
vices, end users may easily implement their services/applications using available
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Fig. 4. Topology manager design

information from SAVI testbed and test them on the SAVI testbed. For instance,
if an end user wants to allocate virtual machines based on CPU core tempera-
ture of physical servers, the SDI manager can provide an API to provide a list
of available physical servers and measured properties including CPU core tem-
perature. Based on the given information, the end user can develop his or her
own resource allocation algorithm and apply it to SAVI TB through the resource
allocation API given by the SDI manager.

For example, Fig. 3 shows a network control module which is a predefined
module and enables SDN applications over the SDI manager. The module runs
one or more network control applications (e.g., learning switch, topology discov-
ery, FlowVisor control, etc.) using controllers A, B, · · · , and X which provides
receiving and handling APIs. We have implemented an application (SDIApp in
Fig. 3) running on the OpenFlow controller which forwards certain OpenFlow
events to the network control module. In [7] we discussed the network control
module, including how to control OpenFlow-enabled networks, manage virtual
networks, and delegate control to user-defined OpenFlow controllers.

3.4 Topology Manager

Fig. 4 shows a high-level design for the topology manager where a configuration
manager monitors the state and relationship between converged heterogeneous
resources through a cloud controller and a network controller, and stores the
monitored data to a graph database. In addition, the topology manager provides
answers for the queries to the data from an SDI manager. The cloud controller
and network controller each provide physical and virtual computing or network-
ing resource properties, as well as associated monitoring and measurement data
to the configuration manager.

The configuration manager builds a model by analyzing states and relation-
ships of all monitored cloud and networking resources. We have used a graph for
the model because all resources and their relationships can be represented by
a set of vertices and edges with flexibility and simplicity. All physical and vir-
tual resources are represented by a vertex and their relationship is represented
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Fig. 5. Graph model example for cloud and networking resources

by an edge. For example, physical computing server, physical network inter-
face, physical network link, virtual machine, virtual network interfaces, virtual
network link, physical network switch, physical network port, virtual network
switch, virtual network port, physical access point, and any other heterogeneous
resources can be a vertex in a graph model. Each vertex has its own proper-
ties such as ID, name, and associated monitoring data. In addition, the graph
model includes a set of subgraphs that represent a physical or a virtual network
topology. Thus the configuration manager can store not only the state and rela-
tionship of converged heterogeneous resources, but also the physical and virtual
network topology.

Fig. 5 shows a graph model example. In the SAVI TB, we have three types
of network elements: Node, Interface, and Link. In the graph, a vertex repre-
sents one of the network elements with some dynamic properties. We also have
three types of associations: CONNECTED, HAS, and VIRTUALIZED. In the graph,
an edge represents the relationship. CONNECTED is used for one network element
connected to another network element with a specified medium. HAS represents
that a network element has another network element. VIRTUALIZED represents
that a network element virtualizes another network element. In Fig. 5, physical
resources are composed of a node, an interface and a link, and their relation-
ships represent a physical network. Virtual resources can be virtualized on the
physical resources and their relationships represent a virtual network.

We use a graph database for storing the graph model built by the config-
uration manager. The graph database is whiteboard friendly meaning that we
can use the language of node, property, and relationship to describe our domain,
so there is no need for a complicated object and relationship mapping tool to
implement it in the database. We use the neo4j graph database, a popular open
source graph database[10].

The topology manager provides topology information via REST APIs. It
includes: 1) SAVI Node (physical server, switch, hardware sources, etc.), 2) Inter-
face (network interface, switch port, etc.), 3) Link information, and 4) Topology.



Software-Defined Infrastructure and the SAVI Testbed 11

Fig. 6. Current deployment of SAVI testbed in Canadian universities

4 Current Deployment and Testing

Fig. 6 shows the current SAVI node and network topology deployed in seven
Canadian universities. One core node and seven Edge nodes provide cloud com-
puting and heterogeneous resources. Currently, the SAVI testbed has 550+
CPU cores, 10+ FPGA systems, 6+ GPU systems, 50+ TB storage, 10/1GE
OpenFlow-enabled switches, and wireless access points. SAVI nodes in Ontario
are connected by ORION (Ontario Research and Innovation Optical Network)
with a 1GE L2 ethernet link, and elsewhere connectivity is through CANARIE
(Canadian Research and Education Networks). The main SAVI testbed control
center is located in the University of Toronto and provides resource manage-
ment services for all infrastructures. Currently, we have a project to federate
with GENI in the USA.

To provide an example of real operation in the SAVI testbed, we share our expe-
rience fromahands-on tutorial for 60+ researchers on July 2013.The tutorial intro-
ducedusers to the topologymanagement service and our SDImanager to query and
manage thephysical andvirtual network infrastructure inSAVI testbed.The topol-
ogy service provides the entire network topology to users through either RESTful
APIs, a CLI client, or a Python library using a graph database. We showed how to
use the service to get the topology from SAVI testbed and how to apply the infor-
mation forVMresource scheduling.Bydefault, each testbed tenant has amain net-
work which is connected to a router to enable Internet access. However, users can
define their own private networks isolated from the main network and the Internet.
The tutorial showed how to create a private virtual network as well as a subnet for
that network. Afterwards, users learned how to control the private network using
their own SDN controller. In addition, SAVI researchers showed how to deploy and
manage an application on the SAVI testbed using the Cross-Cloud Application
Management Platform (XCAMP) [11]. Other applications and experiments run-
ningon the testbed involvebigdataanalysis,multimedia services, resource schedul-
ing, virtual data center embedding, and cloud deployment are running on the SAVI
testbed.

Finally we describe a wireless use case for SDI. The SAVI testbed includes
OpenFlow-enabled wireless access points with the added capability to virtualize
WiFi. As an example of using SDI in the provisioning and control of end-to-end
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services, consider a user who wishes to deploy a wireless service for clients. The
user first queries the SDI manager, using its open APIs, for information regard-
ing the capacity and capabilities of existing computing resources on the various
smart edges. The information returned allows the user to allocate, again via APIs
on the SDI manager, virtualized servers on physical machines chosen based on
some combination of user-chosen metrics (i.e. compute capabilities, free RAM,
proximity to clients, etc.). The user decides that customized network access con-
trol is needed, and thus instructs the SDI manager to delegate control of a slice
of the network to the user’s own OpenFlow controller (which could be running in
another VM on the smart edge). In order to connect clients, the user instructs the
SDI manager to virtualize the wireless access points to enable a unique ESSID,
seen by client devices as an independent WiFi network. Clients who connect via
this ESSID will automatically be associated with the slice of network controlled
by the user, and their traffic will be controlled accordingly based on the users
OpenFlow controller. Other open APIs which enable monitoring and measure-
ment allow the user to view the state and current utilization of their computing
and network resources, in turn empowering the user to adjust the capacity and
availability of their service as desired.

5 Concluding Remarks

In this paper we have presented an SDI architecture and resource manage-
ment system for infrastructures consisting of converged heterogeneous virtualized
resources. SDI promises to provide flexibility, performance, and cost effective-
ness, especially in the smart edge of a multi-tiered cloud. As a practical opera-
tional example, we presented the design and implementation of the SAVI testbed
based on the SDI concept. SAVI provides integrated resource management ser-
vices through an SDI manager and topology manager. We also presented the
current deployment and shared our experiences running applications on it.
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