
A Data Distribution Model for Large-Scale
Context Aware Systems

Soumi Chattopadhyay1, Ansuman Banerjee1, and Nilanjan Banerjee2(B)

1 Indian Statistical Institute, Kolkata, India
{mtc1203,ansuman}@isical.ac.in

2 IBM Research - India, New Delhi, India
nilanjba@in.ibm.com

Abstract. Very large scale context aware systems are becoming a reality
with the emerging paradigms such as machine-to-machine communica-
tions, crowdsensing, etc. Scalable data distribution is a critical require-
ment in such large scale systems for optimal usage of computing and
communication resources. In this paper, we present a novel theoretical
model for middleware design for such large-scale context aware systems
that distributes only relevant data based on its effective utility. We also
present extensive experimental results to validate the efficacy of our pro-
posed model.

Keywords: Context-aware computing · Data distribution model

1 Introduction

We are witnessing an unprecedented instrumentation of our environment due to
the rapid advancements in computing and networking technologies over the last
decade. Large scale sensor network deployment, numerous devices connected over
the Internet and the tremendous development and adoption of sensor enabled
smartphones are enabling us to build context aware systems capturing physical
contexts and interpret our personal objective world like never before. Context
aware systems studied so far have been limited to small scale systems like smart
homes, smart offices. Recent advances in cost, form and performance factors of
computing and networking technologies are making the design and the deploy-
ment of very large scale, distributed context aware systems a reality. Machine-
to-machine (M2M) or Internet of Things (IoT) is an emerging paradigm that is
facilitating the development of such large scale distributed context aware sys-
tems. In M2M, powerful devices are connected to each other so that they can
communicate among themselves to perform certain tasks. For example, efficient
energy management is now possible with the large scale deployment of con-
nected smart energy meters at home. Consider the following situation, where a
large energy company provides a service to regulate the home temperature of
its customers based on total energy load at the customer premises, the ambi-
ent temperature and the energy price. In order to provide such a service, the
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2014
I. Stojmenovic et al. (Eds.): MOBIQUITOUS 2013, LNICST 131, pp. 615–627, 2014.
DOI: 10.1007/978-3-319-11569-6 48



616 S. Chattopadhyay et al.

energy company collects the relevant data from various sources including the
smart energy meters to derive a real-time context that determines whether to
turn the air conditioners at the customer homes, on or off. Another contempo-
rary phenomenon enabling large scale distributed context aware system is the
rapid development and proliferation of smartphones equipped with sophisticated
sensors. The new emerging paradigm of crowdsensing [1] leverages this truly
pervasive, mobile sensor network of smartphones to provide a cheaper and more
pervasive alternative for large scale sensor network based monitoring of physical
environment. In crowdsensing, people with smartphones contribute data either
voluntarily or driven by certain personal objectives or incentives. For example,
in the absence of a dedicated sensor network, public authorities can monitor
temperature, pollution level at a particular location by collecting the tempera-
ture and pollution data from volunteers who are carrying smartphones equipped
with appropriate sensors and are present at that location.

The role of context data distribution in any such large scale distributed sens-
ing network is very crucial to ensure the availability of the context data with the
right quality, in the right place and at the right time i.e. with acceptable Qual-
ity of Context (QoC). Context data distribution consumes costly and scarce
network bandwidth resource, making it a challenging task especially for very
large scale distributed systems generating dynamic context data in huge vol-
umes. Context data distribution is typically done by the context management
middleware that transparently manages and routes huge volume of context data
between the producers and the consumers, while ensuring the desired QoC. While
different aspects of data distribution by context management middlewares have
been explored in existing body of research works [2], the significant overhead of
context data distribution for desired QoC that leads to system scalability and
reliability issues have relatively been less explored.

In this paper, we address this particular problem of managing the overhead
of context data distribution and propose a theoretical model for middleware
design for large scale distributed context aware systems. Our approach stems
from the observation that not all the data generated in a system is relevant for
context computations and hence does not need to be distributed always, thereby
saving network resources resulting in improved system resource utilization and
efficiency. In our model, we propose a formal framework for the context man-
agement middleware that can identify the set of context data that is relevant
to the currently defined context rules in the system for distribution, thereby
reducing redundant context data dissemination. Simulation experiments show
our proposed framework is capable of saving network resources significantly for
very large scale systems.

Context data distribution, particularly in large-scale ubiquitous systems has
been an important and fertile area of research work in the last decade or so.
A comprehensive survey on the wide range of data distribution systems can be
found in [2]. A number of proposals have been made to solve various issues with
context data distribution in purely distributed context management systems [3]
as well as in centralized context management systems [4]. The fundamental



A Data Distribution Model for Large-Scale Context Aware Systems 617

difference with this body of work on context data distribution and our pro-
posed approach is that the prior works primarily used subscription matching in
the context management middleware for efficient data dissemination, whereas
our work proposes a novel approach of efficient data dissemination based on
actual context data utility. In our proposed scheme, the producers disseminate
only the context data that impacts the context consumed by the context-aware
applications in the runtime.

2 A Motivating Example

We explain the motivation behind our work on a simple example of a monitoring
system. Consider a scenario with 3 sensors, communicating with a central context
management server. The first sensor records the water storage level along with
the information on whether it is raining or not. The second sensor records the
temperature and checks if it is favourable (in a certain range) and the third
sensor measures a number of environmental parameters like CO2, chemicals,
CO, hydrocarbons etc., to check if their values are within certain limits. The
context management server implements the following context rules:

– Context Rule 1: Send a grain protection alert if any of the following holds:
– It is raining and the water level > threshold (t1) and the temperature is

unfavourable.
– If temperature is favourable, it is raining and water level > threshold (t1).
– The temperature is unfavourable and it is not raining and the water level <

threshold (t1).
– The temperature is favourable, it is not raining and the water level <

threshold (t1).
– Context Rule 2: Send an air pollution alert if any of the following holds:

– CO2 measurement > threshold (t4).
– Chemical in the atmosphere > threshold (t5).
– Quantity of burning fossil fuels > threshold (t6) and the emission of carbon

monoxide, oxides of nitrogen, hydrocarbons and particulates > threshold
(t7).

The example presented here may appear to be non-intuitive and dry to the
reader, but in reality, a general context system designer is equipped with very
limited exposure to sophisticated logic and specification formalisms to be able to
write context rules that are easily amenable to automated analysis. The example
presented here is representative of the formal training (or lack of it) available to
the designer. The context rules are usually expressed by domain experts (and
not computer scientists/engineers/logicians) who model the system in natural
language forms. We show here how a formal foundation can lead to remarkable
efficiency in system performance as far as the transmission profile is concerned.

We now analyse the situation from the perspective of the sensors, which
are entrusted with the responsibility of observing the parameters and commu-
nicating the values to the server, whenever there is a change in the value of the



618 S. Chattopadhyay et al.

parameter. Values received from the sensor are used by the server to evaluate the
two rules and accordingly decide the next course of action on the alert signals.
We define a few Boolean variables in Table 1 to model some predicates on the
sensor inputs. These predicates are used in the context rules. We also assume
the sensors are able to evaluate the values of the predicates (in other words,
the Boolean variables), before sending the update to the server. The sensors
communicate the Boolean variables, and the server can act accordingly, since
the predicate-to-Boolean map is available there as well. The communication is
done using the Boolean variables, which takes fewer message bits, as opposed
to transmitting the exact value of the observed sensor inputs. This could have
equivalently done using some encoding scheme for the predicates directly. How-
ever, we use the Boolean encoding just for the sake of simplicity of illustration.

For the purpose of illustration, we consider random changes of the variables
and depending on those changes we observe the number of transmissions. Table 2
contains a 0 or 1 depending on whether the value of the predicate (or equivalently
the corresponding Boolean variable) is true or false. For example, if the water-
level in the storage > threshold (t1) then the value of the Boolean variable
v1 = 1, otherwise v1 = 0.

Table 1. Definition of the Boolean variables

v1 : Water-level in the storage > threshold (t1)

v2 : Raining or not

v3 : The temperature lies between lower threshold (t2) and upper threshold (t3)
value

v4 : CO2 measurement > threshold (t4)

v5 : Chemical in the atmosphere > threshold (t5)

v6 : Burning fossil fuels > threshold (t6)

v7 : The emission of carbon monoxide, oxides of nitrogen, hydrocarbons and
particulates > threshold (t7)

How Will Standard Transmission Methods Work? Consider a synchronous trans-
mission scheme. In this case, each transmission involves the values of the vari-
ables, either periodically or aperiodically (when something new happens). In the
case of a change-driven synchronous transmission scheme, whenever there is a
change in the value of any sensor observed variable, a transmission message is
triggered, with the message carrying the latest valuations of all the variables
(irrespective of whether they have changed or not). Quite evidently, this is not
quite an efficient dissemination scheme. For the purpose of illustration, we have
considered in Table 2 a window of 10 instants, with each slot showing the val-
uation of each variable. In the synchronous scheme, a total of 70 (in each of
the 10 slots, all the 7 variables are transmitted) transmissions are required. We
now consider an asynchronous transmission scheme, i.e. transmission only occurs
when there is a change and only the change is transmitted and not the entire
snapshot. In this case, 57 transmissions are required as shown in Table 2.



A Data Distribution Model for Large-Scale Context Aware Systems 619

Table 2. Random changes of variables
with respect to time

Time Instant v1 v2 v3 v4 v5 v6 v7
1 1 0 0 1 0 0 1
2 0 1 1 1 1 1 0
3 1 0 0 1 0 0 1
4 0 1 1 1 1 1 0
5 1 0 0 1 0 0 1
6 0 1 1 0 1 1 0
7 1 0 0 1 1 0 1
8 0 1 1 0 1 1 1
9 1 0 0 0 0 1 1
10 0 1 1 0 1 1 1

Total changes 10 10 10 4 8 8 7

Table 3. Transmission of variables
with respect to time in our method

Time Instant v1 v2 v3 v4 + v5 v6.v7
1 1 0 X 1 0
2 0 1 X X X
3 1 0 X X X
4 0 1 X X X
5 1 0 X X X
6 0 1 X X X
7 1 0 X X X
8 0 1 X X X
9 1 0 X 0 1
10 0 1 X X X

Total changes 10 10 0 2 2

Our Method at Work: If we analyse the context rules carefully, we can reduce
the number of transmissions. If we observe context rule 1, we see that when it
is raining and also the water level > threshold (t1), the server sends the alert
for protection of grain, irrespective of the temperature because in this case flood
may occur. Again, if it is not raining and the water level < threshold (t1),
then also the server sends the alert without verifying whether the temperature
is favourable or not because of the dryness in weather. Combining all the four
cases, we can see the server does not need to know about the temperature for
sending the protection alert. Hence, for rule 1, the sensor does not need to
transmit the observations of temperature at all, since the server does not need
to know about v3 at all. Further, if we analyse the remaining two conditions
[whether it is raining and whether the water level > threshold (t1)], we see that
the server sends an alert whenever both of them are true or both of them are
false. So, the server changes its decision if any of them changes. Let us suppose,
at a specific time instant, both of them are true. If one of them changes, the
server has to change its decision. The same happens if both of them are false.
Again, in the present instant, if one of them is true and the other is false and
subsequently, if any of them changes, then either both of them become true or
both of them become false. In this case as well, the server has to change its
decision. So, knowing the values of both the variables v1 and v2 is critical to the
server, since every change affects the server’s decision. Our method can compute
this critical set of variables in an efficient way.

If we observe the second rule, we see all the four variables are required to send
the air pollution alert. However, as long as the CO2 measurement > threshold
(t4), without knowing the status of the other three variables, the server can send
the air pollution alert. The same happens if the chemical in the atmosphere >
threshold (t5). If the quantity of burning fossil fuels < threshold (t6), the status
of the emission of carbon monoxide, oxides of nitrogen, hydrocarbons and par-
ticulates does not affect the server’s decision. However, if both the predicates are
true at the same time instant, the server sends an air pollution alert irrespective
of the status of the CO2 measure and the chemical in the atmosphere. These
observations lead to further reduction in the number of transmissions.



620 S. Chattopadhyay et al.

It is also possible to reduce the transmission by analysing the sensor’s obser-
vations at the current snapshot. We can see that the 3rd sensor observes CO2

measurement and Chemical in the atmosphere. If any of the predicates v4 and
v5 is true, the server sends an air pollution alert. Hence, instead of sending the
individual status of these predicates, the sensor can send true if either of them
is true and false if none of them are true. The server does not need to know
exactly which of the predicates is actually true. This saves message bits.

Based on the above observations, we define the effective utility of a sensor
input, based on the relevance of transmission of the predicates appearing in the
context rules. With our proposed optimizations, 24 transmissions are required.
The transmissions are described in Table 3, where each cell entry denotes the
value transmitted to the server (X indicates no transmission). In this work, we
put forward a formal framework for reducing the number of update transmis-
sions, thereby, contributing to the overall objective of sensor network design.

3 Detailed Methodology

We consider the following simple system setting in this work.

– A set of n distributed sensors, with no communication among themselves.
– Each sensor observes a set of environment parameters, in their sensing zone.

The parameters can be of arbitrary data type. We further assume the sensing
zones to be unique, in other words, no parameter is observed by more than
one sensor. We assume this for simplicity of analysis.

– The sensors communicate with a central server S via message passing.
– The server S has a set of context-triggered actions.

At the server end, before the network is initialized, the server pre-processes the
context rules using our method and communicates to the sensors, which obser-
vations are needed and at what instants. The overall objective of our scheme
is to save the sensors from needless transmissions. Based on the values received
from the sensors, the server evaluates the context-triggered actions and takes
necessary steps. At the sensor end, the necessary set of predicates at the appro-
priate instants (as communicated to them by the server) are evaluated based on
the observed values, and transmitted if needed. We illustrate our proposal in the
following subsections. We begin with the definition of a data predicate.

Definition 1. Data Predicate: A data predicate is an expression of the form
< lexp >��< rexp >, where ��∈ {=, �=, <=, >=, <,>}, < lexp > and < rexp >
are data variables (e.g. temperature, humidity, CO2 level etc.) or constants. �

Given a valuation to its variables, a data predicate evaluates to true or false.
Sensors transmit the Boolean values of relevant data predicates to the server.

Example 1. Consider a variable u which denotes the temperature of the system.
A data predicate P is defined as: P : u < 20 ◦C. If the temperature is less than
20 ◦C at any instant, P is evaluated as true, else it is false. �



A Data Distribution Model for Large-Scale Context Aware Systems 621

Definition 2. Context-Triggered Action: A context action is an expression
of the form Rule: Action, where Rule is a Boolean combination (using Boolean
operators) of data predicates over data variables and Action is the resulting
actuation performed by the server. �

The intuitive semantics of a context-triggered action is as follows: the Action
will be executed only if the variable values at the current snapshot makes the
Rule evaluate to true. For the sake of simplicity, we assume that the rule base
is free from contradiction, if not, a consistency check does the job.

Example 2. Following is an example context triggered action: Context Rule:
Room temperature > 20 ◦C and AC is off. Action: Server turns on AC. �

3.1 Transmission Control Mechanism

We now explain the optimizations in message transmission proposed in this
paper. We begin with a few definitions, which help us build the foundations of
our analysis framework. We refer to the data predicates appearing in the context
rules using Boolean variables with the obvious interpretation (the predicate-
variable map in Table 1) as in Sect. 2. In the following discussion, we use the
term variable to mean a Boolean variable, which stands for a Boolean-valued
predicate defined over the sensor-observed variable (arbitrary type).

Definition 3. Co-factor: The positive (negative) co-factor of a context rule
C defined over a set of Boolean variables V = {v1, v2, . . . vn} with respect to a
variable vi ∈ V is obtained by substituting 1 (true) or 0 (false) in C. �

The positive co-factor, denoted by Cvi
is obtained as Cvi

= C(v1, v2, . . . , vi =
1, . . . , vn). Similarly, the negative co-factor, denoted as Cv̄i

is obtained as C
(v1, v2, . . . , vi = 0, . . . , vn). We now define the concept of decomposition of a
context rule. This follows as a straightforward application of Shannon’s expan-
sion of Boolean functions [5]. The co-factors are independent of the variable vi
with respect to which they are computed.

Definition 4. Context Rule Decomposition: The decomposition of a con-
text rule C with respect to a variable v ∈ V is obtained as: C = v.Cv + v̄.Cv̄, where
Cv and Cv̄ are respectively the positive and negative cofactors of C with respect
to v. �

Example 3. Consider a context rule C = v4+v5+v6.v7. The positive co-factor of
C with respect to v4 is 1+v5+v6.v7 = 1. The negative co-factor is 0+v5+v6.v7 =
v5 + v6.v7. The decomposition of C with respect to v4 is C = v4.Cv4 + v̄4.Cv̄4 .
= v4.1 + v̄4.(v5 + v6.v7) = v4 + v5 + v6.v7. �



622 S. Chattopadhyay et al.

Optimizations Based on Co-factors: We begin our proposal of reducing
message transmissions with a simple observation in terms of co-factors. Consider,
the current value of v = 1 for some variable v ∈ V and also consider for some
context rule C, Cv = f(vi1 , . . . , vil). In this case, to evaluate C, the server does
not need to know the status of the variables in V \ {{vi1 , . . . , vil}

⋃{v}} until
v gets changed, where \ is the set difference operation. So, the sensor does not
transmit the status of those variables to the server accordingly. In the special
case, when Cv or Cv̄ equals to a constant, i.e. 0 or 1, that means the change of
the state of other variables are not reflected in C as long as the state of v remains
same. So to evaluate C, the server does not need the status of any other variable
other than v until it changes. Hence, the sensor can keep on observing v, but
transmit only when it changes. At the initialization stage, the server analyses
the context rules and gathers the set of variables whose positive or negative co-
factors evaluate to a constant. This information is passed on to the sensors, and
the sensor precisely knows when to transmit the valuations of the other variables
it observes. Depending on the current snapshot, the server informs the sensors
which variables are required.

Example 4. Consider Context rule 2 in Sect. 2. We analyze the context rule in
the following way: C(v4, v5, v6, v7) = v4 + v5 + v6.v7, then positive co-factor of
C w.r.t. v4, Cv4 = 1 + v5 + v6.v7 = 1, negative co-factor of C w.r.t. v4, Cv̄4 =
0+ v5 + v6.v7 = v5 + v6.v7. So, when v4 = 1, the server does not require to know
the status of v5, v6, v7 until v4 becomes 0. The same happens for v5: as long as
v5 = 1, the server does not need any information about v4, v6, v7. �
Context rule decomposition can be extended to multiple variables as well. The
decomposition of a context rule C with respect to two variables u, v ∈ V is
obtained as: C = uv.Cuv + uv̄Cuv̄ + ūv.Cūv + ūv̄Cūv̄, where, Cuv, Cuv̄, Cūv, Cūv̄

are Shannon co-factors with respect to multiple variables. The co-factors are
obtained as follows: Cuv by substituting the value of u = 1 and v = 1 in C, Cuv̄

by substituting the value of u = 1 and v = 0 in C, Cūv by substituting the value
of u = 0 and v = 1 and Cūv̄ by substituting the value of u = 0 and v = 0.

In certain cases, co-factor analysis involving multiple variables helps us reduce
the transmission. But in this case, if we want to analyze the co-factors for a
context rule defined over a set V of n variables, we have in all an exponential
number (2n) of combinations, considering all subsets of all cardinalities of V. In
our work, we restrict ourselves to two variable co-factor analysis. Again, instead
of looking at all the variables in the variable set V for multiple variable co-factor
analysis, we can even concentrate on a smaller set, containing the variables whose
positive and negative co-factors are not constant.

Example 5. Consider context rule 2 in Example 1 and the current snapshot
v4 = 0, v5 = 0, v6 = 1, v7 = 1. According to single variable co-factor analysis,
the sensor needs to transmit the status of all the four variables, since none
of the co-factors are constant. Multiple variable co-factor analysis reveals that
Cv6v7 = v4 + v5 + 1.1 = 1. So as long as v6 and v7 remain 1, the server does
not need the information of v4 and v5. But if any of them changes, the server
requires the information of v4 and v5. �



A Data Distribution Model for Large-Scale Context Aware Systems 623

For each context rule, we first analyze single variable co-factor and create a
decision table which contains two fields: the value of the variable and depending
on that value of the variable which variables are not required to evaluate the
context rule. This is followed by a two variable co-factor analysis using the
variables whose positive and negative co-factors are not constant. If the set

contains v number of variables, then we have
(

v

2

)

many combinations, and for

each combination, there exists four different values (corresponding to the four
co-factors). The results of the two variables co-factor analysis is stored in the
decision table in the same format.

Optimizations Based on Unateness Analysis: We define a few more con-
cepts that further reduce the number of transmissions.

Definition 5. Unateness: A context rule C is positive unate in vi if changing
the value of vi from 0 to 1 keeps C constant or changes C from 0 to 1. �

C(v1, v2, . . . , v(i−1), 1, v(i+1), . . . , vm) ≥ C(v1, v2, . . . , v(i−1), 0, v(i+1), . . . , vm).
Negative unateness is defined similarly.

The unateness criterion leads to an interesting observation. If for every vi, C
is either positive or negative unate in vi, then C is said to be unate function
otherwise C is called binate function. Suppose a context rule C is evaluated to
1 at some point of time according to the current snapshot. Then the value of C
does not change with the change of all those variables whose current value is 0
and in which C is positive unate. In other words, these variables are not needed
to be transmitted. As earlier, the server decides on these conditions in the pre-
processing stage and informs the sensor about its transmission requirements.

Example 6. Consider one context rule C = v1.v2.v3.v4 +v5.v6 +v7. Also consider
the current snapshot (v1 = 1, v2 = 1, v3 = 1, v4 = 1, v5 = 0, v6 = 0, v7 =
0), and according to this snapshot C evaluates to true. We can see that C is
positive unate in {v1, . . . , v7}. So as long as C remains 1, the change of all the
variables whose current value is 0, i.e. {v5, v6, v7}, does not affect the value of C.
Accordingly the sensors are informed not to transmit these variables.

It is interesting to note that unate analysis takes care of the situation where
co-factor analysis with respect to more than two variables are involved.

Optimizations Based on Effective Utility: Analyzing the criticality of a
variable with respect to a context rule leads to further reductions. It is important
to know which of the variables in the rule can actually influence the evaluation
result of the rule. This is the effective utility of the variable with respect to the
context rule. There may be some variables whose changes are not reflected in
the context rule at all and there may be some variables for whom every change
is crucial for the evaluation of the context rule. This is handled using derivative
analysis.



624 S. Chattopadhyay et al.

Definition 6. Derivative: The derivative of a context rule C with respect to a
variable vi is defined as the exclusive-or of the positive and negative co-factors
of C with respect to the variable vi, ∂C/∂vi = Cvi

⊕ Cv̄i
. �

The intuitive idea is as follows. vi can only change from 0 to 1 or 1 to 0. Consider
the present value of vi as 1, then C = (1.Cvi

+ 0.Cv̄i
) = Cvi

. When the value of
vi changes to 0, C = (0.Cvi

+ 1.Cv̄i
) = Cv̄i

. C changes with change in vi if the
values of the positive and negative co-factors are different. This is expressed
using Cvi

⊕ Cv̄i
. Hence, ∂C/∂vi denotes the change of the context rule C with

respect to the variable vi.
Analyzing the derivative leads us to interesting observations as below.

– Cvi
⊕ Cv̄i

= 0, implies C is independent of vi. This is because Cvi
= Cv̄i

, hence
C is not be affected with change in vi. This means that the sensor does not
need to send the status of vi to the server at any time.

– Cvi
⊕Cv̄i

= 1, implies the variable vi is critical to the server since every change
in vi is reflected in the context rule C. Hence, all updates to a critical variable
have to be transmitted to the server.

– Cvi
⊕ Cv̄i

= g(v1, v2, . . . , vi−1, vi+1, . . . , vm), implies g is free from vi. In this
case, the server requires to know the status of vi at least once.

Example 7. Consider the first context rule in Sect. 2. We can analyze the context
rule in the following way: C(v1, v2, v3) = v1.v2.v̄3 + v1.v2.v3 + v̄1.v̄2.v̄3 + v̄1.v̄2.v3.
The derivative of C w.r.t. v3, ∂C/∂v3 = Cv3 ⊕ Cv̄3 = 0, Since no change of v3
is reflected in C, the server does not require to know the status of v3 at all.
Consider the derivative of C with respect to v1 and v2, ∂C/∂v1 = Cv1 ⊕ Cv̄1 = 1;
∂C/∂v2 = Cv2 ⊕ Cv̄2 = 1, so all the changes of v1 and v2 are reflected in C.
Therefore, the server requires to know every change of v1, v2. �

Optimizations Based on Sensor’s Data Analysis: The number of trans-
missions can be reduced further by analyzing the sensor’s data in the current
snapshot. Instead of sending the individual value of all variables, it can merge
the value of some variables either by ANDing or by ORing, depending on the
context. The variables sent by a sensor should have the following properties:

– The derivative of the variables with respect to some context rule must not be
constant.

– Either all of them are part of a context rule or none of them are part of a
context rule.

– One of the co-factors of each variables is constant.
– If either of the co-factors of the variables is 1, then instead of sending their

individual value sensor can send only one value by ORing them.
– If either of the co-factors of the variables is 0, then instead of sending their

individual value, sensor can send only one value by ANDing them.

Example 8. Consider the second context rule in the previous example. If a sensor
needs to send the status of v4 and v5, then instead of sending their individual



A Data Distribution Model for Large-Scale Context Aware Systems 625

values, it is better to send the value of v4 + v5, because the context rule is true
if any one of them is true and if both of them are false then the decision of the
context rule depends on the value of v6, v7. �

4 Putting Everything Together

We are given a set C of context rules over a set of Boolean predicates encoded
as Boolean variables V. The server performs the following pre-processing steps.

– Step 1: The server performs derivative analysis. V1 = {v ∈ V such that ∂c/∂v
= 1,∃c ∈ C}, V2 = {v ∈ V such that ∂c/∂v = 0,∀c ∈ C}; Based on the
result, the server informs the sensors to stop monitoring the data variables
corresponding to the data predicates belonging to V2 and also to transmit all
changes of the data predicates belonging to V1.

– Step 2: Evaluates the positive and negative co-factors of all context rules with
respect to each variable belonging to (V \ V2) in the cases where ∂c/∂v �= 1.

– Step 3: Analysis of the two variable co-factors for each context rule C using
the set of variables such that Cv and Cv̄ are not constant for all v in that
variable set.

– Step 4: Sensor Data Analysis: (variables belonging to V3 = (V\(V1∪V2))), the
server can instruct the sensor which variables can be transmitted by ORing
or ANDing. Let the new set be V4, where some variables belonging to V3 are
combined into one. Though they are different data variables while observing,
they are combined while transmitting.

– Step 5: For each context rule(C), find two sets of variables in which the context
rule is positive and negative unate, such that ∀v belong to that sets ∂c/∂v is
not equal to constant.

The following are the execution time computations:

– Find the set of variables (Vc) to evaluate each context rule (C) depending on
the current snapshot. Then the server informs the appropriate sensors to stop
transmitting variables belonging to V3 \ (∪c∈CVc).

5 Implementation and Results

We implemented the proposed framework in Java. We tested our method on two
published context system descriptions (entries 5 and 12 of Table 4 correspond-
ing to the descriptions in [6,7]) and random environments, where the number
of variables, the context rules and the number of sensors and their observation
sets were randomly generated. The results are shown in Table 4. We have com-
pared our method with the asynchronous transmission scheme with respect to
the number of transmissions. A graphical view of the comparative transmission
numbers is shown in Table 5, showing the transmissions in usual case denoted by
red line and the number of transmissions in our case denoted by the blue line,
with increase in the number of variables (horizontal axis).



626 S. Chattopadhyay et al.

Table 4. Test-case statistics

No. No. No. Avg. Tx Tx
of of of observation in usual in our

variables formulas sensors of sensors case case

3 1 1 3 24 14
4 3 2 2 26 21
6 1 2 3 52 29
6 9 2 3 51 30
6 1 1 6 49 9
8 8 3 3 65 35
9 5 3 3 62 34
10 15 3 3 80 27
12 19 4 3 100 20
15 10 7 2 131 46
16 3 8 2 120 23
16 5 3 5 129 35
19 5 5 4 134 40
26 29 12 2 213 68
26 140 13 2 206 159
33 15 10 3 251 79
37 19 12 3 296 81
38 48 20 2 301 104
39 11 20 2 303 84
51 8 16 3 408 79
58 29 6 9 458 123
60 44 8 8 489 117
74 40 20 4 566 209
90 68 24 4 728 289
100 138 38 3 836 341
109 80 33 3 887 366
182 48 4 50 1478 429
357 1022 2 150 2898 1972
624 143 11 57 4949 956
845 93 6 141 6727 959
858 22 6 143 6815 297
885 14 4 227 6961 187
1065 183 2 523 8495 1717
1070 148 15 72 8550 1689
1110 97 4 278 8888 1259
1119 64 19 59 8862 767
1358 116 17 80 10964 1614
1414 20 7 202 11385 284
1614 110 13 124 12856 1423
1670 136 14 120 13216 1537
1783 99 19 94 14256 1367

Table 5. Number of variables Vs Transmis-
sion of variables

6 Conclusion

In this paper, we have proposed a new scheme for data dissemination in a large-
scale context aware system. Experimental results show promising improvements
in the number of transmissions. With context aware systems gaining widespread
popularity in recent times, we believe our work will have interesting applications.
We are currently working on generic data types and predicates and more complex
context rules for more realistic applications of this work.

References

1. Ganti, R.K., Ye, F., Lei, H.: Mobile crowdsensing: current state and future chal-
lenges. IEEE Commun. Mag. 49, 32–39 (2011)

2. Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A survey of context data dis-
tribution for mobile ubiquitous systems. ACM Comput. Surv. 44, 1–45 (2012)

3. Macedo, D.F., Santos, A.L.D., Nogueira, J.M.S., Pujolle, G.: A distributed infor-
mation repository for autonomic context-aware MANETs. IEEE Trans. Netw. Serv.
Manag. 6, 45–55 (2009)

4. Li, F., Sanjin, S., Schahram, S.: COPAL: an adaptive approach to context pro-
visioning. In: Proceedings of the IEEE 6th International Conference on Wireless
and Mobile Computing, Networking, and Communications (WiMob10), pp. 286–
293 (2010)

5. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms, 1st edn.
Kluwer Academic Publishers, Norwell (2000)



A Data Distribution Model for Large-Scale Context Aware Systems 627

6. Yao, W., et al.: Using ontology to support context awareness in healthcare. In:
Proceedings of the 19th Workshop on Information Technologies and Systems (2009)

7. Wang, X.H., et al.: Ontology based context modeling and reasoning using OWL. In:
Proceedings of the Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, pp. 18–22 (2004)


	A Data Distribution Model for Large-Scale Context Aware Systems
	1 Introduction
	2 A Motivating Example
	3 Detailed Methodology
	3.1 Transmission Control Mechanism

	4 Putting Everything Together
	5 Implementation and Results
	6 Conclusion
	References


