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Abstract. Road accident is one of the major reasons for loss of human
lives, especially in developing nations with poor road infrastructure and
a driver needs to constantly negotiate with several adverse conditions
to ensure safety. In this paper, we study several such adverse conditions
that are relevant to safe driving and propose a novel method for identi-
fying them as well as characterizing driving behavior for such conditions.
Experimental results reveal that our proposed methodology is promising
and more flexible than prior work in this area. In particular, our pre-
diction results reveal that our methodology is an aggressive one where
most of the bad driving behaviors are determined at the cost of a few
instances of good behavior being falsely characterized as bad ones.
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1 Introduction

Road accident has been one of the banes of modern civilization, taking a signif-
icant toll on human lives. In U.S.A., motor vehicle crashes have claimed 4,544
teens between the ages of 16 and 19 in the year of 2005 alone1. While the rapid
increase in the number of vehicles on the road has contributed to this scary
statistics, negligent and rash driving has been the chief contributor. There have
been many efforts to bring in some order to the traffic scenario by either mon-
itoring and managing overall traffic or monitoring individual driving behavior.
However, most of these solutions are primarily designed for developed countries
with organized traffic infrastructure and practices. The solutions, consequently,
are rendered ineffective for developing nations where the setting is much more
chaotic. The problem becomes more complex in such a setting where it is not
only the driver’s fault that is responsible for an accident, but infrastructure, or
rather the lack of it, and surrounding environment also play a significant role.
The fact that India has the highest traffic accident rate worldwide, with 3,42,309
deaths reported in 2008 alone2, is a testimony to that.
1 WISQARS: www.cdc.gov/injury/wisqars.
2 National Crime Records Bureau record: http://ncrb.nic.in/adsi2008/accidental-deaths-

08.pdf.
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A large body of work on driving behavior analysis exploits data from In Vehi-
cle Data Recorders (IVDR) [8,10]. IVDRs are installed in the vehicles to provide
information about speed, acceleration, manoeuvres, etc. The first application of
IVDR was the event data recorder that was designed based on the “black box”
used in aircrafts and primarily recorded crash information. Later, the event
data recorders evolved to include specialized sensors integrated with vehicles to
provide sophisticated information (e.g., vehicle steering wheel operation infor-
mation) on the manoeuvring of a vehicle that could be used for driving behavior
analysis. For example, the SmartCar testbed described in [8] recognizes driver
maneuvers at a tactical level by recording the car’s brake, gear, steering wheel
angle, speed and acceleration throttle signals. Further, it maps these maneu-
vers to video signals that capture the contextual traffic, the driver’s head and
the driver’s viewpoint. Such integrated IVDRs are not widely applicable across
different types of vehicles. For instance, a solution based on steering wheel oper-
ation information would not be applicable to auto-rickshaws that ply in large
numbers on Indian roads. To solve this problem, portable mobile units [6] were
installed on vehicles to gather general information such as speed, acceleration,
rotation, location, etc.

A significant body of work is emerging that uses smartphones of the drivers
instead of the expensive, special-purpose mobile units. Paefgen et al. [9] evaluate
a mobile application that assesses driving behavior based on in-vehicle acceler-
ation measurements and gives corresponding feedback to drivers. Eren et al. [2]
propose an approach to understand the driver behavior using smartphone sen-
sors, more specifically, the accelerometer, gyroscope and the magnetometer. Using
these sensors, they obtain position, speed, acceleration, deceleration and deflec-
tion angle sensory information and estimate commuting safety by statistically
analyzing driver behavior. Johnson and Trivedi [3] propose a system that uses
Dynamic Time Warping (DTW) and smartphone based sensor-fusion (accelerom-
eter, gyroscope, magnetometer, GPS, video) to detect, recognize and record these
actions without external processing. Use of smartphones to detect driving
behavior has also been applied to motorcycles, where mobility and motion char-
acteristics are different from that of a car. An example is [4], here the authors
propose a system to comprehend a motorcycle’s behavior using the acceleration
and gyroscope sensors on the smartphone.

The IVDRs are either integrated or mounted on the vehicles and hence are
not flexible enough to be applicable across a variety of vehicles. Mobile units,
including smartphones, are loosely coupled with the vehicles and hence are free
from this problem. However, none of the smartphone based solutions take ambi-
ent context (road conditions, traffic, etc.) into consideration while determining
driving behavior. In this paper, we bridge this gap by first identifying parameters
which define a spatio-semantic ambient driving context and propose a method for
classifying driving behavior based on segmentation of a given trajectory along
these parameters utilizing smartphone sensor data. Our specific contributions
can be summarized as follows:
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– A methodology for detecting driving events to characterize driving behavior
and the ambient context from smartphone sensors, accelerometer, gyroscope
and GPS.

– A methodology for classification of “good” and “bad” driving behavior given
an ambient context.

– Performance evaluation of our methodology in characterizing driving behav-
iors against ground truths provided by expert observers.

2 Problem Description and Motivation

Driving is a skill that heavily depends on how the driver negotiates with the
physical environment. We define ambient context as the factors in physical envi-
ronments that become relevant to a driver. We classify ambient context into two
categories:

1. Static Context: This includes context attributes whose value remains invari-
ant for a substantial amount of time and across multiple trips. Examples of
static context can be turns on the trajectory, road conditions such as potholes,
bumps, etc.

2. Dynamic Context: This includes parameters which changes frequently with
time and can vary across trips along the same route. This may include pres-
ence of other drivers, their driving behavior, temporary obstacles, etc.

Both static and dynamic context play an important role in determining drive
quality. For example, a skilful driver would negotiate a sharp turn with a rough
surface or a pothole on the road with more control than an unskilled or rash
driver resulting in a safe and better experience for the people within the car
and on the road. The type of context varies spatially and temporally. Figure 1a,
b and c shows a few examples of static pathological ambient contexts, while
Fig. 1d shows a pathological dynamic ambient context on a typical Indian road in
New Delhi.

(a) A pothole (b) A rough patch (c) A bump
(d) A dynamic am-
bient context

Fig. 1. Examples of ambient context

While smartphone based static ambient context determination has been inves-
tigated in [7], dynamic contexts are far more difficult to measure and model
compared to static contexts and require costlier set-ups like on-vehicle video
cameras and data from other city-sensing infrastructure [11]. Due to logistics
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issues, we leave out dynamic ambient context determination from our study. As
we shall see, there are significant challenges to construct a methodical solution
towards determining rich drive profiles using static context itself.

Before we establish the critical role of ambient context in influencing driving
behavior, let us define what we mean by good and bad driving behavior in the
context of this work.

Definition 1. Good driving behavior: – A “good” or “normal” behavior is
where the driver negotiates an adverse condition such as a turn or a pothole,
carefully, by driving with average speed profile for the adverse condition.

Definition 2. Bad driving behavior: – A “bad” or “rash” behavior is when
the driver drives with higher-than-average speed profile for an adverse condition.

We conducted an initial experiment to understand the impact of ambient
context on driving behavior. We collected acceleration vectors of a car on two
types of road surface while taking a turn: a smooth road and a road with a rough
and bumpy surface. We requested the driver to drive in two states corresponding
to good or normal behavior and bad or rash behavior on the same stretch of road
(see Fig. 2a for the road stretch).

We implemented a prior method proposed by Eren et al. [2] to analyse driving
behavior using smartphones. The method uses Dynamic Time Warping (DTW)
to compare an unknown timeseries of drive data, with a few candidate classes.
The assumption was, smaller the DTW distance, the better is the match between
the test data and template. Figure 2b shows the results. DTW distances are
plotted for each left turn, while being compared with a “good” left turn on a
normal surface template in Fig. 2b. The actual labels are denoted by G and B
representing good and bad driving respectively.

As can be clearly seen, the first 10 left turns have a very large DTW distance
compared to the next 10 left turns. When compared against the true classifica-
tions, we observe some of the bad left turns actually have a better match to the

(a) Route for Experiments
(b) Event detection discrepancy
[G – Good Driving; B – Bad Driving]

Fig. 2. Demonstrating the relevance of ambient context



How’s My Driving? A Spatio-Semantic Analysis 657

template than the good left turns, even though the template itself was for a good
turn. Thus, ironically, on the rough surface, bad left turns matched better with
a good left turn template than left turns which are truly good. This was caused
by the inadvertent change in the speed profiles caused due to the roughness of
the road surface. This highlights the need to consider ‘context’ when develop-
ing machine learning models for characterizing driving behavior, especially in
chaotic driving conditions like those existing in India.

3 Solution Methodology

Determining driving context forms the basis of our work. As stated earlier, we
only consider the static context attributes and determine how they are distrib-
uted along the driving trajectory. We observe that besides having the time-
invariance property, static context attributes typically remain unchanged within
a region in the trajectory e.g. rough patches, bumps, turns, etc. This allows us to
divide the trajectory into segments (possibly overlapping) based on the attribute
values. However, accuracy of such segmentation is critical as they represent con-
text which directly impacts driving behavior. Table 1 lists the different static
context attributes we consider in this work and some of the possible values they
can have.

Table 1. Static contextual attributes

Road network Straight, turns, roundabout, bends

Road neighborhood School, traffic signal, market place, no label

Road surface condition Smooth, bump, pothole

Road network information and road neighborhood information is available
widely from Geographic Information Sources (GIS). Crowdsensed social media
based data sources like OpenStreetMap3 can augment the information quality
available in GIS databases. However, there is no available large-scale data source
that maintains road surface conditions. Hence, we try to estimate them using
accelerometer readings from drive data across trips.

Figure 3 presents our solution methodology. Overall, our approach can be
divided into three steps: (i) fusion of data from multiple information sources,
including mobile GPS traces of the trip, to infer spatio-semantically rich sequence
of segments, (ii) use accelerometer readings to augment the segments with road
surface conditions like bumps, rough stretches, etc., and (iii) classify driving
behavior in a given context. Next, we present the detail each of these steps.
3 www.openstreetmap.org/

www.openstreetmap.org/
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Fig. 3. Methodology for spatio-semantic analysis of driving behavior

3.1 Data Fusion

This step incrementally enriches the smartphone drive data to form a sequence of
trajectory segments with corresponding static ambient context. Let Ti represent
a trajectory of a single drive data from a trip i. Ti = {li1, l

i
2, · · · , lin} where

lij represent the jth GPS observation in the trajectory of trip i. We take Ti

and use standard map-matching algorithms to recover the corresponding road
network data from a GIS database. Next, we use spatial join algorithms to
recover the semantic region tags around each road segment. Semantic regions
represent geographical areas like residential, commercial, etc. Subsequently, for
each road segment, we perform a k-nearest neighbor query to recover the nearby
points of interests (PoI). This provides us with a list of GIS objects for every
segment from which we can recover nearby location artifacts like schools, market
places, etc. and use them to tag each GPS observation associated with that
segment. For example, we can denote s(lim) = {straight road, school}; s(ljn) =
{turn,market}; where s(lim) and s(lin) represent semantic information associated
with the GPS points lim and lin, respectively. We perform a simple change-point
detection on all such semantically enriched GPS data points present in the trip
and mark a change point wherever there is a difference of at least one tag between
two subsequent GPS points, i.e. s(lim) �= s(lim+1). This yields a sequence of
homogeneous segments consisting of invariant tags fused from GIS sources. Let
us denote any kth segment as semk. We define semk = {lim, lin, [tagsk]} where
lim, lin are the segment boundaries and [tagsk] denotes the set of semantic tags
associated with all the points present in the segment.
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3.2 Accelerometer-Based Segment Data Enrichment

The semantically enriched trajectory was seeded from GPS observations.
However, they are not sufficient to monitor fine-grained road surface condi-
tions. Specially, the sampling frequency of GPS may vary across trips and make
any velocity-driven approximation of road surface conditions inaccurate with
respect to segment boundaries. The accelerometer being a low-power sensor, it
is acceptable to sample it with high frequency. We use the accelerometer readings
from the trip to recover road surface conditions like bumps, rough stretches and
augment the trajectory with that information.

An accelerometer records acceleration along 3 mutually perpendicular axes –
x, y, z. In a horizontal orientation, one axis points towards gravity g vector. The
phone can be in different orientations in a car. Wearable computing literature [5]
has studied before that the g can be estimated reasonably well from an unknown
orientation. This enables conversion of the readings to a fixed reference orienta-
tion plane where one of the axes points towards g. We use this to first map the
raw data to our reference orientation plane. Let us call z = the axis pointing
towards gravity; y = axis pointing towards lateral movement of the car; x = axis
pointing towards the forward movement of the car.

In order to improve reliability of predicting road surface segments while
accommodating personalized variations in driving, we have designed a novel
(1) cross-trip majority-voting driven segmentation method of drive data and
(2) subsequent use of an adaptive DBSCAN algorithm, to arrive at rich seg-
ments specifying road surface conditions. The segments derived from data fusion
is augmented with these to arrive at the final rich segments based on which the
driving behavior will be evaluated.

Cross-Trip Majority Voting. The z axis acceleration component can be used
to estimate the vertical disturbances a car goes through while driving and there-
fore can be used to detect rough surfaces as they typically cause the car to jump
abruptly. However, in order to build a reliable segmentation of the persistent
road surface conditions, it is important to perform a time series consolidation
of the readings across multiple trips on the same road network because (1) the
segments may be of varying lengths; (2) usage related interjections can add
unnecessary false positives; (3) mechanical properties of the car and its age can
add false positives; (4) unknown temporary obstacles (rampant on New Delhi
roads) can add unnecessary false positives. We next discuss our segmentation
methodology in detail.

Let ACCi = [zi
1, z

i
2, ..., z

i
n] be n z-axis acceleration readings of trip i. Given

m trips across all users, we first time-synchronize ACCi with corresponding
available GPS readings Ti and localize them. Wherever GPS readings are sparse,
we use velocity-based estimation to interpolate the GPS points corresponding
to the ACC readings. Thereafter, we cluster Ti by applying a criteria based
on the deviation of the corresponding zi

x value from the mean of observations
across that trip: μ ± rσ (where r is a threshold, μ and σ are respectively the
mean and s.d. of ACCi). We applied this simple criteria because major parts of
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the trip are expected to be having relatively smooth road conditions and rough
patches and obstacles are interspersed by stretches of smooth surface. Since
we would only like to differentiate between the values observed on a smooth
surface vs. a rough surface, this timeseries clustering criteria is sufficient, though
it is trivial to extend this to include multiple clusters. Let us denote such a
cluster in the time series for trip i as Lm

i where Lm
i ⊆ Ti, and m is the cluster

type. For detecting only smooth and rough surfaces m = 2. Next, we aggregate
readings from multiple trips to find clusters that are repeating across trips and
approximately in the same location using the following voting rule:

A point lxi ∈ Ti provides a vote to another point lyj ∈ Tj for it to be part of
cluster m iff
(1) euclidean distance(lix, ljy) ≤ τ ;
(2) lxi ∈ Lm

i and lyj ∈ Lm
j .

In other words, if two points from two different trips are sufficiently close and
belong to the same cluster type in their respective trips, they will cast one vote
to each other. For any point lji , we define cm(lji ) to denote the number of votes lji
has received for cluster m. After aggregating the readings in this manner across
all available trips, we can use the following algorithm to determine the list of
points that belong to each cluster by using a threshold on the number of votes
(τvote) a point has received. In this process, we find the list of points for which
the conditions are invariant across trips, while reducing the false positives and
non-persistent condition generated noise per trip. Algorithm1 formally presents
the algorithm.

Input: List of all trip points Lin, List of cluster types C, voting threshold τvote.
Output: List of trip points Lout annotated with cluster types
Lout ← ∅;
foreach point lij in Lin do

if maxm∈ST cm(lij) > τvote then

Lout ← (lij , m);

end

end

Algorithm 1. Segment Type Determination Method Based On Cross-Trip
Voting.

Adaptive DBSCAN. The cross-trip majority voting method produces a list
of points and their corresponding cluster types where the cluster type represents
the road surface condition. Let l1, c1, l2, c2, · · · , ln, cn be such n majority-voted
points and corresponding surface types along a road network. Our objective is
to group these points such that the resultant timeseries indicates the segments
corresponding to the surface conditions along the network. We employ a vari-
ant of DBSCAN, recently proposed in [1] on the output of the majority voting
step to do this. We first explain why DBSCAN is not suitable for our problem,
followed by the elaboration of our algorithm, where we modify [1] to suite our
requirements.
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For a set of points L, DBSCAN defines the density of li, denoted as Nr(li),
as the number of points that are present in a radius r around li. li is called a
core point if Nr(li) ≥ MinPts, where MinPts is a user-defined constant. All
the points around li present in a radius r are called directly density-reachable
from li. A position lj is density-reachable from li if there is a reachability rela-
tionship (l∗)1, . . . , (l∗)l, where (l∗)1 = li and (l∗)l = lj . Two positions li and lj
are density-connected if they are both density-reachable from a core point lc.
Let Lβ be a set of points, where li � Lβ is density-connected with lj � Lβ for
all i �= j. We can randomly select the unclustered points and cluster all density-
reachable points into the same cluster. This way, we can divide L into k clusters,
where 0 ≤ k ≤ |L|/MinPts. From our perspective, however, DBSCAN does
not consider the surface types associated with each point. Thus, it is possible
that DBSCAN would find clusters that only group nearby GPS points, without
being sensitive to whether they represent a road segment consisting of static sur-
face conditions. Moreover, density variations of the GPS readings can adversely
affect the clustering. To accommodate these drawbacks, we introduce a further
constraint to the clustering process.

Definition 3. Gravity Segment-reachable. Two tuples li, ci and lj , cj are
gravity segment-reachable if position li is density-reachable from lj and cj = ci

Definition 4. Gravity Segment-connected. Two tuples li, ci and lj , cj are
gravity segment-connected if li and lj are model density-reachable from a core
tuple lcore, ccore.

This adaptive DBSCAN process performs the partitioning of the majority-
voted L,C sequence to create partitions that represent road surface segments.
From each such segment, we recover semk=lkm, lkn, ck

core. The output from this
step is augmented with the semantic segments produced during data fusion. The
segments produced here have overlaps with the segments produced before. We
run the change point detection once more to split the overlaps into a sequence
of non-overlapping segments. For e.g. a semk = lkm, lkn, [school] would be split into

lkm, lki , [school, roadsmooth],
lki , lkj , [school, roadbump],
lkj , lkn, [school, roadsmooth].

3.3 Drive Profile Determination

Once we have created a rich segmentation of available trip data, our task is to
measure driving behavior under the ambient conditions present in each segment.
Let a trip Ti =segi

1, seg
i
2, seg

i
3, . . . , seg

i
N be N segments representing a road

network R. Let M=number of observed trips (across users) for road network R.
For a given segi

j , let ACCi
j [3] represent the vector of accelerometer readings in

the jth segment of trip Ti. We capture this data and need to predict a driver’s
behavior in the segment. monitoring drive behavior [2] as collection of such fine-
grained training data does not scale to practical settings. Our objective, on the
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other hand, is to use simple unsupervised clustering techniques to investigate
whether it is possible to distinguish driving habits in each segment. For this
purposent driving conditions. It is not realistic to use supervised approaches us,
we attempt to distinguish drive habits over a certain ambient context into two
classes : normal or rash. Given M trips and N segments on R, we define a MxN
matrix A = �aij�, 0 ≤ i, j ≤ M,N , where ai,j =ACCi

j .

Segment-Sensitive Driving Behavior Clustering. Feature sets play an
important role towards clustering quality of the data. Intuitively, acceleration
variations of the vehicle is an indicator for goodness of behavior. This variation
can be captured using the ACCxi

j component of ACCi
j . However, different ambi-

ent contexts call for different boundaries to differentiate between good and bad
driving behavior. E.g. speed profile in residential areas is different from speed
profiles on bigger roads. Similarly, the ACCzi

j components can be indicative of
the road surface induced shocks, which can give an estimate of how the driver
is maneuvering different surface conditions. ACCyi

j on the other hand, provides
lateral acceleration profile in turns.

We apply clustering techniques to cluster the data along each segment A∗j

across multiple trips. This allows us to compare the driving behavior within the
same segment across multiple trips. We transform the data in each cell aij to a set
of features first. Subsequently, we apply the well-known K-NN clustering algo-
rithm to find k clusters. In our case, k = 2. The clustering in K-NN is dependent
on the choice of the seed(s). Our idea is to identify normal and rash behavior.
Unfortunately, without training data, it is impossible to determine the exact
data characteristics of these classes. Hence, we make use of a domain knowledge
that most drivers usually drive in a respectful way and hence represent median
behavior. We choose two seeds – one that is nearest to ζ(ACCj), and one that is
outside ζ(ACCj) ± rσ band, where ζ is median(Aj) and σ is the standard devi-
ation. After the clustering process, we label the set around ζ(ACCj) as normal
and the other cluster as aberrant. Note that many feature transformations (time
and frequency domain) are possible on A∗j before the clustering step. In the
experiments section, we present results with respect to a few well-adopted time
domain features, and report our results with respect to our clustering approach.

4 Experiments

We have used a 3-month old Hyundai Santro car and a Samsung Galaxy II
smartphone equipped with GPS, accelerometer and gyroscope to record data
for our experimental evaluations. A sensing stack was developed on the Android
platform of the smartphone to record data from each sensor with custom sam-
pling rates. We secured the phone in one of the chambers in the car dashboard so
that the forward movement of the car is recorded by the x-axis and the vertical
movement by the z-axis of the accelerometer data. Understanding usage-related
induced noise and other such human-generated disturbance to the data stream
is out of scope of this paper.
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A full-fledged rich data collection across many users for our problem is quite
costly. Apart from the users needing to volunteer with time and money (fuel),
most importantly, in absence of ‘ground truth’, it is hard to validate results on
drive behavior. Hence, all our evaluations are based on a volunteer-driven data
collected over 10 trips on a road stretch in New Delhi, shown in Fig. 2a.

A single volunteer drove the car on the selected road segment in each of
the trips. An expert driver in the passenger seat did an assessment of the drive
quality (good or rash) for different segments and logged them as ‘ground truth’.
Note that according to the Definitions 1 and 2 given earlier, the ground truths
should be determined using population based statistics, but in the absence of
such statistics we have used subjective estimates of an expert driver as ground
truths for this work. The accelerometer data was recorded with a sampling fre-
quency of 30 Hz, while the GPS information was recorded every second. It took
us approximately 10–15 min to record each trip. With this data, we focus on
understanding: (1) Efficacy of our algorithms to identify ambient driving con-
texts (2) Performance of identifying drive behavior in those contexts4. Note
that due to the nature of our methodology, there is no suitable reference algo-
rithm to compare our results against. The most recent work [2] used dynamic
time warping-based supervised classification. As described earlier, apart from
conducting some initial experiments with this methodology and revealing its
drawbacks, this methodology is unsuitable for our approach of developing an
unsupervised learning methodology.

4.1 Ambient Context Determination

In our first experiment, we wish to understand the efficacy of identifying challeng-
ing ambient driving contexts. For this purpose, we have focused our experiments
to a selection of ambient contexts involving turns and road surfaces to perform
in-depth analysis of our methodology.

We determine two types of ambient contexts, viz., turn contexts and road
surface contexts. As mentioned, we employed GIS-based map-matching algo-
rithm to the trajectory recorded by the GPS data for identifying the turns.
Accelerometer based segment data enrichment and cross-trip majority voting
approach described earlier were employed to identify segments in the trajectory
of each trip that corresponds to the road surface conditions. We have reported
the results for identifying bumps on our route (Fig. 2a). Three different values
of τvote were used to demonstrate the efficacy of the cross-trip majority voting
method. τvote = 0 represents segments discovered from the union of all points
across all trips which are labelled as ‘rough’. Similarly, τvote = 1 represents seg-
ments discovered from the points that are labelled as ‘rough’ by at least two trips
and so on. Figure 4a shows the number (percentage) of bumps on the road that
were discovered by our method. As we can observe, for τvote = 0, initially, the
number of segments discovered increases monotonically as we find new ‘rough’
4 In all our experiments we have used r = 2.5 for the clustering operation, both for

segmentation as well as for driving behavior classification.
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Fig. 4. Performance of ambient context discovery procedure

points on the trajectory as we include data from more trips, creating newer
segments. However, increase in the number of segments also implies a corre-
sponding decrease in the distance between two successive segment boundaries.
Consequently, after a point, when the distance between two successive segments
drops lower then the threshold of the adaptive DBSCAN algorithm, it auto-
matically merges two successive segments resulting in a drop in the number of
segments. This phenomenon can be observed from the plot shown for τvote = 0.
For higher values of τvote, increase in the number of segments is more sluggish as
the probability for any point to acquire votes higher than τvote (and considered
to be included in a segment) from same number of trips decreases with increasing
τvote.

Figure 4b, c and d shows the accuracy of our segment discovery method which
we compute by comparing against the ground truth. We observe that for all val-
ues of τvote the recall increases as more segments are discovered with increasing
number of trips. The rate of increase becomes more sluggish for higher values of
τvote as the segments are discovered slowly due to reason cited above. Observe
that recall is highest for τvote = 0 as it includes all points from all trips that are
labelled as ‘rough’. However, it also includes a large number of false positives
which is reflected by the corresponding low precision value. For τvote = 1, pre-
cision increases initially as we find more ‘rough’ points with increasing number
of trips. However, as number of trip grows, after a point, it also starts including
false positives resulting in a drop in its precision score. For τvote = 2 we have
a very low precision and recall at the beginning as it fails to find any segment
for the reason stated above. However, due to the same reason it also includes
minimum false positives as we increase the number of trips, resulting in a steady
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Fig. 5. Driving profile determination

Table 2. Features used in clustering for the four ambient contexts we have considered

Ambient context Feature 1 Feature 2 Feature 3

Bumpy turn corr(X,Y), corr(X,Z) stddev(Y), stddev(Z) avg(Y), avg(Z)

Smooth turns corr(X,Y) stddev(Y) avg(Y)

Bumpy straight road corr(X,Z) stddev(Z) avg(Z)

Smooth straight road avg(X) stddev(X) avg(X)

increase in the precision score. We therefore select τvote = 2 as our operating
threshold for the adaptive DBSCAN algorithm.

4.2 Driving Characterization

Next, we performed experiments to identify driving behavior for an ambient con-
text and validated our results with that of the ground truth collected using the
expert driver. Here, we evaluate our proposed method of determining driving
characteristics given an ambient context. We have considered 4 different ambi-
ent contexts - bumpy turn, smooth turn, bumpy straight road, smooth straight
road - to characterize bad driving behavior for each ambient context. The char-
acterization has been done following two approaches: (i) clustering localized seg-
ments (segment at a given location in the trajectory) across all the 10 trips and
(ii) clustering all segments corresponding to a particular ambient context. Table 2,
shows the features sets we chose for clustering different ambient contexts we have
considered. The choice of these features are influenced by the accelerometer axes,
which is expected to show maximum variation under a given context as discussed
before in Sect. 3. Figure 5a and b shows the precision and recall values for identi-
fying aberrant driving behaviors with our approach for the 4 ambient contexts.
Although the precision is not notably high, ranging mostly between 50–60%, the
recall values are much higher (80–90%) than the precision values implying that
our method is an aggressive method where most of the aberrant driving behav-
iors are identified at the cost of a few normal driving behaviors being character-
ized as aberrant. However, unlike prior supervised learning methods presented
earlier in the motivation section, which are dependent on limited training set
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data, our methodology demonstrates the capability of recognizing the impact
of circumstantial ambient contexts using a bottom-up, unsupervised analysis of
driving behavior. We continue to experiment towards improving precision, while
retaining the high recall values.

5 Conclusion

Recently, a few research efforts have investigated supervised methodologies for
driving behavior detection using smartphone sensors. However, we argue that in
chaotic road settings, ambient driving context assumes importance in categoriz-
ing the driving behavior of an individual and it is hard to practically implement
supervised data driven methodologies. In this paper, we present an information
fusion-based methodology for determining ambient driving context using mul-
tiple data sources including smartphone sensors followed by the determination
of driving behavior for a given ambient context. We focus on static ambient
context and experiment with real data collected for a ‘chaotic’ road stretch in
New Delhi. We report results demonstrating the feasibility and utility of our
approach, while presenting insights on achievable quality for the determination
of such fine-grained spatio-semantic driving behavior.
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